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ABSTRACT

The paper presents a new approach to construct the Bellman function v (t,x) and optimal control u(t,x) directly by

way of using strong large deviations principle for the solutions Colombeau-Ito’s SDE. The generic imperfect dynamic
models of air-to-surface missiles are given in addition to the related simple guidance law. A four examples have been
illustrated, corresponding numerical simulations have been illustrated and analyzed.

Keywords: Optimal Control; Bellman Equation

1. Mathematical Challenge: Creating
a Game Theory That Scales

What new scalable mathematics is needed to replace the
traditional Partial Differential Equations (PDE) approach
to differential games?

Let (€,%,P) be a probably space. Any stochastic
processon (1% is a measurable mapping
X :Qx[O,T] —[0". Many stochastic optimal control
problems essentially come down to constructing a func-
tion u(t,x) that has the properties

1) u(tx)=inf, E[T(X}s (@) a(1))],
2) u(t,x)=inf, E, [J‘({xgp (@), g

()]0 70K (a)))} et
a(t)eU,Usd", where J is the termination payoff
functional, «(t) is a control and (x',) is some

t>0
Markov process governed by some stochastic 1to’s equa-
tion driven by a Brownian motion of the form

3) Ko (@)=x+] (X (@) a(t))ds+VDW (t,a),

where W (t,®) is the Brownian motion. Traditionally
the function u(t,x) has been computed by way of
solving the associated Bellman equation, for which vari-
ous numerical techniques mostly variations of the finite
difference scheme have been developed. Another ap-
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proach, which takes advantage of the recent develop-
ments in computing technology and allows one to con-
struct the function u(x,t) by way of backward induc-
tion governed by Bellman’s principle such that described
in [1]. In paper [1] Equation (3) is approximated by an
equation with affine coefficients which admits an explicit
solution in terms of integrals of the exponential Brow-
nian motion. In approach proposed in paper [2,3] we
have replaced Equation (3) by Colombeau-1to’s Equation

(4)
(X (@2)), =x+([,0.(5. (0.2). (V) ds]
+JD(w, (t@))  +ew(t,0),
elee(01), @, @eQ,, where w(t,e) is the
white noise on 0", i.e., w(t,a)):aw (t,w) almost

surely in D', and w,.(t,@) is the smoothed white
noiseon " ie.,

w,. (@)= (w(t,@),4.(s-1)).

and ¢, is a model delta net [2,4]. Fortunately in con-
trast with Equation (3) one can solve Equation (4) with-
out any approximation using strong large deviations
principle [4]. In this paper we considered only quasi sto-
chastic case, i.e. D=0,&~0. General case will be con-
sidered in forthcoming papers.

Statement of the novelty and uniqueness of the pro-
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J.FOUKZON ET AL. 17

posed idea: A new approach, which is proposed in this
paper allows one to construct the Bellman function
V(t,x) and optimal control «(t,x) directly, i.e.,
without any reference to the Bellman equation, by way of
using strong large deviations principle for the solutions
Colombeau-1to’s SDE (CISDE).

2. Proposed Approach

Let us consider an m-persons Colombeau-Ito’s differen-
tial game CDG,, ( f,9,y,G(0 ”)) with a stochastic
nonlinear dynamics:
), ()
1

(% (1)), = ( f, (t,(xf, (1), vOw, (
( w), &,¢€(01]
vte[0T]:(x, ()) ﬁ” x(0)=x, f =[(f.), ]
9=[(g.), ]:f.9e6(1"), @
ZORCAGIS
and m-persons Colombeau-1to’s differential game
CIDGm;T(f,g,y,G(D”),ﬂ(t)) with imperfect infor-

mation about the system [5-8]:

(1)),

(1t (0B 1), A0l 500
+\/_W(t,a)) ) ]
vte[0,T]:(x, (t )) e",x(0)=x
9=[(gg ],f,geG( ) @)
a(t)=(a(t), oy (1), e (t)eU, SO i=1-,m,

