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Abstract 
This paper considers a variation on the Dubins path problem and proposes 
an improved waypoint navigation (WN) algorithm called Dubins waypoint 
navigation (DWN). Based on the Dubins path problem, an algorithm is de-
veloped that is updated in real-time with a horizon of three waypoints. The 
purpose of DWN is to overcome a problem that we find in existing WN for 
small-class fixed-wing unmanned aerial vehicles (UAV) of not accurately 
reaching waypoints. This problem results at times in high overshoot and, in 
the presence of wind disturbances, it can cause a vehicle to miss the way-
point and swirl around it. To prevent this, the DWN creates “new way-
points” that are in the background, called turning points. Examples illu-
strate the improvement of the performance of WN achieved using the 
DWN algorithm in terms of the targeting of waypoints while reducing fuel 
and time. 
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1. Introduction 

The user community of unmanned aerial vehicle (UAV) systems has been growing 
significantly; the commercial market net worth reached a reported $8.3 billion in 
2018 [1], the largest growth in the commercial markets being in small-class (un-
der 55 pounds) vehicles. This paper develops an algorithm for a subset of this 
class of UAV, in particular, for fixed-wing vehicles. Users of small-class UAV are 
presently navigating autonomously by open-source algorithms such as Mission 
Planner, Cape, and Pix4D. These navigational systems employ waypoint naviga-
tion (WN), wherein the user enters waypoints, whether a priori (static) or not 
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(dynamic). The practice of WN in this community is a constraint to which de-
velopment work adheres. The community is growing, and with that, is expected 
to demand higher accuracy. In RC flight, the racing community already requires 
reaching targets accurately and the growth in autonomous flight with its varied 
missions will create more demand to reach waypoints accurately. 

The shortest path between two waypoints with a limited turning radius is 
called a Dubins path [2]. WN employing Dubins paths has been studied consi-
derably. Ariff and Go conducted a thorough examination of the dynamics in-
volved in WN with a focus on dynamic soaring algorithms [3]. Goerzen, Kong, 
and Mettler made rigorous comparisons between different path planning algo-
rithms for unmanned vehicle navigation and identified advantages and disad-
vantages [4]. Manyam, et al. expanded the Dubins path problem from two way-
points to three waypoints where all three points and their headings are con-
strained [5]. Wolek and Woolsey implemented the Dubins path problem with 
estimates of unsteady velocity disturbances [6]. McGee and Hedrick considered 
the situations in which the disturbance is less significant and more predictable 
[7]. The vehicle was placed in a moving frame as a means of finding a piecewise 
continuous optimal path. Milutinovic et al. applied the characteristics of a Du-
bins vehicle to the circumnavigation algorithm, together with a feedback con-
troller to improve the vehicle’s performance [8]. Ketema and Zhao formulated 
the optimization problem of path planning under wind disturbances and identi-
fied situations in which the target points may be not reachable [9]. Meyer, Isaiah 
and Shima examined and proposed a solution for a vehicle to intercept a moving 
target with a Dubins path [10]. Criteria were given whether a target can or can-
not be intercepted and an analytical solution was obtained by a path elongation 
algorithm. Wang et al. proposed a solution using a Dubins path to solve the forma-
tion rendezvous problem of multiple UAVs [11]. Medeiros and Urrutia opti-
mized both path length and direction changes for a Dubins path problem, by di-
viding the path planning process into several stages, bringing in the algorithm of 
the travelling salesman’s problem [12]. 

This paper considers a variation on the Dubins path problem and proposes an 
improved navigation algorithm called Dubins waypoint navigation (DWN). The 
proposed DWN algorithm considers a current vehicle state (position and veloci-
ty) along with the next two prescribed waypoints to plan the vehicle’s path. Com-
pared with traditional WN, one more waypoint is involved in the determination 
of the path, enabling consideration of the manner in which the vehicle should 
circle around its previous waypoint. The objective is similar to the Dubins path 
problem in that a shortest path and a minimum fuel path between waypoints 
consists of straight-line segments and arcs. The major difference is that in DWN 
the heading at the waypoints are not specified and we consider three points in-
stead of two. Also, for simplicity, the paper only considers the case in which the 
vehicle’s turning radius is constant. 

