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Abstract 
An automatic method able to recognize a presented section through the bipa-
rietal plane of the fetal head and a section through the fetal femur in ultra-
sound images is developed. Once the correct anatomical section for measure-
ment is identified by the machine, the placement of the measurement calipers 
is automatically determined by fitting an active contour model to the structure 
of interest. The fetal biparietal diameter (BPD) and femur length (FL) are then 
measured automatically. The validation data set contained 167 and 197 B- 
mode images for BPD and FL measurements, respectively. The images were 
acquired using 4 different ultrasound scanners, which resulted in varied image 
quality and gain settings. The mean gestational age (GA) of the fetuses was 
19.4 weeks, range 16 to 41 weeks. A measurement success rate of 90% was 
achieved for both BPD and FL. The correlation coefficients between the ma-
nual and automatic measurements were 0.995 (BPD) and 0.967 (FL), mean 
errors were 0.5 mm (BPD) and -1.7 mm (FL) and error range with 95% con-
fidence interval (CI) were −3.8 - 4.8 mm (BPD) and −11.4 - 8.1 mm (FL). The 
automatic measurement results were consistent in both high and low gain set-
tings. The intraclass correlation coefficients between manual and automatic 
measurements were 0.995 (95% CI; 0.981 - 0.999) for BPD in high gain, 1.0 
(95% CI; 0.998 - 1.0) for BPD in low gain, 0.998 (95% CI; 0.991 - 0.999) for FL 
in high gain and 0.999 (95% CI; 0.996 - 1.0) for FL in low gain settings. The 
method was implemented on a prototype, portable ultrasound machine de-
signed to be used in low- and middle-income countries (LMIC). The overall 
performance of the method supports our hypothesis that automated methods 
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can be used and are beneficial in a clinical setting. 
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1. Introduction 

Ultrasound scanning in pregnancy has become the standard for care in the high 
income countries (HIC) [1]. It is currently offered at week 12 or around week 18, 
or both. The general purpose of the ultrasound examination is to determine the 
location of the fetus and the placenta, the number of fetuses, the gestational age 
(GA) and estimated day of delivery (EDD) and to detect anomalies as a basis for 
further fetal medical management [2]. 

The benefit of using ultrasound to improve pregnancy care is equally important 
in low- and middle-income countries (LMIC) as in the HIC. In LMIC, insufficient 
dating, high rate of fetal growth restriction, insufficient detections of twins before 
birth are common factors. However, the use of ultrasound in LMIC is not as 
widespread as in the HIC for a number of reasons. Much of the ultrasound 
equipment developed for use in HIC is too sensitive to be used in the rough envi-
ronments of LMIC. Due to varying sources of current, large variations in temper-
ature and humidity, transport, shock and vibration, and dusty environments, es-
sential parts break and cannot be replaced or repaired. Another major problem is 
the high cost of ultrasound machines. Moreover, in the rural areas of LMIC, there 
is a lack of technical knowledge for operating ultrasound machines.  

Our research group is currently developing a prototype of an affordable, 
portable and user-friendly ultrasound machine (the Umoja scanner) based on a 
tablet device (Figure 1). In order to lower the usability threshold of the device, we 
are in the process of automating as many of the manual measurement procedures 
as possible [3] [4] and implement them on the portable machine. It is our hypo-
thesis that automated measurement methods combined with a minimal user in-
terface (UI) (Figure 1(b)) will facilitate the adoption of ultrasound in LMIC. 
With this UI, the functions found in a conventional ultrasound machine are car-
ried out by simple touch interactions. For instance: the scan depth is adjusted 

 

 
Figure 1. The Umoja prototype scanner. (a) Measurement of the biparietal diameter 
(BPD). (b) Screen capture of the user interface for BPD measurement. 
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by a pinch-zoom gesture on the screen; the cine loop function is performed by 
sliding the finger on the screen from left to right; the position of the measure-
ment calipers can be easily adjusted by a drag gesture. Extra functions (e.g. 
creating a new patient record, reviewing patient data etc.) are accessed by using 
the side buttons. The desired end result is a robust, cheap ultrasound machine 
with an adequate image quality that may be operated in LMIC by personnel with 
limited technical knowledge and understanding. 

