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Abstract 
This paper presents a combination method of Particle Swarm Optimization (PSO) and topology 
optimization. With this method a better result can be achieved compared with the sequential ap-
plication of these two optimization methods. It inherits the ability in finding global optimum from 
PSO and also suits for discretized design domain. Some special schemes are used in order to pro-
vide higher computation efficiency. This method has only been tested with a convex optimization 
problem. The application in case of a concave problem will be a future study. 
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1. Introduction 
Parameter optimization and topology optimization are two powerful tools in mechanical design, which affect 
remarkably the shape and the performance of a structure. Traditionally, the usage of these two procedures is se-
parated and sequential. The structure is often parameter-optimized firstly, and then topology-optimized. Howev-
er, the sequential method has potential insufficiencies. The general size of a structure, which is usually regarded 
as a design domain in topology optimization, is always changed due to the parameter optimization. The change 
in geometric size is sometimes useless or even conflicting as a preparation to topology optimization. In this pa-
per, an efficient method of combined optimization is presented. It executes the parameter optimization with con-
tinuous or discretized variables and the topology optimization simultaneously, and thus achieves a better result 
than the sequential optimization. The paper is organized as follows: The theoretical basis of topology and para-
meter optimizations is introduced in Section 2. For a better presentation and explanation, an optimized case with 
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variable bearing hole position is shown in Section 3. The implementation of the combined optimization and the 
methods for increasing the efficiency are proposed in Section 4. Finally, conclusion and future work are pro-
vided.  

2. Theoretical Basis 
2.1. Finite Element Method 
The finite element method (FEM) is a numerical method that divides a domain into small connected sub-do- 
mains (elements), such that differential equations can be solved by solving a set of polynomial equations. With 
the development of computer science, more and more complicated mechanic problems in different fields are 
now solvable with FEM. One feature of FEM we need here is the definition of parameters for each element in-
dividually. This is important for the implementation of topology optimization, since the design variables should 
be set for every single element locally. 

2.2. Topology Optimization 
Topology optimization is a mathematical approach that optimizes the material layout within a given design 
space, for a given set of load and boundary conditions. It is widely used in the field of shape or structure design, 
especially for the lightweight design without losing much stiffness. Different kinds of topology optimization al-
gorithms have already been carried out. Xie and Steven introduced the Evolutionary Structural Optimization 
(ESO) to eliminate the less effecting elements of a structure [1] [2]. Querin et al. proposed Bi-directional Evolu-
tionary Structural Optimization (BESO) as an improvement of ESO that can also add elements in a design do-
main to compensate the structure defect caused by a single directional elimination of elements [3]. Bendsøe 
presented the Solid Isotropic Material with Penalization (SIMP) method to update the element-density-depen- 
dent material properties in order to reach the final optimum [4]. The penalization factor is applied to reduce the 
amount of intermediate densities. However, the introduction of penalization usually has a negative effect on both 
computational time and final results. In order to reduce such influences, Dadalau [5] introduced SIMP with an 
adaptive penalization scheme. In this paper the SIMP-model is used. As shown in Equation (1), it regards every 
element density eρ  as a single optimization variable. All the variables are updated with a specific scheme 
which is derived by Lagrange multipliers [6].  
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Here kρ  denotes the density at k-th step. Variables η  and ζ  control the possible change in one iteration 
with the typical values of 0.5 and 0.2. This scheme adds material to the structure if 1kB >  and removes it if

1kB <  without violating the bound of ρ . kB  is given by 

( ) ( ) ( )11 0p
k k ijkl ij K kl KB p x E u uρ ε ε−−= Λ                             (2) 

where kB  is the displacement at k-th step, which is calculated from the equilibrium function of the structure, 
Λ  is a Lagrange multiplier and p  is the penalization factor. 