The interest here lies in an algorithm that is updated in real-time with a hori-
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zon of three waypoints. The proposed DWN algorithm employs a current ve-
hicle position and heading for the first waypoint, uses a prescribed vehicle posi-
tion for the second waypoint, not specifying its heading, and uses a third way-
point to determine how the vehicle should circle around the second waypoint. 

The purpose of DWN is to overcome a problem that we find in existing WN 
for small-class fixed-wing vehicles of not accurately reaching waypoints. This 
problem results from the present use of a waypoint radius as a threshold that 
determines when to move on to a next waypoint. Presently, a vehicle approaches 
a first waypoint and switches to navigating to a second waypoint when the ve-
hicle is within a waypoint radius around the first waypoint, thereby not accu-
rately reaching the first waypoint. This leads the operator to desire a smaller 
waypoint radius. However, the smaller waypoint radius causes several problems. 
First, it causes high overshoot. Secondly, in the presence of wind disturbances, it 
can cause a vehicle to miss the waypoint and swirl around it. 

When correcting this problem, it became important to preserve the simplicity 
of prescribing waypoints without adding operator complexity. Therefore, the 
DWN does not have to change anything in the foreground, including the opera-
tor’s specified waypoints. Instead, the DWN creates “new waypoints” that can be 
in the background, called turning points, as explained in the method section. 

Section 2 describes the DWN algorithm. Section3 compares performances of 
WN and DWN with and without unknown wind disturbances, and the paper fi-
nishes in Section 4 with a summary and conclusions.  

2. Method 
2.1. Flow Chart 

This section develops the DWN. The DWN eliminates waypoint circles and, in-
stead, employs the new concept of turning points along with the new criterion 
for updating turning points based on whether or not a turning point is reacha-
ble. See Figure 1 showing the DWN flow chart. As shown, the DWN approaches 
navigation as an optimization problem with in a local optimization space that 
consists of a current point and two future waypoints. At any instant, the vehicle 
seeks to reach a turning point that is determined by minimizing fuel along the 
path up to the second future waypoint constituting the horizon. The trajectory, 
and hence the optimization problem, is updated once the turning point is un-
reachable. The reachability condition is determined from the vehicle’s position, 
heading, and turning radius. For the purposes of real-time implementation, the 
trajectory may be updated more frequently than when the turning point is up-
dated (like under the conditions of high winds). The stated optimization prob-
lem yields desired paths that are determined in closed-form.  

2.2. Finding Turning Points 

Consider the illustrative WN problem shown in Figure 2 and, in particular, the 
navigation to the second and third waypoints shown in Figure 3.  
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Figure 1. Flow chart of the DWN. 

 

 
Figure 2. Illustrative WN problem. 

 

 
Figure 3. Navigating to the 2nd and 3rd waypoints. 

 
The vehicle starts at W0 and heads to W1. At this point, the DWN considers 

waypoints W0, W1, and W2. The other points are beyond the horizon. 
Figure 3 shows the paths from W0 to W2 (left drawing) and from W1 to W3 

(right drawing). 
As shown, T1 denotes the turning point associated with W1. It lies on the line 

tangent to a turning circle (not to be confused with the waypoint circle in clas-
sical WN) that has a turning radius R. The turning radius, specified by the user, 
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is the desirable radius of the turns around waypoints. An optimization problem 
minimizes the fuel from W0 around and touching W1 to W2. The orientation of 
the turning circle is free to rotate about W1 so the optimization problem is a mi-
nimization problem of fuel expressed in terms of the turning circle’s orientation. 
The fuel consumed during a turn is greater than the fuel consumed while flying 
in a straight line over the same distance. Even though the minimization is over 
the distance extending to W2, the DWN updates the vehicle’s path once it reach-
es point T1. Thus, the vehicle does not follow the section of the path from T1 to 
W2 (In Figure 3, the paths followed are solid lines and the paths not followed are 
dashed lines.) The DWN recalculates that not-followed section of the path in the 
next iteration. Under ideal conditions, DWN updates the planned path when the 
vehicle crosses T1, at which point T1 is determined to be unreachable. Under real 
conditions, disturbances can result in the vehicle not reaching point T1 accurately. 
Point T1 is determined to be unreachable at a point C that is different but near-
point T1. Referring to the right drawing, the new horizon is set to W3 and the 
new turning point T2 is determined from the vehicle’s current point C and cur-
rent direction of flight and the locations of points W2 and W3. As shown, the op-
timization problem now minimizes the fuel from C around and touching W2 to 
W3. The optimization problem is now a minimization problem of fuel from C to 
W3 expressed in terms of the new turning circle’s orientation. The DWN updates 
the iterations until the vehicle reaches its last waypoint.  

