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Abstract 
Training images, as an important modeling parameter in the multi-point 
geostatistics, directly determine the effect of modeling. It’s necessary to 
evaluate and select the candidate training image before using the multi-point 
geostatistical modeling. The overall repetition probability is not sufficient to 
describe the relationship of single data events in the training image. Based on 
the understanding, a new method was presented in this paper to select the 
training image. As is shown in the basic idea, the repetition probability 
distribution of a single data event was used to characterize the type and 
stationarity of the sedimentary pattern in the training image. The repetition 
probability mean value and deviation of single data event reflected the 
stationarity of the geological model of the training image; the rate of data 
event mismatching reflected the diversity of geological patterns in training 
images. The selection of optimal training image was achieved by combining 
the probability of repeated events and the probability of overall repetition of 
single data events. It’s illustrated in the simulation tests that a good training 
image has the advantages of high repetition probability compatibility, stable 
distribution of repeated probability of single data event, low probability mean 
value, low probability deviation and low rate of mismatching. The method can 
quickly select the training image and provide the basic guarantee for 
multi-point geostatistical simulations.  
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1. Introduction 

Multi-point geostatistics was proposed by Guardiano and Srivastava in 1993 [1], 
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which aimed to cope with the problem of the insufficient consideration of two- 
point statistical information. The problem made it difficult to reproduce the 
shape of the simulated target more truthfully. By establishing a quantitative 
training image, the probability of determining different data events after 
scanning with a multi-point template was used to characterize the probability of 
occurrence of different data events. The objective of multi-point geostatistics is 
to recreate the geological patterns contained in the training images, so that 
training images can be considered as one of the key factors that determine the 
effect of simulation [2]-[9]. In recent years, in order to obtain effective training 
images, scholars have proposed different methods, including the target-based 
method [10] [11] [12], the method based on the deposition process [5] [13] [14], 
the method based on the process of imitation deposition [15] [16], and the method 
based on geological data transformation [17] [18], etc. 

At present, there are so many methods of creating training images that a large 
number of different training images can be created through various methods 
and tools for a certain research area. However, as a geological understanding of 
training images, how to select one or more most-suitable training images for the 
actual research area from multiple (group) training images of different sources, 
different creation methods, different spatial structure characteristics and 
credibility before conducting multi-point modeling? It has become a problem 
that modelers have to face. Yet, the optimal selection methods for training 
images are very limited, which include the optimal selection method based on 
variogram, the method based on conditional probability [3] [6] [19], and the 
method based on similar distance [20].  

The optimal selection method based on variogram can effectively obtain the 
two-point geostatistical information contained in the data volume, but it is 
limited by the two-point geostatistics of the variogram. It can only be used to 
compare the features of second-order space structure, but can not analyze and 
compare the higher-order geostatistical features. Ortiz and Deutsch first 
proposed a way to sort training images through high-level geostatistical 
information [19]. By the method, data events composed of a plurality of grid 
points in a single well can be obtained, and the training images can be scanned 
to obtain the distribution of the condition data events in the training images. 
The training images were sorted by comparing multiple distribution features. 
Boisvert further proposed a training image optimization method based on data 
event distribution and multi-point density equations [3]. The example tests 
showed that the above two methods can effectively sort the training images. 
However, these two methods can only be used to analyze and compare 
one-dimensional data extracted from a single well, but no effective high-level 
geological statistics can be obtained in the three-dimensional space. Then, Pérez 
proposed a training image optimization method based on three-dimensional 
data event repetition probability statistics [6], that is, the spiral search was 
conducted to obtain condition data events in the condition data, search the 
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training data events of the spatial structure in the candidate training images, 
count the number of repetitions appearing in different training images, 
normalize all the repetitions obtained from each condition data event, and then 
obtain the average of the repetitions of each condition data event to get the 
compatibility between different training images and condition data events. 
However, this method simplified the calculation of data event disparity in data 
event search and matching degree calculation, and allocated the same weight to 
each point in the data event. In addition, this method cannot exactly reveal the 
true match between the training image and the condition data, and cannot 
differentiate and analyze a large number of training data events. And there is no 
direct relationship between the overall compatibility of training images with data 
events and the compatibility of training images with individual data events. 
Therefore, this method still cannot provide the absolute matching of different 
data events and training images in the condition data. 

Based on Pérez’s methodological analysis, this paper considered the issue that, 
in some cases, the overall probability of repetition may result in a high overall 
compatibility due to the repetition of a certain pattern in the training images, as 
no direct relation exists between the overall compatibility of training images and 
data events and the compatibility between training images and single data 
events. Furthermore, a new index was proposed in this paper, that is, statistical 
characteristic parameters of single data event repetition. These two ideas were 
combined to sort and optimize the training images. The synthetic theoretical model 
showed that the new method could better achieve the sorting and optimization of 
training images. The research provided a new method for multi-point geostatistical 
modeling core and key parameters, i.e. training image optimization. It promoted 
multi-point geological modeling to better serve the reservoir model establishment 
and laid the foundation for enhanced oil recovery. An accurate training image 
could improve the effect of modeling, making the multi-point modeling closer to 
the actual reservoir situation. [9] [17] [21] [22] [23]. 