Here G(J ”} is the algebra of Colombeau generalized
functions [9], U is the ring of Colombeau’s general-
ized numbers [10-12], 0" =0 x---x[ ; t—>e(t) is
the control chosen by the i-th player, within a set of ad-
missible control values U,, and the playoff for the i-th

player is:

(7)), - [ Q{ng K (0, X (1)

a(t), o, (t)jdth, . (3

(e £l 4 T])

&

, (t)),ozi (t) ey, GO Kij=1.--,m,

where tr—>((x€,yl(t))€,,---,(xé,,vn (t))g) is the trajectory

of the Equation (1). Optimal control problem for the i-th
player is:
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(‘]_f',i) (m(")]( ”(‘?X _‘f,ijl" )

Let us consider now a family (x**') = of the solu-
tions Colombeau-Ito’s SDE: ‘

d(x), = (bgr (), t)) +edW (t); 5)
(%) =% el"te[0,T],&\ee(0]]
where W (t) is n-dimensional Brownian motion,
[(bg, )E] c G(D "),bg,:o (e,t):01" 0" is a polynomial,
ie.
by (X,t) = Z\a\bfila (O)x* = (i, i),
la| =30 iji=1-n.

Definition 1. CISDE (5) is [J -dissipative if exist
Lyapunov candidate function V(x,t) and Colombeau
constants [(C,.),, |=C>0,[(r,)]=r, such that:

1) Ve'e [O,l],g € (0,1],VX,||X|| >r:
V(x,t;b, )< -C-V(xt);
V(1) & oV

V(b )0 Sy a(xx't)bg,_i(x),

i=1 i

2) V,(x)=lim

LIGATC)

Theorem 1. Main result (strong large deviations prin-
ciple) [5,13]. For any solution X = (x;,-++,x;, ) of dis-
sipative CISDE (5) and [ valued parameters A4,---,4,,
there exist Colombeau constant

c'=[(c!),]eR,(cC), >0,

&

suchthat VA, =(4,,4,):

S g,&' 2 ’ 2
[(I'TJQfE[ X, —/1" DEJSC v ©
where a function U (t,4)=(U,(t,4),--,U,(t,2)) is
the solution of the master equation:
U(t,4)=3[b(A1)]U+b(4,t),U(0,2)=x%—-4, (7)

where J =J [b At ] the Jacobian, i.e. J isa nxn-
matrix:

I[b(At)]=[aby; (x,t)/0x; |- -
Remark.1. We note that Ve¢'e(0,1]:
(8. (1)), 0 (timir
Example 1.
X = —a(x{‘)3 —b(xf)2 —oxf o -t" - z-t"sin(Qt*)
+eW (1), e0 1,0<a,x(0)=x,te[0,T]

0,¢'

&,&' _ Xt

) #0-
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18 J.FOUKZON ET AL.

From a general master Equation (7) one obtain the
next linear master equation:

u(t)=—(3a2’ - 204 —c)u(t)-(at®~ba’ —c4)

®)

—o "= y-t"sin(Qt), u(0)=x-1

From the differential master Equation (8) one obtain
transcendental master equation

(% —A(t))exp[ -(3a27 (1) +204(1))

_I(m“ s 2esin(Q r)+akt () +b2(1)).  (9)

xexp| -(3a4” (1) + 20A(1))(t-7) Jdr =0
Numerical simulation: Figures 1 and 2.

a=lb=5c=lo=y=-2m=n=2,%X, =0,
T =5R=T/0.01,

%0 =—a(Xto)3 —b(xf)z e ot
-yt -sin(QtF),x(0) = x,,t €[0,T]

(10)

Here 5(t)D Iimipf E[ -
an m-persons Colombeau stochastic differential game
CDG,,, ( f9,y,G(0" )) with nonlinear dynamics

( t,(x”
el x(

2 .
0 } Let us consider now

), (1)) +edw (t);
0,te[OT] ¢'e(01],el 1,
eU, CO0Ni=1-m.

eU, Coki=1---,m.