2.3. Key Parameters 

Figure 4 shows the nth iteration. The vehicle is heading to Wn. A coordinate sys-
tem was set up so its x-axis points from C to Wn and its y-axis is perpendicular 
to x in the direction of Wn+1. The data is scaled such that the x and y coordinates 
represent non-dimensional lengths of distance divided by turning radius R; 
equivalently R = 1. We perform all of the calculations after the geometric para-
meters are normalized with respect to R.  

As shown, α is the heading angle (between –180˚ and 180˚) and β is the turn 
angle (β is between 0˚ and 90˚)1. We assume that there are no sharp turns be-
tween specified waypoints (the angle between any two lines connecting three 
consecutive waypoints is never greater than 90˚). At point C, the vehicle turns  
 

 
Figure 4. Set up of the coordinate system. 

 

 

1The x axis, because it is along the line through C and Wn, can cause β to exceed 90˚. 
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counter-clockwise (CCW), or clockwise (CW). Likewise, it turns around Wn 
CCW or CW. In total, there are four cases: CCW-CCW, CCW-CW, CW-CCW, 
and CW-CW.  

The interest lies in finding closed-form expressions for the paths as functions 
of A, B, α and β by curve fitting. Toward this end, note that the minimum fuel 
paths are continuous with respect to these parameters for each case, individually. 
Discontinuities occur when transitioning from one case to another. Therefore, 
the curve-fitting needs to be performed for each case and the case that consumes 
the smallest amount of fuel yields the true minimum (See Figure 5). 

2.4. Optimization Problem 

Figure 6 shows the geometry of the CW-CCW case. The fuel from C to Wn+1 is a 
function of the orientation angle θ of the turning circle. (The other cases, not 
shown, are similar.) The fuel is 

a a s sFu w L w L= +                         (1) 

where La is the total length of the two arcs (around the first and second turning 
circles), Ls is the length of the two straight segments (after the first and second 
turning circles), and wa and ws are corresponding weights (in units of fuel per 
length). Letting wa = ws = 1 (in which the weights have units of 1), yields the 
shortest path problem: 

a sL L L= +                            (2) 

In the results section, we will show that the shortest path and minimum fuel 
solutions are nearly indistinguishable under a broad range of conditions, allow-
ing the shortest path solution to approximate the minimum fuel solution. This is 
important because the shortest path solution is independent of the vehicle, in-
creasing ease of implementation and the versatility of DWN.  
 

 
Figure 5. Different directions of turning. 

 

 
Figure 6. Geometry for the CW-CCW case. 
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Referring again to Figure 6, the first straight line segment starts at tangential 
point (x1, y1) and ends at turning point Tn = (x2, y2). The second line segment 
starts at tangential point (x3, x4). Note that we define the first circle by the cur-
rent position C and the vehicle’s heading; it is either CCW or CW. The location 
of the second circle depends on the orientation angle θ. The second line segment 
is tangent to the second circle and passes through Wn+1 and therefore is uniquely 
expressed in terms of the angle δ shown, which, in turn, depends on θ. 

The coordinates x1, y1, x2, y2, x3, and y3 for each of the four cases are given in 
Table 1 and Table 2. 

By appropriately manipulating the geometric relationships, the path length 
(the objective function) becomes a function of the orientation angle θ of the 
turning circle, and the solution of this 3-point optimization problem becomes a 
function of θ. This part of the iteration can be solved off-line and curve-fit to 
determine Tn. There are two ways to fit Tn. One way is to directly fit Tn to A, B, 
α, and β. The second way is to fit θ to A, B, α, and β followed by determining Tn 
from θ. The second way of curve fitting the data will inherently lead to a more 
accurate curve fit than the first way because the relationship between Tn and θ is 
rather complicated and its analytical relationship is available, too [13]. 
 
Table 1. Location of the end points of the first line segment. 

