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Abstract 
Reservoir characterization, which could be broadly defined as the process de-
scribing various reservoir characters based on the all available data. The data 
may come from diverse source, including the core sample experiment result, 
the well log data, the well test data, tracer and production data, 2D, 3D and 
vertical seismic data, well bore tomography, out crop analogs, etc. Ideally, if 
most of those data are analyzed and included in the characterization, the re-
servoir description would be better. However, not all the data are available at 
the same time. This paper provides a reservoir characterization analysis in the 
early-stage application, which means before the production, based on real oil 
filed data by using the SGeMS (Stanford Geostatistical Modeling Software). 
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1. Introduction 

The properties involved in the reservoir description may include the permeabil-
ity, porosity, saturation, thickness, faults and fractures, rock facies and rock 
characteristics [1]. The reservoir characterization gives a proper global reservoir 
prediction of these diverse reservoir properties as a function of special based on 
the limited local information, which could be generally understood as a process 
to describe the reservoir heterogeneity and solve the upscaling problem. As We-
ber and Van Ceuns [2] explained, the geologic heterogeneities vary depending 
on the scale of the measurements. Practically, it is easier to understand the re-
servoir properties in small scale, for example, the permeability and porosity are 
easily to be obtained from core tests. The accurate prediction of such properties 
based on the small scale for the large scale is important. With the development 
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of science and technology, the simulations realized on the computers of the local 
properties are the trending of such upscaling description [3]. 

A large amount of work has been done by the scholars to join the simulation 
approached and solve the upscaling description and multivariable attributes 
problem. Chilès and Delfiner [4] explained a model of linear co-regionalization. 
Myers [5] applied the conditional univariate LU decomposition method of Davis 
[6] and extended it to simulation. Verly [7] improves this method for joint si-
mulation of more than two variables based on a combination of the LU vector 
simulation and sequential simulation. The major drawbacks of the above ap-
proaches are that they require considerable computer processing capacity and 
memory to solve large systems of equations per simulated node. Thus, an alter-
native approach is improved to factorize the variables involved into uncorrelated 
(orthogonal) factors, which can then be simulated independently by restoring 
the virograms [8]. Desbarats and Dimitrakopoulos [9] proposed an improve-
ment to the PCA (Principle Component Analysis) by applied the MAF (mini-
mum/maximum autocorrelation factors), which is a factorization method de-
veloped for remote-sensing applications. 

The data used for field examples comes from Burbank Oil Field in Oklahoma, 
which is a sandstone reservoir that consists of several flow units. The data contains 
79 wells in the field and all of them are vertical with constant coordinates through 
the flow units. According to the well information, ten flow units that capture 
changes in geologic description and variation of petrophysical properties. The flow 
units data was described at different well locations by analyzing several geological 
cross sections throughout the field, including top and thickness, porosity, permea-
bility (in log form) from cores and logs. There are totally ten flow unit data which 
are ordered from the top to bottom of the reservoir and each of them has overall 
gross thickness ranging from 46 - 85 ft with the mean of 65 ft. Flow units one, two 
and eight to ten are located at the top and bottom of the reservoir which are less 
productive, while flow unit three to seven are in the middle of the reservoir, which 
are most productive and provide best petrophysical properties [1]. 

2. Discussions 

Figures 1(a)-(c) show the overview plot of the data (i.e., see original data source 
at Burbank Oil Fiel in Oklahoma, flow unit 5, 79 wells), and as it can be seen, 
under the same coordinate system, the porosity and thickness data is consistent 
with the well locations, indicating that they are profile of all well data, while 
permeability data is clustered around one well, suggesting that the permeability 
data may come from only one or two wells. The permeability data file only offers 
depth data without any X or Y coordinate which makes it one dimension data. 
This is a typical case shows that geostatistic data may have different scales and 
this usually cause difficulty in geoscience work. 

3. Reservoir Data Distribution 

The flow unit data contains thickness data, porosity data and permeability data  
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(a) 

 
(b) 
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(c) 

Figure 1. (a) Thickness data overview of the oil field (ft); (b) Porosity data overview of the oil field; (c) Permeability data overview 
of the oil field (mD). 