The assessment of GA is important and often missing in LMIC. GA is used to 
predict EDD, track fetal growth and refine clinical management in connection 
with premature delivery and around term [5]. For calculating GA and subse-
quently the EDD, the biparietal diameter (BPD) and/or the fetal femur length 
(FL) are the most commonly used and well documented parameters [6] [7] [8]. 

Typically, both BPD and FL are measured manually by ultrasound trained 
midwives, sonographers, radiographers or doctors. The fetal dating process re-
quires the localization of an ultrasound scan plane containing given anatomic 
landmarks and placement of measurement markers. The measurements are 
prone to both intra- and inter-observer variability [9]. In order to reduce these 
errors, the measurement process is repeated a number of times (typically three) 
and either the mean or the maximum value of these measurements is recorded. 
Correct adjustment of the image gain settings is necessary to obtain comparable 
results for a population or community. If the gain is set too high or too low, it 
would significantly affect the BPD and FL measurement and thus the calculated 
GA. 

Several methods [10]-[16]—ranging from semi-automatic to fully automat-
ic—for improving the accuracy of BPD and FL measurements and for simplify-
ing the fetal dating process have been published in the literature. However, none 
of these methods was aimed for use on portable ultrasound machines. 

The aim of this study was to develop and validate an automatic method to 
recognize a presented scan plane through the fetal head and femur and then 
measure the BPD and FL. The method was designed to run on an off-the-shelf 
tablet device with limited computational power and therefore it can be easily in-
tegrated with a portable ultrasound machine. A further aim was to make the 
method adapt to varying gain settings. 

2. Materials and Methods 

A total of 273 images suitable for BPD measurement and 321 images suitable for 
FL measurement were randomly obtained from a local archive of B-mode ultra-
sound images. For development purposes, 106 BPD and 124 FL images were 
randomly selected and stratified according to the gestational age. The remaining 
167 BPD and 197 FL images were used for validation. The images were acquired 
during routine ultrasound examinations performed by formally ultrasound 
trained midwives at the National Center for Fetal Medicine, St. Olavs University 
Hospital at the Norwegian University of Science and Technology. Informed 
consent for additional electronic processing was obtained from the women prior 
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to the examinations. The Regional Ethics Committee approved the research 
project (2016/795 and 2016/1173). The mean GA ± standard deviation (SD) of 
the fetuses was 19.4 ± 6.7 weeks, range between 16 to 41 weeks. The following 
ultrasound machines: Voluson E6 (GE Medical Systems, Zipf, Austria), Voluson 
E8 (GE Medical Systems, Zipf, Austria), Voluson 730 (GE Medical Systems, Zipf, 
Austria), Vivid q (GE Medical Systems, Tirat Carmel, Israel), Acuson Antares 
Premium Edition (Siemens Medical Solutions, Mountain View, CA, USA), and 
HI VISION Preirus EUB-8500 (Hitachi Medical Corporation, Tokyo, Japan) 
were used for acquisition purposes. 

On the collected images, both BPD and FL were measured manually by the 
fully ultrasound trained midwives, following current guidelines. These mea-
surements were considered as the reference; the descriptive statistics of the im-
age data set are presented in Table 1. The BPD was measured according to two 
accepted conventions: the BPD outer-outer and the BPD outer-inner measure-
ment techniques [17]. In the first case, BPD was measured by calculating the dis-
tance between the outer boundaries of the parietal bones perpendicular to the falx 
cerebri on the plane through the cavum septi pellucidi [6]. In the second case, the 
distance was measured on the same plane from the outer edge of the upper boun-
dary to the inner edge of the bottom boundary of the fetal skull. The FL was calcu-
lated by measuring the length of a straight line passing through the ossified por-
tion of the femoral diaphysis connecting the endpoints of a femur [8]. 