 1x  1y  2x  2y  

CW-CW 

sin cosA α γ− + +  cos sinα γ− +  cos cosθ γ+  sin sinθ γ+  

sin cosarctan
cos sin 2A

θ α πγ
θ α

+
= +

+ −
 

CW-CCW 

sin cosA α γ− + +  cos sinα γ− +  cos cosθ γ+  sin sinθ γ+  

( ) ( )2 2

sin cos 2arctan arccos
cos sin sin cos cos sinA A

θ αγ
θ α θ α θ α

+
= +

+ − + + + −
 

CCW-CW 

sin cosA α γ− − +  cos sinα γ+  cos cosθ γ−  sin sinθ γ+  

( ) ( )2 2

sin cos 2arctan arccos
cos sin sin cos cos sinA A

θ αγ
θ α θ α θ α

−
= −

+ + − + + +
 

CW-CCW 

sin cosA α γ− − +  cos sinα γ+  cos cosθ γ−  sin sinθ γ−  

sin cosarctan
cos sin 2A

θ α πγ
θ α

−
= −

+ +
 

 
Table 2. Location of second line segment. 

 3x  3y  

CW-CW & 
CCW-CW 

cos cosθ δ+  sin sinθ δ+  

( ) ( )2 2

cos cos 1arctan arccos
sin sin cos cos sin sin

B
B B B

β θδ
β θ β θ β θ

−
= +

− − + −
 

CW-CCW & 
CCW-CCW 

cos cosθ δ+  sin sinθ δ+  

( ) ( )2 2

cos cos 1arctan arccos
sin sin cos cos sin sin

B
B B B

β θδ
β θ β θ β θ

−
= −

− − + −
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2.5. Updating the Turning Point 

As described earlier, the DWN guides a vehicle to a waypoint until it becomes 
unreachable, at which point it updates the turning point. Figure 7 shows the 
reachability condition. As shown, a reachability zone consists of CCW and CW 
circles “enclosed” on the rear by a tangent line. The reachability zone is fixed to 
the vehicle. The vehicle is trying to reach waypoint Tn. At agiven instant of time, 
Tn could be either inside or outside the reachability zone. (In the figure, Tn is 
outside of the reachability zone.). As soon as it is inside the reachability area, Tn 
becomes unreachable, and the DWN updates the turning point to Tn+1.  

Note that the purpose of “enclosing” the CCW and CW with the line segment 
was to prevent the possibility of point C passing Tn undetected, which would 
otherwise be possible because the detection is not truly performed continuously 
but only at discrete instances of time.  

Comparing the reachability zone used in DWN with the waypoint circle used 
in WN, first notice that the reachability zone, in the absence of disturbances, al-
lows the vehicle to accurately reach a first waypoint, as opposed to beginning its 
turn to a second waypoint before reaching the first waypoint. Secondly, in WN, 
the operator can easily be fooled into the natural desire to select a waypoint ra-
dius that is smaller than the vehicle’s turning radius toward the goal of more 
closely reaching a waypoint. However, when doing so in the presence of a wind 
disturbance, this can result in missing the waypoint, finding it difficult to reach, 
and causing the vehicle to swirl around the waypoint. In the DWN, no waypoint 
radius is considered.  

2.6. Parameterization 

We formulated the 3-point horizon optimization problem to keep the computa-
tional effort minimal for real-time implementation. To further reduce computa-
tional effort and for robustness, we parameterized the solution, effectively re-
ducing it to a look-up table. Toward this end, we determined the orientation an-
gle θ of a turning circle as a function of the four parameters A, B, α, and β. We 
parameterized the orientation angle by smoothly fitting the data to the four pa-
rameters separately for each case (CCW-CCW, CCW-CW, CW-CCW, and  
 

 
Figure 7. Examples of reachable and unreachable points. 
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CW-CW). Toward distinguishing between the different cases, we needed to pa-
rameterize the boundaries of each of the cases in terms of the four parameters. 
In particular, α and β transition from case to case due to changes in A and B. For 
example, consider the graph of α versus β shown in Figure 8 for particular pa-
rameters (A = B = 4, wa = ws = 1). 