 
(in log form) at different X and Y coordinates. At the first step of the project, the 
data distribution should be viewed. Figure 2 shows the histograms of the data 
with bin number 8 and 12 respectively. It could be observed that as the bin 
number increases, the frequency of each bin decreases and this is caused by the 
reduction of the bin length. For example, as in Figure 2(a), it is shown that 
when the bin number is 8 and the frequency of the thickness that lay between 
1.375 ft and 2.750 ft is 0.2. In Figure 2(b), the data is divided into 12 bins, and 
the frequency of the thickness that lay between 0.917 ft and 1.833 ft is zero, while 
the frequency of the thickness that lay between 1.833 ft and 2.750 ft is 0.2, which 
means all of the thickness points that lay between 1.375 ft and 2.750 ft in Figure 
2(a) actually lay between 1.833 ft and 2.750 ft, and this is why the larger number 
of the bins, the more information the histogram could provide. Similar conclu-
sions could be drawn from Figure 2(c) and Figure 2(d) for the porosity data 
and Figure 2(e) and Figure 2(f) for the log-transformed permeability data. 

From the above graphs, the distributions of thickness, porosity and permea-
bility can be observed. The coefficient of variance can be calculated as [10] 

vC
x
S

=  

Thus, the coefficient of variance for thickness, porosity and log permeability is  
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(a) Thickness histogram with bin 8                               (b) Thickness histogram with bin 12 

 
(c) Porosity histogram with bin 8                                 (d) Porosity histogram with bin 12 

 
(e) Log-permeability histogram with bin 8                         (f) Log-permeability histogram with bin 12 

Figure 2. The histograms of the data with bin number 8 and 12 respectively. 
 

0.6296, 0.3146 and 0.8238 respectively. As coefficient of variance provides a rela-
tive spread of a sample and high coefficient of variance reflects the existence of 
extreme values. All these three are low, suggesting that there are no unacceptable 
outliners. 
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However, it is difficult to determine the exact distribution of each variable 
simply based on eyes judgments. Especially the distribution may look differently 
when different bin number is chosen. Thus, it is necessary to draw the Q-Q plots 
[11] to help check the distribution of the data. The samples are compared to 
theoretical normal distribution. If it is identical to normal distribution, a 45˚ line 
(red line in the graphs below) should be followed. 

Figures 3(a)-(c) shows the Q-Q plot of the distribution of the variables, and 
from the Q-Q normal plot (a), it is very clear that there are many replicate in-
teger numbers for thickness data and the normal distribution may not suit well  

 

 
(a) Normal QQ plot for Thickness                                 (b) Normal QQ plot for Porosity 

 
(c) Normal QQ plot for Log-permeability 

Figure 3. The Q-Q plot of the distribution of the variables. 
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for thickness data. However, for Q-Q normal plot (b), it could be observed that 
the data points fit well for the 45˚ line, except when the theoretical quantile is 
larger than 1, the fitting becomes poor and this is common when a realistic sam-
ple fits a standard normal distribution and this is the tail effect which could be 
tread as the outliner effect. Thus, for the porosity, except those extreme points at 
the two ends, the normal distribution seems well for porosity. For the permea-
bility, since the data is log transformed and the normal distribution fits well, it 
indicates that the original permeability data fits well for the log-normal trans-
formation. Thus, from the Q-Q normal plots, the distribution of the data can be 
known. Meanwhile, it could be used as an indication for Kriging estimation me-
thods for later use. The thickness data, as is shown, has many replicate integer 
numbers and this indicates an obvious property of discrete. In this way, the mul-
ti Gaussian transformation method, which could transform the data to conti-
nuous normal form, is worthy trying. While the permeability data seems to be 
clustered together, which is described previously in Figure 1(c), so to estimate 
the overall view of permeability, Cokriging estimation based on the relationship 
of porosity and permeability could be applied. Also, permeability seems to follow 
a log normal distribution and the log transformation in nonlinear Kriging esti-
mate method is under consideration. 

After the distribution for the variables are analyzed, the relationship between 
variables should also be checked. Figure 4 shows the scatter plot between poros-
ity and log permeability with its best fit line. As is shown in the graph, except for 
a few outlier points in the graph, the points are symmetrically scattered around 
the best fit line without any special trend or gathering. The correlation coeffi-
cient is 0.9425. Since it is known that the upper limit of correlation coefficient is 
1, indicating a perfect positive relation of two variables, 0.9425 in this case shows 
that the relationship between porosity and log permeability is expectedly excel-
lent positive linear. The regression line is  

log 0.1628 1.6545k φ= −  

 

 
Figure 4. Relationship between porosity and log permeability. 
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The slope of the above equation equals 
( )

2

, logc k
Sφ

φ
, where ( ), logc kφ  is the  

covariance between φ  and log k , and 2Sφ  is the variance of φ . 