2. Optimal Selection Method 
2.1. Method Based on Overall Repetition Probability 

Pérez (2014) proposed to optimize the training images by counting the 
repetition probability of the whole data event and computing the relative 
compatibility and absolute compatibility. 

The relative compatibility is to normalize the repetition number of each data 
event and calculate the repetition probability Pi,j of the i-th data event in each 
training image, 
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Ri,j represents the repetition number of the i-th data event in the j-th training 
image, and then calculate the average repetition probability of the n-th data 
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events as the relative compatibility Cj, 
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Absolute compatibility is the occurrence of statistical events in the training 
image. If the i-th data event has appeared in the j-th training image, Yi,j is 1, 
otherwise Yi,j would be 0, then the proportion of data events contained in this 
training image is calculated, that is, absolute compatibility Mj. 
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Through the relative compatibility characterizing the probability of occurrence 
of conditional patterns and characterizing the pattern matching rate in the 
training images by absolute compatibility, the overall characteristics of the 
training images can be reflected. However, as there is no direct relationship 
between the overall compatibility of training images with data events and the 
compatibility of training images with individual data events. In some cases, the 
overall repetition probability may result in a high overall compatibility due to 
the repetition of a pattern in the training image. As shown in Figure 1, there are 
three training images (the number of grids is 50 × 50 × 1), and their geological 
features are similar. The condition data TIC3 is obtained from the training 
image T3. According to the method of Pérez (2014), the overall repetition 
probability is used to optimize the training images, but the result of the 
evaluation is not significant enough. When the number of condition points is 
more than 7, there will be a big difference (Figure 2). Based on this understanding, 

 

 
Figure 1. Training image and condition data (Pérez, 2014). (a) Training image T1; (b) training 
image T1; (c) training image T3; (d) training image TIC3 (from T3). 

 

 
Figure 2. Statistical characteristics of the overall repetition probability (Pérez, 2014). (a) Absolute 
compatibility; (b) relative compatibility. 
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a single data event repetition probability analysis based on its absolute 
compatibility and relative compatibility was proposed to make up for the 
shortcoming that the overall repetition probability does not reflect the 
distribution of individual data events within the training image. 

2.2. Statistical Characteristic of Single Data Event Repetition 

The single data event repetition probability is designed to reflect the distribution 
characteristics of data events within a certain training image. It uses the 
conditional probability as the evaluation data and selects a suitable search range 
and the number of conditional points involved in evaluation to weight the grid 
points within the search range. It also finds the number of occurrences of this 
mode in the training images and records the number of repetitions for each 
mode. That is, for the t-th candidate training images, the set of the n data events 
CE is obtained by scanning the condition data with the specified template, and 
the number of occurrences of the i-th data event CEi in the j-th training image is 
denoted as Ri,j. Then, the distribution statistics of data events in each training 
image are calculated, so as to select a better training image. The statistical 
characteristics of these distributions include: single data event repetition 
probability distribution, single data event repetition probability average, single 
data event repetition probability deviation and data event mismatch rate. With 
single data event repetition probability distribution, single data event repetition 
probability average and single data event repetition probability deviation, the 
stability of data events in the training image can be reflected. And with data 
event mismatch rate, the diversity of training image patterns can be highlighted. 
The repetition rate of a single data event is the repetition probability of a single 
data event in the repetition of all data events of a training image, that is, 
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Data events with PTi,j being 0 mean no matching event in the training image. 
If there is no match found in the training image, it will be marked as 1, otherwise 
0, then no match will be calculated, where, 
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UNRi,j is the index of mismatch events, and UNPj is the mismatch rate. When 
establishing statistical distribution probability for one-event repetition 
probability PTi,j, without considering data events without matching, the effective 
data event repetition probability PTi,j is calculated by interval, and the 
distribution probability average and deviation are calculated. The training 
images with lower data event mismatch rate, even single data event repetition 
probability distribution and smaller single data event repetition probability 
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average and single data event repetition probability deviation are closer to the 
real geological features. Aiming at the poor performance of the above training 
images, the probabilistic characteristics of single data events are statistically 
analyzed when the five conditional points are taken (Figure 3). It can be clearly 
seen from Figure 3 that the single data event repetition probability deviation 
and data event mismatch rate of single data events are obviously lower. Aided by 
a single data event indicator and combined with the overall repetition 
probability indicators, it will be able to more directly filter out the training 
images in line with the actual geological features.  