As shown, there are three boundaries and three interior regions. (It turns out 
that the CW-CW case never produces an optimal orientation angle.) We express 
the boundary of the turn angle β as a function of the heading angle α in which its 
coefficients are expressed as a function of the distances A and Bas follows: 

2
0 1 2 1 2

2
0 2 1

1 2 2
2

2

4
2

4

a a a a a
a a a

a a
a

δ δ α
β

α

 + + ≥ −
= −

≤ −


                    (3) 

( )2 2
0 1 2 3 4 5 1, 2, 3i i i i i i ia b b A b A b B b B b AB i= + + + + + =           (4) 

We determined the coefficients b0i through b6i (i = 1, 2, 3) separately for each 
of the cases. The real-time procedure of updating the turning points is as fol-
lows:  

1) Calculate A, B, α, and β at an instant of time from a current state of the ve-
hicle. 

2) Calculate the coefficients associated with the boundaries between the inte-
rior regions (See [13]).  

3) Determine the interior region in which the vehicle lies. 
4) Calculate the orientation angle θ of the next turning circle (See [13]). 
5) Calculate the next turning point Tn (expressed in terms of θ analytically).  

3. Results 

Let us continue with the 6-waypoint example and compare WN and DWN. In 
WN, navigation performance depends on the minimum turning radius and the 
waypoint radius. In DWN, navigation performance depends on minimum turn-
ing radius alone. The feedback control algorithms are the same for WN and 
DWN. However, the resulting overshoots differ. An illustrative feedback control 
algorithm described below accounts for turning toward an endpoint limited by 
the vehicle’s minimum turning radius R and serves as a basis for the comparison 
between WN and DWN. 
 

 
Figure 8. Distributions of different turning conditions. 
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3.1. An Illustrative Feedback Control Algorithm 

Consider Figure 9 showing a reference path with endpoints that are waypoints 
in the case of WN and that are turning points in the case of DWN. A vehicle at 
time ti heads in a direction ϕHi (not shown) a distance si from the reference path. 
The vehicle travels a distance vΔt over a time step. At time ti+1, the vehicle heads 
in a direction ϕi+1 = ϕi + ψi in which ψi is the turn angle over one iteration, given 
by 

max max

max max max

max

Ti Ri
Ti

i Ti Ri Ri i i
Ti

Ti Ri Ti Ri

v tgs hs
R

ψ φ φ ψ
φ

ψ ψ φ φ ψ φ ψ
φ

φ φ φ φ ψ

 + >
∆= − + < − = + =

 + + ≤

   (5) 

Above, ϕTi is a target angle and ϕRi is a reference angle (all of the angles are 
positive counter-clockwise), g and h are control gains, and T Tφ φ  determines 
whether ϕR is counter-clockwise or clockwise. 

The parameters used in the results, both with and without wind disturbances, 
are as follows: The minimum turning radius was R = 0.7, the time step was 0.02, 
the vehicle speed was v = 0.8, and the control gains were g = 0.1 and h = 5.25. 
With these parameters the turning radius was 0.7. 

3.2. The Shortest Path Approximation 

Let us compare the minimum fuel and the shortest path solutions, the latter de-
termined when wa = ws = 1. In practice, the distance between waypoints is at 
least four times larger than the turning radius R. Therefore, we will only consid-
er distances A and B that are more than or equal to 4 times greater than R. When 
the distances A and B are exactly 4 times greater than R, the vehicle is flying in a 
straight line the least amount of the time and, for this case, we expect the differ-
ence between the minimum fuel solution and the shortest path solution to be the 
greatest. Figure 10 shows minimum fuel solutions in which wa varies from 1— 
the shortest path case—to wa = 1.5, for which the fuel cost during turning flight 
is 50% greater than the fuel cost during straight flight (In small-class fixed-wing 
vehicles the fuel penalty of turning is less than 50%). As shown, the orientation 
angle of the turning circle does not change more than 4˚. The minimum-fuel 
path is very close to the shortest path and therefore the shortest path approx-
imates the minimum fuel path. The use of the shortest path would therefore be  
 

 
Figure 9. Parameters for the controller. 

×

Wn (Tn) Wn+1 (Tn+1)

si

φTi

R
θi

φT(i+1)

×
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Figure 10. Example of a CCW-CCW condition (A = B = 4, α = −45˚, β = 30˚, CCW-CCW). 
 
acceptable in the vast majority of small-class UAV problems. This finding is sig-
nificant because the shortest path solutions apply to any vehicle whereas the 
minimum fuel solutions need to consider vehicle parameters. In the results be-
low, we employ the shortest path solutions. 