MATLAB version R2013a (The MathWorks Inc., Natick, MA, USA) was used 
to calculate statistical measurements such as: correlation coefficient, mean error, 
error range with confidence interval (CI) and SD to compare the measurements 
of the developed automatic method with their corresponding reference mea-
surements. In addition, SPSS Statistics version 24 (IBM Corp. Armonk, NY, 
USA) was used to calculate intraclass correlation coefficient (ICC) to verify the 
reliability and consistency of the measurements produced by the manual and 
automatic methods. 

2.1. Technical Description 

The automatic BPD and FL measurement method was developed by leveraging  
 

Table 1. Descriptive statistics of the image data set based on manual measurements per-
formed by formally ultrasound trained midwives. 

 BPDa (mm) BPDb (mm) FL (mm) 

Total images 273 273 321 

Mean 59.6 57.7 41.9 

Median 47.2 44.9 31.1 

SD 20.5 20.2 18.2 

Lower range 37.6 35.1 19.4 

Upper range 103 99.8 82 

SD = Standard deviation; a. Outer-outer measurement; b. Outer-inner measurement. 
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the open source computer vision (OpenCV) version 2.4.9 library (Itseez, San 
Francisco, CA, USA) (http://opencv.org) and the real-time contour tracking li-
brary (RCTL) (GE Vingmed Ultrasound, Horten, Norway) [18]. The OpenCV is 
an open-source, cross-platform solution for applying different types of image 
processing techniques. The RCTL is a closed-source, cross-platform commercial 
library which is capable of fitting a deformable active contour model to a struc-
ture of interest in a B-mode ultrasound image. 

The automatic method measured BPD and FL in three steps (Figure 2). First, 
OpenCV routines were used to pre-process an image and detect the fetal skull or 
femur. Second, RCTL was used to fit a deformable active contour model along 
the boundary of the detected skull or femur. Finally, a straight line was calcu-
lated inside the converged active contour model and its endpoints were adjusted 
to measure BPD or FL using the OpenCV library. The detailed descriptions of 
these steps are presented in the following subsections. 

2.2. Step 1a: Fetal Skull Detection 

To detect the fetal skull, a region of interest (ROI) was automatically selected  
 

 
Figure 2. The steps of the developed automatic method for BPD and FL detection and 
measurement. 
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from the upper-middle part of a B-mode image where the ultrasound echo is 
generally strong (Figure 3(a)). The height and width of the ROI are equal to half 
of the height and width of the B-mode image. The mean value and SD of the 
pixel intensities were calculated from the ROI to estimate the overall intensity 
level of the image. Gaussian smoothing was performed by a 3-by-3 kernel to re-
move noise from the image. At this stage, the Canny edge detection algorithm 
[19] was used to identify the edges in the B-mode image. The upper threshold of 
the algorithm was set to 1.33 * mean intensity, and the lower threshold was set to 
the half of the upper threshold. The Cartesian coordinates of the edge pixels 
were recorded after the edges were detected. The image gradient was calculated 
using the first-order Sobel derivative [20] along the X and Y axes. The direction 
of the gradient pointed to the direction of intensity level change in the image, 
and was perpendicular to any local edge. 

Next, the circle Hough transform (CHT) [21] was used to detect the bright 
circular fetal skull. The algorithm of CHT is explained in Figure 3(b) & Figure 
3(c) [22]. An edge pixel (the black circle in Figure 3(b)) was assumed on the 
boundary of the circular fetal skull (the white circle in Figure 3(b)) and its local 
gradient vector direction were considered. A new list of pixels — which were  

 

