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Abstract 
In this paper, we approach the problem of obtaining approximate solution of 
second-order initial value problems by converting it to an optimization prob-
lem. It is assumed that the solution can be approximated by a polynomial. 
The coefficients of the polynomial are then optimized using simulated an-
nealing technique. Numerical examples with good results show the accuracy 
of the proposed approach compared with some existing methods. 
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1. Introduction 

The use of techniques that are based on evolutionary algorithms for solving 
optimization problems has been gaining interests over the last few years. These 
algorithms use mechanisms inspired by biological evolution, such as reproduction, 
recombination, mutation, and selection. Since the work of Isaac Newton and 
Gottfried Leibniz in the late 17th century, differential equations (DEs) have been 
an important concept in many branches of science. Differential equations arise 
in physics, engineering, chemistry, biology, economics and a lot of fields. The 
idea of solving DEs via evolutionary algorithms has been on the increase recently. 
Approximate solutions of differential equations are obtained by converting the 
equations to optimization problems and then solved via optimization techniques. 
The use of classical genetic algorithm to obtain approximate solutions of 
second-order initial value problems was considered in [1]. In [2], the author 
combined genetic algorithm with the Nelder-Mead method for solving the 
second-order initial value problem of the form ( ),y f x y′′ = . In a later work, 
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approximate solutions of first-order initial value problem was computed via the 
combination of collocation method and genetic algorithms by the author in [3]. 
Adaptation of neural network for the solution of second-order initial value 
problems was proposed by the authors in [4]. Continuous genetic algorithm was 
used to compute the solution of two-point second-order ordinary differential 
equation in [5]. The adaptation of differential evolution algorithm for the 
solution of the second-order initial value problem of the form 

( ) ( ) ( )y p t y q t y r t′′ ′+ + =  was proposed in [6]. The authors in [7] considered 
the approach of using differential algorithm to obtain approximate solutions of 
the second-order two-point boundary value problem 

( ) ( ) ( )1 2, ; ;u f t u u a u bη η′′ = = =  with oscillatory/periodic behaviour. In this 
paper we show that the simulated annealing algorithm can also be used to find 
very accurate approximate solutions of second-order initial value problems of 
the form 

( ) ( ) ( ) [ ]0 0 0 0, ; , , , .y f t y y t y y t y t a b′′ ′ ′= = = ∈           (1) 

2. Basic Notions of Simulated Annealing Algorithm 
Simulated annealing is a simple stochastic function minimizer. It is motivated 
from the physical process of annealing, where a metal object is heated to a high 
temperature and allowed to cool slowly. The process allows the atomic structure 
of the metal to settle to a lower energy state, thus becoming a tougher metal. 
Using optimization terminology, annealing allows the structure to escape from a 
local minimum, and to explore and settle on a better, hopefully global, 
minimum. 

At each iteration, a new point, newx , is generated in the neighborhood of the 
current point, x. The radius of the neighborhood decreases with each iteration. 
The best point found so far, bestx , is also tracked. 

If ( ) ( )new bestf x f x≤ , newx  replaces bestx  and x. Otherwise, newx  replaces 
x with a probability ( )( )0exp , ,b i f f∆ . Here b is the function defined by 
Boltzmann Exponent-exponent of the probability function, i is the current 
iteration, f∆  is the change in the objective function value, and 0f  is the value 
of the objective function from the previous iteration. The default definition of  

the function for b is given as ( ) ( )
0

log 1
, , :

10
f i

b i f f
−∆ +

∆ = . 

Simulated annealing uses multiple starting points, and finds an optimum 
starting from each of them. The default number of starting points, given by the 
parameter SearchPoints, is ( )min 2 ,50d , where d is the number of variables and 
in this case 1d = , since the number of independent variable is one. 

3. Proposed Method 

Consider the second-order initial value problem (1), assume a solution of the 
form 

( )
0

,
k

i
i

i
y t t kψ +

=

= ∈∑                       (2) 
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where iψ  are parameters to be determined. Substituting (2) and its second 
derivative into (1) gives 

( ) ( )( )2

2
1 ,

k
i

i
i

i i t f t y tψ −

=

− =∑                      (3) 

Using the initial conditions we have the constraint that 

0 0

1
0 0

0 1
and

k k
i i

i i
i it t t t

t y i t yψ ψ −

= == =

    ′= =      
∑ ∑               (4) 

At each node point nt , we require that 

( ) ( ) ( )( )2

2
1 , 0

n

k
i

n i
i t t

t i i t f t y tψ −

= =

 = − −  
∑                (5) 