3.3. Navigation in the Absence of an Unknown Wind Disturbance 

Figure 11 compares WN and DWN in the absence of an unknown wind distur-
bance. Indeed, when the wind disturbance is completely accommodated for (by 
subtracting it out), DWN and WN exhibit the performance shown in Figure 11. 
The minimum turning radius R of the vehicle is the same in each case. The three 
cases consider WN waypoint radii of 0.1R, 0.5R, and R, respectively.  

First consider DWN (solid lines). In each case, the vehicle passes through 
waypoints exactly and follows the minimum fuel paths—by design. Next, con-
sider WN. In the first case, the vehicles passes close to the waypoints but with 
significant overshoot. In the other two cases, we see as the waypoint radius in-
creases that the vehicle passes farther from the waypoints. In the third case, the 
vehicle undershoots the desired path. Note that in the WN and DWN cases giv-
en above, the feedback control had very little effect on the response because 
there was no unknown wind disturbance. 

3.4. Navigation in the Presence of an Unknown Wind Disturbance 

Figure 12 shows WN and DWN responses in the presence of a wind distur-
bance. The wind velocity is constant and unknown, set to 10% of the drone’s 
speed directed from the bottom to the top of the figures (in the horizontal plane) 
and not accommodated for. 

In the left figure, the waypoint radius was set to be small, intending to achieve 
higher accuracy. However, the wind exceeds the capability of the feedback con-
troller and the vehicle just misses the second waypoint sending it into a swirl. 
DWN also misses the turning point paired with the second waypoint but moves 
on to complete its journey. It can do this because it recognizes the waypoint to 
be unreachable. In the middle and the right figures, the waypoint radii are larger 
and WN manages to navigate the vehicles. It is worth noticing that errors exist  

1 1.5
107

110
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Figure 11. WN and DWN (RWP = 0.1R, 0.5R, and R). 
 

 
Figure 12. WN with and without the DWN in the presence of a disturbance (RWP = 0.1R, 
0.5R, and R). 
 
for both WN and DWN. The DWN errors result from using the turning points 
for navigation instead of waypoints. It is clear that the DWN errors are smaller 
than the WN errors due to its features already discussed, hence one still recog-
nizes that DWN improves the performance of the WN navigation. 

4. Conclusion 

WN suffers from an existing trade-off between minimum turning radius and 
waypoint radius that prevents vehicles from reaching waypoints and closely fol-
lowing desired paths. This paper developed an algorithm, called Dubins way-
point navigation (DWN) that remedies this problem by not using waypoint cir-
cles. Instead, we introduced a reachability zone and turning points. The DWN 
significantly reduces undershoot, overshoot, and swirl. Furthermore, the algo-
rithm remedies the problem in a way that can be hidden from the operator to 
avoid confusion. The paper showed, by establishing a horizon that includes two 
future waypoints, how to improve the performance of WN in terms of the tar-
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geting of waypoints while reducing fuel and time. Pertaining to real-time im-
plementation, we also reduced the computational effort, essentially eliminating 
it, by parameterizing the shortest path solution. We also compared WN and DWN 
tracking performance (in the absence of an unknown disturbance) and regula-
tion performance (in the presence of an unknown disturbance). The compari-
sons are illustrative of the improvements in path following (tracking and regula-
tion) obtained by DWN.  

Acknowledgements 

The authors gratefully recognize the Namibia Wildlife Aerial Observatory (WAO) 
for its support of this work. 

Conflicts of Interest 

The authors declare no conflicts of interest regarding the publication of this pa-
per. 

References 
[1] Drubin, C. (2013) UAV Market Worth $8.3 B by 2018. Microwave Journal, 56, 37.  

[2] Tsourdos, A., White, B. and Shannugavel, M. (2011) Path Planning in Two Dimen-
sions. In: Tsourdos, A., White, B. and Shanmugavel, M., Eds., Cooperative Planning 
of Unmanned Aerial Vehicles, Wiley, Chichester, 30.  
https://doi.org/10.1002/9780470974636 

[3] Ariff, O. and Go, T. (2011) Waypoint Navigation of Small-Scale UAV Incorporating 
Dynamic Soaring. The Journal of Navigation, 64, 29-44.  
https://doi.org/10.1017/S0373463310000378 

[4] Goerzen, C., Kong, Z. and Mettler, B. (2010) A Survey of Motion Planning Algo-
rithms from the Perspective of Autonomous UAV Guidance. Journal of Intelligent 
and Robotic Systems, 57, 65-100. https://doi.org/10.1007/s10846-009-9383-1 