 

 
Figure 3. Statistical characteristics of the single data event repetition probability. (a) Repetition 
probability deviation; (b) repetition probability average; (c) repetition probability distribution; (d) 
mismatch rate. 

2.3. Process of the Method 

Through the programming, the method of combining the overall repetition 
probability and the single data event statistical index is proposed to select the 
optimal training image. By meshing the work area with known condition data, a 
random search path is established. At the same time, the search range of the 
template is sorted by weight. For any node location, the search sequentially 
matches the condition data event exactly from the nearest condition point to the 
farthest condition point. Once the perfect match pattern is found, the number of 
repetitions for this pattern increases until all data points in the data model are 
searched across the training image, which returns the number of repetitions Ri,j 
that exactly matches the condition data event, and calculates the normalized 
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probability Pi,j and the single-event repetition probability PTi,j. According to the 
normalized probability, the relative compatibility and absolute compatibility of 
the whole training image are calculated. According to the single event 
repetition probability, the distribution proportion, the distribution mean and 
the distribution deviation are calculated: The specific steps are as follows 
(Figure 4): 

1) Determine the search template, then create a search template weight 
ranking, and determine the pseudo-random path to find data events according 
to the distribution of condition data. 

2) Scan training images to look for patterns that match the data events. If the 
data event condition points find an exact match in the training image, the event 
repetition number Ri,j is incremented by 1 until the training image search is 
completed. 

3) Jump to the next data event, repeat step 3) until all data events have been 
searched. 

 

 
Figure 4. The flow chart of training image evaluation. 
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4) Select the next training image, repeat steps 2) - 4) until all the training 
images have been scanned. 

5) Get the normalized probability Pi,j and the single event probability PTi,j to 
calculate relative compatibility Cj, absolute compatibility Mj, Single data event 
repetition probability average and Single data event repetition probability 
deviation and Data event mismatch rate of single data events UNPj. 

3. Test of the Method 
3.1. Two-Dimensional Test 

The two-dimensional test grid adopted were the training images published by 
Pérez (2014) with a grid size of 100 × 100 × 1 (Figure 5). From the real images 
TI4, TI5, TI6, 1091 conditional points were randomly selected, corresponding to 
TIC4, TIC5, TIC6. Based on the condition data, the training images of candidate 
T1, T2, T3 were tested and sorted, and the training image was optimized. 

 

 
TIC4: The condition data form TI4; TIC5: The condition data form TI5; TIC6: The condition data form TI6; T1, T2, T3: The 
training image for MPS; For the condition data TIC4, T1, T2 and T3 are used as the modeling parameter. The same as TIC5 
and TIC6. 

Figure 5. Training image and condition data. 
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The maximum search range in the test was set to 31 × 31 × 1, and the number 
of upper limit condition points was to 35. The absolute compatibility and the 
relative compatibility were calculated respectively for the number of repetitions 
when searching for 5, 10, 15, 20, 25, 30, 35 condition points within the search 
range (Figure 6). It can be seen that as the condition points increased, the 
relative compatibility of the training images close to the original geological 
model tended to increase, while the absolute compatibility was higher than that 
of other training images. For the data events when 15 conditional points were 
considered, the Single data event repetition probability distribution, Single data 
event repetition probability average, Single data event repetition probability 
deviation and data event mismatch rate were calculated (Figure 7). And it is not 
difficult to find that, with better training images, there comes more stable 
repetition probability distribution, lower repetition probability average and 
deviation and mismatch rate. 

 

 
Figure 6. Statistical characteristics of the overall repetition probability. (a) Absolute compatibility; (b) relative 
compatibility. 

 
Based on the above parameters, the training image T1 was preferably selected 

based on the condition point TIC4, the training image T2 was preferably selected 
based on the condition point TIC5, and the training image T3 was preferably 
selected based on the condition point TIC6. According to the multi-point 
simulation with three training images and three sets of condition data (Figure 
8), with the template size of 5 × 5 × 1, it can be concluded that the optimal 
training images corresponding to condition points TIC4, TIC5 and TIC6 were 
T1, T2 and T3 respectively, indicating that the results of multi-point simulation 
were in good agreement with the training images. 
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Figure 7. Statistical characteristics of the single data event repetition probability. (a) Repetition probability 
deviation; (b) repetition probability average; (c) repetition probability distribution; (d) mismatch rate. 

 

 
Figure 8. Multi-point simulation results. 
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3.2. Three-Dimensional Test 

With the three-dimensional test grid with the size of 60 × 60 × 10, three different 
specifications (Table 1) of the river phase model TI4, TI5, TI6 and 900 
corresponding to the point data were established, and at the same time, three 
training images T1, T2 and T3 were selected (Figure 9). For three different data 
conditions, the test tried to find their appropriate training images. For 
multi-point modeling, the maximum conditional point is 35. The grid size is 20 × 
20 × 4 meters. It can be seen that the width of T1 is the largest, the thickness of 
T3 is the smallest, and the thickness of T2 is the largest while its width is 
moderate. 