 
Figure 3. The fetal skull detection process. (a) A region of interest (ROI) located at the 
upper-middle part of a B-mode image was automatically selected for image intensity es-
timation. (b) An edge pixel (the black circle) was assumed to be situated on the periphery 
of a fetal skull (the white circle on the gray background). Its local gradient direction is 
shown by the arrow and the number of votes in the circle Hough transform (CHT) ac-
cumulator are shown for each of the pixels situated along the gradient direction. (c) 
Number of votes gradually increased for the center pixel. (d) The result of CHT which is 
used to initialize the active contour shown by the white circle. 
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situated along the local gradient vector direction of the considered edge pix-
el—was registered in the 2D Hough accumulator. These new pixels were located 
within a 9.5 to 55 mm radii range to measure any BPD between 37.6 to 103 mm 
corresponding to a 16 to 41-week-old fetus. Each of the new pixels received a 
vote from the edge pixel for being located along its gradient vector direction. 
The number of votes for the pixel at the center increased gradually as more edge 
pixels were considered, as illustrated in Figure 3(c). The pixels were sorted in 
descending order by the number of their votes and the one with the highest 
number of votes in the accumulator was selected as the center of a potential cir-
cle (the white circle in Figure 3(d)) that circumscribed the fetal skull. The radius 
of the circle was selected by choosing the best supported distance between the 
selected center and all the edge pixels recorded earlier. 

2.3. Step 1b: Fetal Femur Detection 

A B-mode image with a fetal femur often contained the ultrasound echo origi-
nating from the subcutaneous fat and the skin of the fetal leg (Figure 4(a)). To 
detect the fetal femur, the mean and SD of the intensity of a B-mode image were 
calculated in the same way as described for the BPD. The sum of the mean in-
tensity and SD was selected as a threshold for binary thresholding. A list of con-
tours was prepared from the edges between the black and the white regions in 
the binary image (Figure 4(b)). Four different parameters: width, aspect ratio, 
centroid, and orientation were calculated for each of these contours. A contour 
was kept in the list when three criteria were satisfied. First, the contour’s width 
should be within 19 to 93 mm to measure any FL between 19.4 to 82 mm cor-
responding to a 16 to 41-week-old fetus. Second, the contour’s aspect ratio 
should be higher than 3.5, denoting an elongated structure resembling a femur. 
Third, the contour should not be adjacent to the top or the bottom boundary of 
the image. This was checked against the position of the contour’s centroid.  

Next, the contours were sorted in descending order by their widths. The wid-
est contour from the list was selected as the potential femur candidate. The ul-
trasound echo originating from the skin of the fetal leg often appears as a bright, 
parallel line above the femur. Therefore, the orientation and width of the femur 
candidate were compared with those of the second widest contour in the list. 
The second widest contour was chosen as the new femur candidate if it was lo-
cated close below the old femur candidate and had similar width (width ratio 
more than 0.60) and orientation (difference in orientation less than 15 degrees). 
In this case, the old femur candidate was discarded since it most likely 
represented the skin above the femur. 

The progressive probabilistic Hough transform (PPHT) [23] [24] was used at 
the location of the femur candidate in the binary image to find a straight line 
that passed through the ossified portion of the femur. The following polar equa-
tion of line was used: 

cos sinx yθ θ ρ+ =                        (1) 

where ρ represents the shortest distance between the origin and a line, and θ 
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represents the angle between the line and x-axis (Figure 4(c)). For every pixel in 
the femur candidate, a sinusoid was generated in ρ − θ plane by using the pixel’s 
Cartesian coordinates (i.e. x and y) as parameters and ρ and θ as variables in 
Equation (1) (Figure 4(d)). The sinusoid represented the ρ and θ of all the lines 
which could pass through that particular pixel. Multiple sinusoids were generat-
ed for all the pixels of the femur candidate (Figure 4(e)). Two sinusoids over-
lapped each other if they were generated from two pixels situated on the same 
line. The ρ and θ of this line corresponded to the ρ and θ of the cell where the 
overlap took place. Each of the cells in ρ − θ plane received a vote in the Hough 
accumulator when a sinusoid passed through it. The cell that had the highest 
number of votes or many sinusoid overlaps was considered as a peak (shown by 
the green square in Figure 4(e)). In PPHT, which is a variant of Hough trans-
form, it was assumed that if a peak in the Hough accumulator plane was going to 
be high, then accumulating votes of that particular cell for a limited number of 
times would be enough to identify a straight line inside the ossified portion of 
the femur as shown in Figure 4(f) [22]. 