[5] Manyam, S., Rathinam, S., Casbeer, D. and Garcia, E. (2017) Tightly Bounding the 
Shortest Dubins Paths through a Sequence of Points. Journal of Intelligent & Ro-
botic Systems, 88, 495-511. https://doi.org/10.1007/s10846-016-0459-4 

[6] Wolek, A. and Woolsey, C. (2015) Feasible Dubins Paths in Presence of Unknown, 
Unsteady 5 Velocity Disturbances. Journal of Guidance Control and Dynamics, 38, 
782-786. https://doi.org/10.2514/1.G000629 

[7] McGee, T. and Hedrick, J. (2007) Optimal Path Planning with a Kinematic Airplane 
Model. Journal of Guidance, Control, and Dynamics, 30, 629-633.  
https://doi.org/10.2514/1.25042 

[8] Milutinovic, D., Casbeerm, D., Cao, Y. and Kingston, D. (2017) Coordinate Frame 
Free Dubins Vehicle Circumnavigation Using Only Range-Based Measurements. 
International Journal of Robust and Nonlinear Control, 27, 2937-2960.  
https://doi.org/10.1002/rnc.3718 

[9] Ketema, Y. and Zhao, Y. (2010) Micro Air Vehicle Trajectory Planning in Winds. 
Journal of Aircraft, 47, 1460-1463. https://doi.org/10.2514/1.C000247 

[10] Meyer, Y., Isaiah, P. and Shima, T. (2015) On Dubins Paths to Intercept a Moving 
Target. Automatica, 53, 256-263. https://doi.org/10.1016/j.automatica.2014.12.039 

[11] Wang, Z., Lium L., Long, T. and Xu, G. (2018) Efficient Unmanned Aerial Vehicle 

https://doi.org/10.4236/ojop.2019.82006
https://doi.org/10.1002/9780470974636
https://doi.org/10.1017/S0373463310000378
https://doi.org/10.1007/s10846-009-9383-1
https://doi.org/10.1007/s10846-016-0459-4
https://doi.org/10.2514/1.G000629
https://doi.org/10.2514/1.25042
https://doi.org/10.1002/rnc.3718
https://doi.org/10.2514/1.C000247
https://doi.org/10.1016/j.automatica.2014.12.039


L. M. Silverberg, D. H. Xu 
 

 

DOI: 10.4236/ojop.2019.82006 72 Open Journal of Optimization 
 

Formation Rendezvous Trajectory Planningf Using Dubins Path and Sequential 
Convex Programming. Engineering Optimization, 51, 1412-1429.  
https://doi.org/10.1080/0305215X.2018.1524461 

[12] Medeiros, A. and Urrutia, S. (2010) Discrete Optimization Methods to Determine 
Trajectories for Dubins’ Vehicles. Electronic Notes in Discrete Mathematics, 36, 
17-24. https://doi.org/10.1016/j.endm.2010.05.003 

[13] Silverberg, L. and Xu, D. (2018) Minimum-Fuel Hidden Layer Heuristic for Small- 
Class UAV. Master of Science Thesis, Mechanical Engineering, North Carolina 
State University, Raleigh. 

 
 
 
 
 
 

Nomenclature 

A = distance between current position and the following waypoint 
a = coefficient for curve fitting β with respect to δ 
B = distance between the following two successive waypoints 
b = coefficient for curve fitting a with respect to A and B 
C = current position 
Fu = total fuel cost 
g = proportional term for PID controller 
h = derivative term for PID controller 
La = total length of the arcs 
Ls = total length of the straight segments 
R = turning radius of the vehicle 
T = target point 
v = speed of the vehicle 
W = waypoint 
wa = fuel cost per unit length travelled on an arc 
ws = fuel cost per unit length travelled on a straight line 
α = angle of heading in local system 
β = angle between the following two successive waypoints in local system 
γ = angular position of the first tangential point in local system 
δ = angular position of the last tangential point in local system 
θ = angular position of the center of the turning circle 
ϕi = angle that denotes the heading in global frame at the 𝑖𝑖th time instance 
ϕR = angle of turning resulted from the feedback controller 
ϕT = angle between heading and the target 
ψ = angle of turn in one time step 
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