11)

Here 0" =0 x---x0, t—>a(t) is the control chosen
by the i-th player, within a set of admissible control val-
ues U,, and the playoff of the i-th player is

(32, = (o5 ot
| (o (T0), 4] |

i=1

—_—
P
f*)
—~
o~
S
~—
~——
™

(12)

where y=(y,,---,y,) and t x(t,w) is the trajec-
tory of the Equation (11).
Theorem 2. For any solution

{(x),.a()]
_ {((Xftg )8’ ,-",(xrf,r{g)g,)’(&l (t),-.a, (t))}

of the dissipative CDGm;T(f,O, y,G(D”)) and O val-
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Figure 1. The solution of the Equation (8) in a comparison
with a corresponding solution x(t) of the ODE (10).
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Figure 2. &(r) versusR.

ued parameters A4,,---,4,, there exists Colombeau con-
stant C'=(C.) 0,(C;), 20, such that:

&

VAA= (A )

(il ~4]) Jsctear

where U (t,4)=(U,(t,4),---,U,(t,4)) the trajectory
of the corresponding master game

U(t,4)

=3[ f(ra(t2)]u+f(La(t 1)U (0,4)

=X, — 4,

13)

L=l (14)

Example 2.
1% =%, % =—kG +a, (t)+a,(t),k>0,

() [ ,01,,01] () [ ,027,02]
te[O,T],xi( ) ( ) X025
B =X (T)+x (T ),|:1,2,
optimal control problem for the first player:
: , ,
al(‘)gejgvpz](az(t)rgaé,pz][xl (T)+ X, (T ):D
and optimal control problem for the second player:
. 2 (1142 (1Y),
sz(t)nfaz(u Pu]( e[lglpl]lixi ( )+X2 ( )}j

From Equation (14) we obtain corresponding master
game:

2)U, =U, +A,,U, ==3KA7u, —kA3 + &, (t)+a, (t),

0JOp



J.FOUKZON ET AL. 19

&1 (t) € [_pl’pl]’&z (t) € [_pzapz] ) Ul (0) = X01 _211
Uy (0) =X, =433y =y (T)+uz (T),i=1,2;
optimal control problem for the first player is:

T )

and optimal control problem for the second player is:

H 2 2
az(t)rlfi)aﬁ,pu](@(t)rerflg,m][ul (T)+u: (T )D

Having solved by standard way [14,15] linear master
game (2) one obtain optimal feedback control of the first
player:

a ()0 @ [tx(t),% ()]
=—pssign| x, (1)+[ O, (t) %, (1)]
and optimal feedback control of the second player [5]:
o, (1) 0 [t (1), % (1)]
=—pysign| x, (t)+0, (t)x, (t)].
Here ©,(t)=0,(7,(t)).6,(t)0z-t,

7. (t)0 t—[ceil(%}—l},

where ceil(x) is a part-whole of a number xell .
Thus, for numerical simulation we obtain ODE:

X, (t) =% (t)'
%, (t) =~k (1)~ py sign[ %, (1) + O, (t) %, (t)]
+p, -sign| x, (1) +©, (1) %, (1)].
Numerical simulation: Figures 3-6
k=1, p, =400,A=100,0 =5,
¥, (0) =300 m, x, (0) =30 m/sec,
T =805sec, a, (t) = Asin’ (w-t).
Theorem 3. For any solution

((x). .at0)
_ {((Xf,{'g )g, S )5,),(071 (), @y (t))}

350 '
200~ -
X1(t)
————
0_
-100 |
0 50
0 t T

Figure 3. Optimal trajectory: x,(t)-x,(T)=04m.

Copyright © 2013 SciRes.

30 '
20 -

X2 (1)

3811,

E |
20O 50

0 t T

Figure 4. Optimal velocity: X, (t)- x,(T)=-0.4 m/sec.
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Figure 5. Optimal control of the first player.