2.3. Parameter Optimization 
Classical methods of parameter optimization, which are based on sensitivity calculation and the gradient descent 
method like the Newton method, are already well developed with high accuracy. However, the drawbacks are 
also obvious. It is expensive to calculate the needed sensitivities, if the variables are not explicit in the objective 
function. Moreover, in many discretized situations, the loss of continuity is usually problematic. Furthermore, 
the global optimum is difficult to reach, since it can be easily trapped by a local optimum. The Particle Swarm 
Optimization (PSO) method, known as a purpose optimization method, was originally proposed by Kennedy and 
Eberhart [7]. It optimizes a problem by looking for the best candidate solution in a search domain with a set of 
particles. The general equations for moving particles can be written as follows, 
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where ,i kv  is the search velocity of i-th particle for k-th step, ,i kx  is the position of i-th particle for k-th step, 
ω  is the inertia of particle, ip  is the best point i-th particle ever met, ig  is the global best point among per-
sonal bests, pφ  and gφ  are weight parameters. Particles are randomly generated at first and they find the next 
step with the influence of personal and global best points. After several iterations, all the particles could gradu-
ally converge to the optimal design point. Various researches about the behavior due to parameter selection in 
PSO have been presented, such as Shi and Eberhart [8], Van Den Bergh [9] and Trelea [10]. As the choice of 
position for the next iteration is relatively random, this method can be easily applied in both the continuous and 
the discretized problem. 

3. Problem Setting 
Figure 1 shows an example case to be optimized. The length of this structure is 130, the height is 100. It has a 
bearing hole with a radius of 15 and the wall thickness of the hole is 10. The hole can be moved in a 51 × 51 
rectangle. The structure is meshed with 2D bilinear quadrilateral elements (Q4) with an element size of 1. Thus 
the design domain is also discretized into 51 × 51 nodes. Along the lower half of the hole, a distributed force of 
3 is added in −Y direction. At the right bottom corner, two unit forces in +X and +Y direction are applied. The 
left boundary is fixed in both X and Y direction. 

The task is to reduce the volume by 50% and to optimize the hole position, such that the compliance is mini-
mized. The volume of the hole is also included as a part of the deleted volume. Mathematically the optimization 
problem can be expressed as follows: 
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where c  is the compliance as the objective function, cx  and cy  are the coordinates of the hole center, V  
is the maximum accepted volume after optimization, minρ  is a value close to zero to avoid numerical problems 
due to the zero density and N  is the element number. The density for each element eρ  is related to the Young’s 
modulus of each element with penalization factor. 

In the sequential method the best hole position is found by parameter optimization before executing the to-
pology optimization. The final result is calculated by applying topology optimization on this hole position. The 
question is, whether the best position found by parameter optimization is still the best one after the topology op-
timization. Two enumeration tests were made as verification, which cover all the possible results in this optimi- 

 

 
Figure1. A simple structure with bearing hole to be optimized. 

c cx y

Fy

x



Y. S. Lin et al. 
 

 
22 

zation case. In the first test, the compliance of the structure is calculated with the hole position on each node of 
the domain without topology optimization. The value distribution is shown in Figure 2(a). The second test 
shown in Figure 2(b) is with topology optimization with penalization factor 3p = . 

As can be seen from Figure 2(a), the best hole position is located on (86, 73) before the topology optimiza-
tion, which means this position would be found by the sequential method and used as the hole position for fur-
ther topology optimization. And from Figure 2(b) we can easily see that the final compliance on (86, 73) is 
71.51. But the optimized position from Figure 2(b) is (94, 41) with the value of 63.63, which is significantly 
lower than the former one. This means, at least in some cases, the results from the sequential usage of parameter 
and topology optimization are far from the real optimum. For this reason, we proposed a new method to find the 
real optimum. 

4. Implementation of Combination Method 
The general idea of the combination method is based on parameter optimization with the PSO method. The to-
pology optimization is used as a way for calculating compliance, which is also the objective function of PSO. 
The algorithm is shown in the flowchart in Figure 3. The method is implemented with a Matlab program based 
on the finite element example code in [11] and the topology optimization code in [12]. However, due to the low  

 

    
(a)                                                           (b) 

Figure 2. Results of the objective function raster. This is a mapping of compliance value within the design domain (zone 
within dash line in Figure 1). (a) stands for the compliance mapping before topology optimization while (b) stands for the 
one after topology optimization.                                                                           

  

 
Figure 3. Flowchart of combination method. 
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efficiency of Matlab with its default large-scale matrix operations, the matrix storage scheme and solving me-
thod is modified according to [13] to accelerate the whole process. 