4. Spatial Relationships 

Variogram is used as a technique to describe the spatial relationships for geos-
cience data. Traditionally, there are four commonly-used basic variogram-with- 
still models, which is briefly shown as follows. 

Nugget-Effect Model 

( ) ( ) ( )0L C C Lγ = −
 

 

( )Lγ


 is the variogram at lag distance L


 and ( )C L


 is the covariance at lag 
distance L



. If 0L > , ( ) 0L Cγ =


 and if 0L > , 0C  is the still value. 
Spherical Model 
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where 0C  is the still value and a is the range. 
Exponential Model 
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Gaussian Model 
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To make sure the pair of data is sufficient in a variogram, lag numbers, toler-
ance and lag separation should be carefully selected. At the beginning, the course 
example of thickness variograms for flow unit 5 is followed. Figure 5 shows the 
software set for variogram of thickness. As discussed in the class, for the number 
of Lags, 12 - 20 will be fine, so 12 is used. Lag Separation is the point separation 
in the variogram profile/graph, which is discussed as lag distance in textbook 
and it is half of the maximum possible distance within a region of interest, based 
on the rule of thumb. 1200 ft is used in this case. Tolerance respect to distance as 
well as direction of 10% - 50% of the separation will be fine, but mainly depends 
on data set. Thus, 500 ft is used for tolerance of distance and 10˚ is used for to-
lerance of direction. To check whether the anisotropy effect exists, we check every 
ten degree azimuth angle in 180˚, as based on the assumption of symmetric, the 
variogram will provide the same estimate by adding 180˚ to the given direction.  
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Figure 5. Software set for variograms of thickness. 

 
The overall results for variograms of all the 19 directions could be shown in 

the software, then the next step is to model these variograms individually based 
on the four basic still models in the textbook, including Nuggget-effect, Spheri-
cal, Exponential and Gaussian, and usually Spherical model and Exponential 
model are used. 

Also, the above obtained vairograms show different spatial continuity in dif-
ferent directions. Noticed that it is needed to check the anisotropic effect, the 
basic requirements for anisotropic models should also be applied. First, the pa-
rameters used for the variograms should be as low as possible. Second, the con-
dition of positive definiteness should be satisfied. Third, it is assumed that direc-
tions of maximum and minimum continuity are perpendicular to each other. 

Between the two basic anisotropic models, Geometric model and Zonal mod-
el, it should be realized that both these two models indicates that the structures 
of all variograms at different direction should be the same, the difference is that 
the Geometric model has similar shape and still value with different ranges, 
while Zonal model has different still values as well as different ranges. Thus, af-
ter simply check Geometric model is not suitable in this case because of the same 
still value. 
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The summary of model, range and still values at different directions are 
showed in the Table 1. Noticed that there is no Nugget-effect in all variogram 
structures, the consideration is as follows. First, it is very difficult to judge 
whether there is sufficient information for the spatial relationship as a pure 
nugget-effect is a sign for no quantitative information. Second, one requirement 
for nugget-effect model is that the shortest distance of sample pairs is larger than 
the range of the variogram, but after observation, there is no such sign. Third, as 
is mentioned, different values of nugget still show the extent of lacking informa-
tion, however, it is difficult to judge the extent at different directions. For exam-
ple, if after modeling, direction 10˚ may have nugget-effect still while direction 
20˚ may have no nugget effect, however, is that correct to say that direction 10˚ 
lacks more spatial information than direction 20˚? This is obviously questiona-
ble if no other information is known. Thus, to make it more consistent and sim-
ple, one assumption in this case is that there is no nugget effect in all the vario-
gram structures. 

From the summary table, a half of a rose diagram [12] is drawn in Figure 6. 
Notice that the other half is just symmetric, because the variogram will provide 
same estimate by adding 180˚ to the given direction. Based on the table and rose 
diagram, it can be assumed that 0˚ and 180˚ represent the direction of the max-
imum continuity and 90˚ and 360˚ represent the direction of the minimum con-
tinuity. 

 
Table 1. Variogram summary of thickness. 