Figure 6. Control of the second player.

of the dissipative CIDGm;T(f,O, y,G(D“),ﬂ) and [

valued parameters A,,---,4,, there exists Colombeau
constant C’=[(C’) ]eﬁ,(c') >0, such that:

ey a9

where U (t,2)=(U,(t,2),-,U,(t,2)) the trajectory
of the corresponding master game

U (t.4) =3[ f(2+w(t),@(t.2+A(1))) U
+ f(2+w(t),a(t2+A(1).U(0,2) (16)

liminf E[||xf )

&0

=X =4
a(t)=(a (), @ (1).&(t) eV, SRYi=1-m,
J=u

Example 3. Game with imperfect measurements.
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20 J.FOUKZON ET AL.

1) % (t)=x,(t),
X, (1) =—kX3 (1) +k,x3 (t)
+au [t (1), % (1) + A(1)]
+a,[ 1% (1), %, (1) ], k >0k, &
(t)e[- pm] 2 (t) [-ps 2],

J=x(T)+%(T),i=L2. From Equation (16) one
obtain corresponding master game:
2) U =u,+4,,

(3k1/lz 2|(212)U2— 1/12 +kzﬂz
U (1) + A ()]
)

% (t)e [—pl,pl],az (t) e[-p,.0,].
J =07 (t)+ul(t),i=12

Having solved by standard way linear master game (2)
one obtain local optimal feedback control of the first

player [5]:
a; (t) ==pssign| X () +(t,.. ~t)(%, (1) + B (1)) ]
and local optimal feedback control of the second player:
a; (t) = —pysign| x, (1) +(t,,, —t) %, (1) ].

Thus, finally we obtain global optimal control of the
next form [5]:

o (t)=-psign] x (1) +©, (t)(x, (1) + B(1)) ]
a, (t)= ,1325ign[xl (1)+0, (t)x, (t)]
Here @ (t)=0,(n,(1)).6,(t)0 r-t,

n. (t)0 t—(ceil(%)—l},

where ceil(x) is a part-whole of a number xell .
Thus, for numerical simulation we obtain ODE: X, = X,,

%, = kX5 +k X — py -sign| x, (1)+0, (t)(x, (t)+B(t)).
+p,-sign[ %, (1) + O, (t)x, (t)]-

Numerical simulation: Figures 7-12. Game with im-

perfect measurements: red curves x (t),x, (t) . Classical
game: blue curves y, (t),y,(t). A(t)=Asin’(o-t).

3. Homing Missile Guidance with Imperfect
Measurements Capable to Defeat in
Conditions of Hostile Active
Radio-Electronic Jamming

(—o0,+00),

+a [t u1

+a, [ t,uy (1), (t

Homing missile guidance strategies (guidance laws) dic-
tate the manner in which the missile will guide to inter-
cept, or rendezvous with, the target. The feedback nature
of homing guidance allows the guided missile (or, more
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generally, the pursuer) to tolerate some level of (sensor)
measurement uncertainties, errors in the assumptions
used to model the engagement (e.g., unanticipated target
maneuver), and errors in modeling missile capability
(e.g., deviation of actual missile speed of response to
guidance commands from the design assumptions). Nev-
ertheless, the selection of a guidance strategy and its
subsequent mechanization are crucial design factors that
can have substantial impact on guided missile perform-
ance. Key drivers to guidance law design include the
type of targeting sensor to be used (passive IR, active or
semi-active RF, etc.), accuracy of the targeting and iner-
tial measurement unit (IMU) sensors, missile maneuver-
ability, and, finally yet important, the types of targets to
be engaged and their associated maneuverability levels.

Figure 13 shows the intercept geometry of a missile in
planar pursuit of a target. Taking the origin of the refer-
ence frame to be the instantaneous position of the missile,
the equation of motion in polar form are [16]:

R=Ra*+a), [ LR(1).R(1) | +ar (1),
a, (t)e[-ay, &, |.ar(t)e[-afay |. an
R&+2Ro =ay, [1,6(1),5(t) |+ af (1),

ay, (t)e[-ay.ay |.ar(t) e[ -ar.a7 |.

1) The variable R=R(t) denotes a true target-to-
missile range Ry, (t).

2) The variable R=R(t) denotes the it is real meas-
ured target-to-missile range Ry, (t).

3) The variable o = a(t) denotes a true line-of-sight
angle (LOST) i.e., the it is true angle between the con-
stant reference direction and target-to-missile direction.