In the first step, the bearing hole is set randomly on several positions. On those positions, the fast topology 
optimization is executed in Step 2. “Fast” means less iterations are needed to converge compared with normal 
topology optimization by some special schemes, which are mentioned in the following sections. The new posi-
tions are generated in Step 4 through Equation (3), until all the particles (hole positions) converge to the same 
position (Step 3). Finally, a slower topology optimization is applied on the global best position to achieve the 
optimum structure (Step 5). 

4.1. Passive Element Method 
The task of moving the hole position during the optimization process must be simple to handle. Normally, the 
empty area is not included in mesh. When the hole position is changed, meshing and assembling of the stiffness 
matrix need to be repeated, which decreases the efficiency greatly. This problem can be solved by the passive 
element method, with which the hole in the design domain can be defined as “zero” density element ( minρ  in 
the program) instead of a description of the geometric information. The mechanism of the passive element is to 
set the density in the hole area from the last iteration to one and set those in a new hole area to zero, when the 
position is changed during the searching procedure. The nodes in the lower part of the hole can also be easily 
selected to add the load. With the passive element method, only the material density parameter is applied to 
evaluate the global stiffness matrix, the remeshing process is no longer needed. 

4.2. Unified Penalization Factor 
The penalization factor p  plays an important role in topology optimization. By 1p = , which means the den-
sity and the Young’s modulus of an element are exactly linearly related, the optimality of the topology optimiza-
tion is guaranteed. However, the optimized structure will be filled with large numbers of intermediate densities, 
which are not realistic to be manufactured. With a large penalization factor, such as 3p = , the structure will be 
more realistic and closer to a 0-1 structure. Nevertheless, high penalization factors also have some disadvantages. 
Table 1 shows that the compliance by 3p =  is worse, and it converges more slowly than that by 1p = . 

Due to the desired efficiency, the topology optimization during the PSO should be fast, thus the penalization 
factor within the fast topology optimization (Step 2 in Figure 3) is fixed to one. 

4.3. Simplified Convergence Condition 
The convergence condition also has a great effect on the convergence speed. Normally, the topology optimiza-
tion is terminated when the largest change of the element density is smaller than a preset value [6] [12]. Under 
this condition, a very fine result can be achieved. Nevertheless, the change of density can fluctuate on some po-
sitions of the domain, which makes the process difficult or sometimes impossible to converge, although the 
change of compliance is already very small. The simplified convergence condition terminates the optimization 
loop, if the change of compliance is smaller than a preset value. According to Table 1, it decreases the conver-
gence loops greatly without losing much accuracy. Through the simplified convergence condition and unity pe-
nalization, the fast topology optimization will converge in around 10 loops instead of almost 100 loops each 
time. Along with the flexibility of the program, the strict condition with a high penalization value can still be 
used to get the accurate final structure (Step 5 in Figure 3). 

 
Table 1. Compliance and convergence speed test.                                                  

Penalization factor 1 2 3 

Compliance 61.17 63.31 63.63 

Compliance with simplified condition 61.22 63.35 63.64 

Convergence loops 35 Inf. 68 

Convergence loops with simplified condition 12 20 25 
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4.4. Test Results 
The optimized hole position found by the combination method is converged on (93, 40) with the compliance 
value of 63.64, which is just one element width beside the best position of the reference (Figure 2(b)). Actually, 
due to the property of the PSO method, the converged result is not always the best but very close to it. Figure 4 
describes the two structures after two separate steps in a sequential method. The final structure resulting from 
the combined method is shown in Figure 5. 

5. Conclusion 
In this paper, an algorithm is implemented to combine the topology optimization and PSO-based parameter op-
timization. Different schemes are applied to increase the computation efficiency. This algorithm was tested by 
an example case with a movable bearing hole. It finds the acceptable optimum result, whose compliance after 
the topology optimization is significantly lower than the sequential optimization. As the calculation of com-
pliance for each position in one PSO iteration is absolutely independent, this algorithm can be easily extended to 
parallel computation, with which the computation speed can be further increased. It is suitable for the structure 
design with a convex design domain. How to extend the algorithm to the case with a concave boundary will be 
studied in the future. 

 

   
Figure 4. Structures before and after topology optimization in sequential method. The left figure shows the actual struc-
ture after getting the best hole position by parameter optimization. The right figure is the final structure acquired by se-
quential method.                                                                                      

 

 
Figure 5. Final structure from the combination optimization.                   
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