Direction (Angle) Model Still Value Range 

0˚ (Maximum) Spherical Model 9 6768 

10˚ Spherical Model 7 4464 

20˚ Spherical Model 6 4032 

30˚ Spherical Model 6 4608 

40˚ Spherical Model 5.5 4896 

50˚ Spherical Model 4 2880 

60˚ Spherical Model 3.3 2160 

70˚ Spherical Model 3.4 2592 

80˚ Spherical Model 3 2592 

90˚ (Minimum) Spherical Model 3 1440 

100˚ Spherical Model 4 3600 

110˚ Spherical Model 4.5 4032 

120˚ Spherical Model 4 4464 

130˚ Spherical Model 5 3456 

140˚ Spherical Model 4 3312 

150˚ Spherical Model 5 1440 

160˚ Spherical Model 4.5 3312 

170˚ Spherical Model 4.5 3168 

180˚ Spherical Model 6 6768 
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Similar process is done to porosity and log permeability as well and the results 
are shown as follows. Figure 7 shows the software set for variograms of porosity. 
Since as previously described, the porosity and thickness come from the same 
well source, which means that the location cluster behavior of the thickness and 
porosity are the same, the software se is same as thickness. Table 2 shows the 
overall results for porosity. Different to the results of thickness, the results of 
porosity has larger still values, while the Geometric model is, to some extent, ap-
plicable in for porosity variograms, since the still value is somewhat useful to all 
the plots. 

 

 
Figure 6. Half of the rose diagram of lag distance in different directions of thickness data. 

 

 
Figure 7. Software set for variograms of porosity. 
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As is shown in Figure 8, which is the half of rose diagram for porosity, the 
continuity behaviors for thickness and porosity are quite opposite, where the 
maximum continuity direction is 110˚ and 290˚ and minimum direction is 20˚ 
and 200˚. This is possible as porosity and thickness may not have strong rela-
tions. However, it is proved that porosity and permeability have strong linear 
relations, so the continuity of these two variables should be consistent. 
 
Table 2. Variogram summary of porosity. 

Direction (Angle) Model Still Value Range 

0˚ Spherical Model 57 2592 

10˚ Spherical Model 55 2448 

20˚ (Minimum) Spherical Model 40 2304 

30˚ Spherical Model 50 4464 

40˚ Spherical Model 50 5040 

50˚ Spherical Model 45 1008 

60˚ Spherical Model 30 2448 

70˚ Spherical Model 36 4752 

80˚ Spherical Model 36 3888 

90˚ Spherical Model 28 2304 

100˚ Spherical Model 28 2736 

110˚ (Maximum) Spherical Model 28 5904 

120˚ Spherical Model 38 1296 

130˚ Spherical Model 35 2592 

140˚ Spherical Model 40 1296 

150˚ Spherical Model 45 4032 

160˚ Spherical Model 50 3888 

170˚ Spherical Model 55 4752 

180˚ Spherical Model 57 2592 

 

 
Figure 8. Half of the rose diagram of lag distance in different directions. 
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5. Kriging Estimation 

After the variograms are modeled, the next step is to build up the grid estimation 
map based on the sample data. The aim of Kriging estimation is to utilize the 
models before to estimate values at unsampled locations with minimized va-
riance condition. First, the data is loaded with grids divided. Figure 9 shows part 
of the original thickness data and the software set for the grid system built for 
them. 

Figure 10 gives the software set for simple Kriging method for thickness grid. 
This means the software will use simple Kriging method to add a map of thick-
ness for whole grid system under “4 h-grid” bar, conditioned on the thickness  
 

 

 
Figure 9. Software set for grid system for thickness data. 
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Figure 10. Software set for simple Kriging estimation for thickness data. 

 
values in the “4 h-point” point set data. The size of the searching neighborhood 
is determined by the maximum range of the variograms, which could be recalled 
in the previous section. The searching neighborhood is set in “search ellipsoid” 
with searching radius of 10,000 ft, requiring a minimum of 2 data points to be 
found within 10,000 ft of each grid point and using no more than 12 nearest 
neighboring points in the estimation for each grid point. 