4) The variable & =6(t) denotes the it is real meas-
ured line-of-sight angle (LOSM) i.e., the it is true angle
between the constant reference direction and target-to-
missile direction.

5) The variable ay, (t)=a

[t R(t), R(t)} denotes

the missiles acceleration along direction which perpen-
dicularly to line-of-sight direction.

6) The variable aj, (t)=a;, [t,&(t),&(t)} denotes

the missile acceleration along target-to-missile direction.

7) The variable a7 (t) denotes the target acceleration
along direction which perpendicularly to line-of-sight
direction.

8) The variable a; (t) denotes the target acceleration
along target-to-missile direction.

Using replacement z=Rg into Equation (17) one

obtain:
2

ﬁ:%+a{,| [t,ﬁ(t), T(t):|+a'lt (t), (18)

ay, (t)e[-ay.ay |.ar (t)e[-a7 & |.

0JOp
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Figure 7. Uncertainty of speed measurements f(t) .

10"
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0 5105>
0 t

0.00001

Figure 8. Cutting function @, (t).z =107".
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Figure 10. Optimal velocity.
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Figure 11. Optimal control of the first player.
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Figure 12. Optimal control of the second player.

Target

Missile

(Xm, Ym)

Suppose that:
R(t)=R(t)+A(1).6(t) = (t)+ A,(1).

Therefore

0JOp



22 J.FOUKZON ET AL.

t))+R(t)5,(t).  (20)

)(0'( )+ﬂz (t))
=[R(t)a(t)+R(t)&(t )]+ﬁ1( )(a‘(t)+ﬁ’2(t))
t)ﬁz(t)+ﬂ1(t)(5(t)+5z(t))

t
Br(1)0R(1) 4, (1)+R(D)A (0)+ A (D)(5(1)+ A (1))-
Let us consider antagonistic Colombeau differential
game IDGZ;T(f,O,y,G(D ?). B.w),
B=(B.BsBs. By), W=(p,.5,) with non-linear dy-

namics and imperfect measurements [6]:
R=V,

V. =—+ay (t)+a/(t),

ay, (t)=ay [LR(1).V, (t)]-kV] (t)

R()=R(t)+ A (t):V, (1) =V, (t)+ 5, (t)

a, (t)e[-ay.ay |.af (t) e[ -3 a7 |

Z7=w, (21)
Vv -
w:—'?+aM (t)+ar(t)
ay ()= aj, [t (1), W(t) ]k, (w(1),
2(t)=2(t)+ A;(1). 2(t) = 2(1) + Bu (1),
ay, (t) e[ -ay.ay |.af (t)e[-ar.a7 |
J =R*(t).i=12.
Optimal control problem of the first player is:

J, = min

S (t)e[—ﬁ,{ﬁ a0 ],a{n (t)e[—ﬁ,& ,an ]
max R? .
{a{ (<[ -af af Jaf (0] -af af | (ti)}

Optimal control problem of the second player is:

(22)

Copyright © 2013 SciRes.

J, = max
af ()] -3 & |.af (t)e[ - 3 |

min R? :
{ag,l (O] -at @l |:aba ()] -l al | (tl )}

From Equations (21)-(23) one obtain corresponding
linear master game:

F=v,+4,,
v, = -3k 70, (t) kA3 +ay, (t)+ar (1),
ay (t)=ay [t.F(1),7 ()], (24)
F()=A4 +r(t)+B.(t),V (1) =4 +V, () + 5, (1),
ay, (t)e[-ay.ay, |.ar (t)e[-ay.a7 |.
4, =3k, A2, (t) - kA5 +ay, (t)+af (1),
ay (t)=ay, [t.2(1),Z(1)],
(1)= 4+ 2,(0)+ 40 2(0) =2, () + 4, (1)
ay (e[ -ay.a, |.ar (e[ -a7.a" |,
Ji=r’(t),i=12.