To solve the above problem, we need to find the set ( ){ }| 0 1i i kψ = , which 
minimizes the expression 

( )2

1

b a
h

n
n

t

−

=
∑                            (6) 

where h is the steplength. We now formulate the problem as an optimization 
problem in the following way: 

( )2

1
Minimize:

b a
h

n
n

t

−

=
∑                       (7) 

0 0

1
0 0

0 1
Subject to: and

k k
i i

i i
i it t t t

t y i t yψ ψ −

= == =

    ′= =      
∑ ∑      (8) 

Using the simulated annealing algorithm we are able to obtain the set 

{ }| 0,1, ,i i kψ =   which minimizes the expression ( )2
1

b a
h

nn t
−

=∑  . 

4. Numerical Experiments 

We now perform some numerical experiments confirming the theoretical 
expectations regarding the method we have proposed. Our proposed algorithm 
shall be compared with the Runge-Kutta Nystrom method in this section. The 
following parameters needed to implement the simulated annealing are set as 
follows: 

exponent of the probability function (Boltzmann Exponent = 1). 
set of initial points (Initial Points = 1000). 
maximum number of iterations to stay at a given point (Level Iterations = 50). 
scale for the random jump (Perturbation Scale = 1.0). 
starting value for the random number generator (Random Seed = 0). 
number of initial points (Search Points = 0). 
tolerance for accepting constraint violations (Tolerance = 0.000001). 

4.1. Example 1 

We examine the following linear equation 
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( ) ( ) ( ) ( )1; 0 2, 0 2y t y t t y y′′ ′− = − = = −              (9) 

with the exact solution ( ) ( )1 expy t t t= − + − . 
Implementing the proposed scheme with 10k = , we obtain ( ){ }| 0 1 10i iψ =  

as 

416995243 105164777 69800031 65357882, 2, , , , .
834315644 636059757 1811256752 1275358859

 − − − 
 

 

Using a steplength of 0.01h = , the absolute errors obtained by our proposed 
algorithm are compared with those produced by the well-known Runge-Kutta 
Nystrom method as shown in Table 1. The comparison shows that our approach 
gave better result compared with the Runge-Kutta Nystrom method. 

4.2. Example 2 

Consider the equation 

( ) ( ) ( ) ( ) ( )21 ; 0 1, 0 0y t t y t y y′′ ′= + = =           (10) 

with the exact solution ( )
2

exp
2
ty t

 
=  

 
. 

Implementing the proposed scheme with 11k = , we obtain ( ){ }| 0 1 11i iψ =  
as  

1306409430 29397245 3187969586 1720910991,0, , , , ,
2612828131 1713857114397 25524507753 436085951591

313833621 382909153 117010789, , ,
15857243966 201794651238 496614906383

766119929 130287162,
389265107664 172534329





−
125796527,

575 456658410146




 

 
Table 1. The absolute values of error of y(t) in Problem 9 using the proposed scheme 
compare with the Runge-Kutta Nystom method. 

t Runge-Kutta Nystom Proposed Scheme 

0.00 0 0. 

1.00E−1 2.973739E−10 2.591705E−12 

2.00E−1 7.050944E−10 5.964562E−12 

3.00E−1 1.217025E−9 9.366508E−12 

4.00E−1 1.829043E−9 1.286815E−11 

5.00E−1 2.538910E−9 1.649259E−11 

6.00E−1 3.346159E−9 2.029099E−11 

7.00E−1 4.252021E−9 2.428346E−11 

8.00E−1 5.259365E−9 2.852540E−11 

9.00E−1 6.372666E−9 3.304634E−11 

1.00 7.597991E−9 3.792694E−11 
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Table 2. The absolute values of error of y(t) in Problem 10 using the proposed scheme 
compare with the Runge-Kutta Nystom method. 

t Runge Kutta Nystom Proposed Scheme 

0.00 0 0. 

2.00E−1 1.266432E−7 1.76241E−8 

4.00E−1 2.923595E−7 3.804534E−8 

6.00E−1 5.418410E−7 6.027792E−8 

8.00E−1 9.469284E−7 8.585760E−8 

1.00 1.627915E−6 1.171072E−7 

 
Table 2 shows the absolute errors of the results obtained by our algorithm 

compared with the Runge-Kutta Nystrom method. Again, our approach gave 
minimal absolute errors. 

5. Conclusion 

In this paper, we have shown how the problem of obtaining approximate 
solution to (1) can be converted to an optimization problem, and then solved 
using simulated annealing. The results obtained compete favourably with the 
Runge-Kutta Nystrom method. 
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