The “variogram” tab is filled with the information on the variogram modeling 
of thickness which is developed before. Both range and direction of minimum 
continuity and maximum continuity are tried at first. The “raw” sill is set at 0.8 
instead of 1.0 is to show that the raw data is applied for Kriging estimation and 
the structure of variogram is not exactly matched for the raw data. However, this 
makes no difference of 0.8 - 1.0 after carefully checking, excepting that the mag-
nitude of the estimated Kriging variance at each grid is changed. 

After simple Kriging is applied, the “Simple Kriging (SK)” bar is then changed 
to “Ordinary Kringing (OK)”bar, which is as shown. 

Figures 11-13 give the comparative result of simple Kriging with maximum 
range, a medium range of 3600, and minimum range respectively. As it can be 
seen, the less the range, more isolated points are shown in the map. 

As it can be seen, the less the range, more isolated points are shown in the 
map and this is effect especially significant in the variance map. All the map of 
variance show a contour of variance with bull’s eyes, which indicates no spatial  
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Figure 11. Simple Kriging map and variance map for thickness data (range = 6768). 
 

 
Figure 12. Simple Kriging map and variance map for thickness data (range = 3600). 
 

 
Figure 13. Simple Kriging map and variance map for thickness data (range = 1440). 
 
relationship of error values, and the less the range, the bull’s-eyes effect is more 
obvious. This phenomenon is easy to understand, according to the definition, 
the grids out of the range have no spatial relationship. Thus, the less the range is 
set, the more isolated points in the variance map which is only at the sample lo-
cation would be. It is known that the most idea case is error estimates should 
show no spatial correlation as values should be independent of spatial location. 
The range should be chosen consistent with the minimum range, since the 
minimum continuity direction is the principal direction and maximum continu-
ity direction is the minor direction according to the textbook. However, since 
the sample data is not that sufficient, the small range cannot be chosen because 
the spatial relation is too ideal, which reduced the chance to know the informa-
tion of other grids based on the known data. Thus, in all case of estimation be-
low, all of the maps are built based on the maximum range of variogram. Ac-
cording to the textbook, the assumption that error variance is independent of 
surrounding samples and, in turn, of the estimated value, is called assumption of 
homoscedasticity. This is a typical case where the assumption of homoscedastic-
ity is not satisfied in field data and is rarely required by the user. 

Figure 14 gives the comparative result of simple Kriging and ordinary Kriging 
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method for thickness data. Figure 15 shows the comparative variance result for 
each data. 

Overall, the ordinary Kriging shows similar result as simple Kriging. The map 
has a smooth appearance with both Kriging methods. The spatial good continu-
ity from north to south could be observed which is corresponded to the principal 
direction. The east to west trend which corresponds to the minor direction is less 
observed. The estimation variance is small in grid blocks close to the condition-
ing data, and it becomes larger in areas far from the data points. The variance 
maps of two methods has some difference, where the ordinary variance map for 
seems to be smoother. This is because of the ordinary method, the assumption of 
first-order stationary may not be strictly valid, where the local mean is depen-
dent on the local location. This leads the estimates is relied on the neighboring 
girds, which produces a local average effect, making the variance seems to be 
smoother. 

Since the porosity sample data come from the same locations, the similar 
process is done to porosity data as Figure 16, and the result is show in Figure 17 
and Figure 18. 

After observation, the difference of the results for simple Kriging method and 
ordinary Kriging method for porosity data seem to be obvious at the area with-
out any data points. This is acceptable because the simple Kringing estimate of 
these unsampled areas relies more on the global mean, which is 19.62, while for 
the ordinary Kriging method, the estimate relies more on the surrounding grid  
 

 
(a) Simple Kriging map for thickness data                 (b) Ordinary Kriging map for thickness data 

Figure 14. Kriging map for thickness data.  
 

 
(a) Simple Kriging variance map for thickness data        (b) Ordinary Kriging variance map for thickness data 

Figure 15. Kriging variance map for thickness data. 
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Figure 16. Software set for simple Kriging estimation for thickness data. 
 

 
(a) Simple Kriging map for porosity data                  (b) Ordinary Kriging map for porosity data 

Figure 17. Kriging map for porosity data.  
 

 
(a) Simple Kriging variance map for porosity data           (b) Ordinary Kriging variance map for porosity data 

Figure 18. Kriging variance map for porosity data. 
 
values, which vary a lot. 