 
Table 1. Original channel size and training image scale. 

 project scale (grid) Maximum condition data Channel wide (grid) Channel thick (grid) 

Training image T1 60 × 60 × 10 35 8 5 

Training image T2 60 × 60 × 10 35 6 6 

Training image T3 60 × 60 × 10 35 7 3 

Geologic model TI4 60 × 60 × 10 35 8 5 

Geologic model TI5 60 × 60 × 10 35 6 6 

Geologic model TI6 60 × 60 × 10 35 7 3 

 

 
(a) 
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(b) 

 
(c) 
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(d) 

Figure 9. Training image and condition data. (a) Geologic model T4 and condition data TIC4; (b) geologic model T5 and 
condition data TIC5; (c) geologic model T6 and condition data TIC6; (d) training image T1, T2, T3. 
 

The maximum search range in the test was set to 31 × 31 × 9, and the number 
of upper limit condition points was to 35. The absolute compatibility and the 
relative compatibility were calculated respectively for the number of repetitions 
when searching for 5, 10, 15, 20, 25, 30, 35 condition points within the search 
range (Figure 10). It can be seen that when the condition point TIC4 or the 
condition point TIC5 was not available for the training images T1 and T2, the 
condition point TIC6 could better select the training image T3 with similar 
geological parameters. For the data events when 15 conditional points were 
considered, the Single data event repetition probability distribution, Single data 
event repetition probability average, Single data event repetition probability 
deviation and data event mismatch rate were calculated (Figure 11). And it is 
not difficult to find that, with better training images, there comes more stable 
repetition probability distribution, lower repetition probability average and 
deviation and mismatch rate. Because single data event analysis presented the 
distribution of internal patterns of training images, it directly revealed the 
distribution of single data events rather than replacing the local probability  
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Figure 10. Statistical characteristics of the overall repetition probability. (a) Absolute compatibility, (b) relative compatibility. 

 

 
Figure 11. Statistical characteristics of the single data event repetition probability. (a) Repetition probability deviation; (b) 
repetition probability average; (c) repetition probability distribution; (d) mismatch rate. 
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distribution with the overall repetition probability. Therefore, the training 
images with similar parameters can be optimized by using the single-event 
repetition probability for the case that relatively good training images could not 
be selected by relative compatibility and absolute compatibility.  

Multiple simulations were performed based on the three training images and 
the three sets of condition data (Figure 12). The differences between the three 
river phase models in terms of width and thickness were acceptable from the 
point of view of multipoint simulation. However, the optimality is the best. It is 
obvious that condition point TIC4 with training images T1, condition point 
TIC5 with training images T2 and condition point TIC6 with training images T3 
produced the best simulation effect.  

Based on the two-dimensional model and three-dimensional model test, it can 
be seen that the relative compatibility, the absolute compatibility and the 
absolute compatibility in the overall repetition probability can improve the 
optimal selection evaluation for the training image with significant difference. 
And for the training images whose structural features are close to each other, the 
overall repetition probability will give a better evaluation of the training images 
in the event of partial data events with a high number of repetitions. However, 
the single data event repetition probability starts from the distribution of single 
data event repetition number, and takes the stability of data events, which is 
evaluated with the Single data event repetition probability average, Deviation 
and Mismatch rate, as the optimal selection index of training images. Combined 
with the overall repetitive probability of data events, the training images can be 
more fully optimized. 

4. Conclusions 

The training image is equivalent to a geological pattern library for multi-point 
simulation, where data events are the embodiment of geological model. The 
advantages and disadvantages of the training images depend on the matching 
degree of the conditional patterns. It is an effective way to train the images by 
analyzing the data events. 

The overall repetition probability of data events optimizes the overall pattern 
of training images through relative compatibility and absolute compatibility, 
which can reflect the matching degree of the geological patterns in the training 
images as a whole to the condition data. The higher relative compatibility and 
absolute compatibility have generally evaluated the training images. However, 
the lack of credibility of the condition data for a single data event would result in 
an additive effect of the individual significant data event on the overall repetition 
probability, and that training images that are not faithful to the condition data 
also be selected. Single data event repetition probability can make up for the 
overall repetition probability of a single data event description of the deficiencies 
and evaluate the stability of the distribution of individual data events. 

In the steady reservoirs modeling, training image selected by this method can  
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Figure 12. Multi-point simulation results. 
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match with the actual geologic pattern, a good result in the actual modeling can 
be achieved, but for the optimization of training image in non-stationary 
reservoir modeling still, it needs to add some new control factors. 
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