From Equation (24) we obtain quasi optimal solution
for the antagonistic differential game

IDGZ;T(f,O,y,G([ 2),ﬂ,w) given by Equations (21)-

(23). Quasi optimal control ey, (1), (t)} of the first
player and quasi optimal control {aT' (t),af (t)} of the
second player are:

—pMsugn[[R )+ A.(1)]
0. (1)[V, (1)+5( tJ] K[V, (1)
——pMsugn[[ (1)+ A, (t
2(t)+ A, (0)]]-k.[2(0)+ £, (1)]"
)0 —pisign| [R(1)+ A (1) |+0, (O] V. () + 4, (1 ]]
[V, )+ A O]
o (t)=—pisign| [ 2(1)+ 4, (1) |+
—k[2(0)+4,(1)]

Thus, for numerical simulation we obtain ODE:
R=V,

(23)

+ ﬂz (t)T(ZS)

)
(t)]

+0 (t

0. (1) 2(t)+4.(1)]]

2

V, = ZR = plsign[[R()+4,(1)]
O, ©)+4O)]]-k [V, (t)+ 4, (t

2= phsign[[2()+ 4, (1)]
+0, (O[2(1)+ A (V]| -k [2()+ 4, (¢

IREA0

)] +al (1),

0JOp
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Example 4: Figures 14-24.
r=0.001,k, =107 k, =0.001,a’ =20m/sec?,

a; =20 m/sec’,R(0)=200m,V, (0)=10 m/sec,

2(0)=60,2(0)=40,a; (t)=a (sin(e1))",
a; =a; (sin(w-1))",0=50,

w(t)=A(t)=A(sin(w-1))",

f=20,p=2,q=1.
0.001
a(t) 5-10™H
0
0
0 0.02 0.04
0 t 0.05

Figure 14. Cutting function: @, (t).

Uncertainty of measurements of a variable dR(t)/dt.

Figure 15. Uncertainty of measurements of a variable

R(t): B(t).

200 | . I
200 \
100 [~ T
R (1)

-50

Figure 16. Target-to-missile range R(t). R(t)=7.2x107°m.
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4. Conclusions

Supporting Technical Analysis: Let us consider optimal
control problem from Example 1, corresponding Bellman
type equation is:

. ov oV oV 3
min max [ —+==x, +—(=X; + 4 +a,)
ael-puol| ael-p2.02]| Ot OX 0X,

:0,

V(T x)=(% +x),te[0,T] @7)
40 T T T
40
201 3
Rw(t) 0
20F
-40 40 1 I |
0 10 20 30
0 t T

Figure 17. Speed of rapprochement missile-to-target: R(t).

20 T T T
20
10" N
z (1)
or APANAAAAR e
-10F -
-15 | | 1
0 10 20 30
0 t T
Figure 18. Variable (t)=Ro .
T T
25
0
zw (t)
=501 —
-60 1 L 1
0 10 20 30
0 t T

Figure 19. Variable 7(t)-2(T)=2.172.
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ow(t)

0 10 20 30
0.035 t T

Figure 20. Variable &(t)-6(0)=0.3.

60 S0

aMr(t) 0

-60 -50

Figure 21. Missile acceleration along target-to-missile
direction: ay, (t).

100 100 T T T

o
aMrt(t) /

-100[~

-150 | | |

Figure 22. Missile acceleration along direction which
perpendicularly to line-of-sight direction: ay (t).
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Figure 23. Target acceleration along target-to-missile direc-
tion: ar(t).
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Figure 24. Target acceleration along direction which
perpendicularly to line-of-sight direction: af (t).

Complete constructing the exact analytical solution for
PDE (27) is a complicated unresolved classical problem,
because PDE (27) is not amenable to analytical treat-
ments. Even the theorem of existence classical solution
for boundary Problems such (27) is not proved. Thus,
even for simple cases a problem of construction feedback
optimal control by the associated Bellman equation com-
plicated numerical technology or principal simplification
is needed [17]. However as one can see complete con-
structing feedback optimal control from Theorems 1-2 is
simple. In study [6], the generic imperfect dynamic mod-
els of air-to-surface missiles are given in addition to the
related simple guidance law.
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