Finally, it is time to deal with the permeability data. As discussed before, per-
meability data is first transformed in log form. In this case, simple Kriging me-
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thod, ordinary Kriging method and cokriging method are used to estimate the 
permeability data grid which is different from the previous grid system. At first, 
it is supposed to use cokriging method to estimate the whole grid system of 
permeability based on the linear relationship of porosity and permeability, which 
is checked before. However, this idea could not be realized based on the data of-
fered for three reasons. 

First, the permeability file is a one dimension data and only has depth data 
without any X and Y coordinate, which is shown in Figure 19. This means the 
searching ellipsoid should be very large to cover sufficient data points. However, 
Second, only the cross variogram for permeability data and porosity data can be 
get in the permeability data file, it is not able to get the cross variogram for the 
porosity data file and permeability data file. Even the minimum conditioning 
data is set to be only one, and the searching area covers over all the area of the 
grid system, there are still some unsampled location with empty surrounding 
grids. Thus, only the estimation for the grid system of permeability is realized. 

Another way to estimate overall permeability is to use the linear relationship 
to estimate permeability at the all sample point of porosity. According to the de-
finition, the equation is k A Bφ= +  and the mean of permeability will be 

( )AE φ  with variance ( )2A Var φ . However, this will give the exact same map as 
porosity, since all the points are calculated from the equation and there is no ad-
ditional spatial information provided to estimate permeability. 
 

 
Figure 19. Data points view for porosity and log per-
meability. 
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6. Simulation 

The final step is to do a simulation with attempt to find the difference between 
simulation method and estimation method. Sequential Gaussian Simulation is 
used in this case, which assumes that the normalized local error variance follows 
a standard normal distribution. The software set for thickness data for the me-
thod is shown in Figure 20. The seed is used to generate random numbers. Since 
simulation will use random generator, the software will use seed as reference, 
different seed will give different random numbers which will lead different re-
sults. The student ID is used as seed in this case. 

The result for one simulation realization with seed 359,357 for thickness data 
is shown as Figure 21. To be more informative, another realization is also done 
with seed 200. 

Obviously, from the above two graphs, simulation with different seed num-
bers will result different map. Simulator will generate different random numbers  
 

 
Figure 20. Software set for thickness simulation. 

 

 
(a) Simulation realization with seed 359,357 for thickness                (b) Simulation realization with seed 200 for thickness 

Figure 21. Simulation realization with different random seed for thickness. 



M. L. Zhang et al. 
 

64 

each time. They have equal probability, but since each grid is with different val-
ue, the overall map the looks quite varied. 

Then the simulation results are compared with Kriging estimation, which are 
shown in Figure 22. 

As is discussed, the estimation is to minimize error variance, while the simu-
lation technique is to simulate reality. The sequential Gaussian simulation is a 
conditional simulation method, which provides the local variability by creating 
alternate, equiprobable images follows normal distribution instead of defining 
and estimate. The uncertainty is then characterized by multiple possibilities that 
exhibit local variance. Since it assumes a continuous normal distribution, as it 
can be observed, although grid values are different in two maps, the change in 
the simulation result is not as sharper as in the estimation method. The sequen-
tial Gaussian simulation gives a smoother result. 

The similar results for porosity are in Figure 23 and Figure 24. Compared to 
the result simple Kriging method result Figure 22(a) and ordinary Kriging me-
thod result Figure 22(b), the same conclusion as above will be drawn. 

7. Conclusion 

In the early stage of geostatistics, which is before the production of the reservoir 
with the limited amount of information, the reservoir description has more  
 

 
(a) Simple Kriging map for thickness data                   (b) Ordinary Kriging map for thickness data 

Figure 22. Kriging maps for thickness data. 
 

 
(a) Simulation realization with seed 359,357 for porosity                (b) Simulation realization with seed 200 for porosity 

Figure 23. Simulation realization with different random seed for porosity. 
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(a) Simple Kriging map for porosity data                (b) Ordinary Kriging map for porosity data 

Figure 24. Kriging maps for porosity data. 
 
uncertainty. The reservoir characterization is realizable in this stage by using 
computers to solve the upscale and heterogeneity problem. The whole map of 
the properties of the reservoir could be drawn based on the discrete local infor-
mation of the reservoir. However, the accuracy of these descriptions is very hard 
to be determined, as the real situation in the reservoir formation is unknown. 
Different engineers may have different understanding of the data as the analysis 
process cannot avoid subjective judgments. Thus, the reservoir characterization 
should be updated in time once new information is available. 
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