2.4. Step 2: Active Contour Model Adjustment 

After the fetal skull or the femur was detected, a deformable active contour 
model was initialized and subsequently fitted to the image by using RCTL. The 
approach proposed by Orderud (2010) was employed, in which a Kalman-based 
tracker was used. The measurement vector for the Kalman filter was a set of edge 
detectors perpendicular to the model and equally spread along the contour,  

 

 
Figure 4. Fetal femur detection process. (a) A B-mode ultrasound image showing a fetal femur, the 
skin of the leg, and the echo from subcutaneous fat from the mother. (b) A list of detected con-
tours. (c) A line is represented by ρ and θ in polar form. (d) Any pixel of the femur candidate 
represented a sinusoid in ρ − θ plane. (e) Multiple pixels on the same line inside the femur candi-
date represented multiple overlapping sinusoids in ρ − θ plane. The green square shows the cell 
with the highest number of votes. (f) The result of the progressive probabilistic Hough transform 
(PPHT) shown by a white straight line inside the fetal femur. 
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whereas the state vector consists of a set of control points defining the shape of a 
non-uniform rational basis spline (NURBS) curve depicting the skull or the fe-
mur. The following equations give the measurement update of the Kalman 
tracker: 

1ˆˆ T
k k k kx x P H R v−= +                       (2) 

1 1 1ˆ T
k kP P H R H− − −= +                       (3) 

with ˆkx  the updated state estimate, H includes the edge measurements, R 
represents the measurement covariance matrix, P ̂ the updated error covariance 
matrix and 1ˆ T

kP H R−  the Kalman gain that assimilates the edge related mea-
surements. The cubic NURBS model had 12 control points and 75 edge detec-
tion locations. A step edge detector gave the most reliable results and therefore 
was chosen for all measurements. The anatomic landmarks of interest for the 
skull and femur were defined in the NURBS’ parametric space thus ensuring that 
the same location along the curve for all images is extracted for measurement. 

In the case of the fetal skull, an elliptic model was placed at the center of the 
circle circumscribing the fetal skull (Figure 5(a)). The semi-major axis of the el-
lipse was set to 0.8 of the radius of the circumscribing circle. After 4 iterations, 
the model was assumed to be in its converged state along the boundary of the 
fetal skull (Figure 5(b)). 

In the case of the femur, the deformable model was initialized at the center of 
the identified straight line found by PPHT and oriented according to the orien-
tation of the femur candidate (Figure 5(c)). After 10 iterations, the model was 
considered to be in a converged state (Figure 5(d)). 

 

 
Figure 5. The initial and converged active contour models. (a) Initialization of the model 
inside the fetal skull. (b) Converged state along the fetal skull boundary after 4 iterations. 
(c) Initial state of the deformable model for the fetal femur. (d) Converged state along the 
fetal femur boundary after 10 automatic iterations. 
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2.5. Step 3: BPD and FL Computation 

The top and the bottom endpoints of the minor axis of the converged elliptical 
model in the fetal skull were located on the parietal bones. These were defined in 
parametric coordinates along the deformable model such that they corresponded 
to the maximum edge location. The gray values of the pixels both above and be-
low these endpoints were analyzed to identify the inner and outer edges of the 
parietal bone by adaptive binary thresholding using the OpenCV library (Figure 
6). The binary threshold value was selected by taking the summation of the 
mean intensity and 2 × SD of the image intensity estimated from the ROI. Final-
ly, the distance between the outer edge of the parietal bone at the top of the mi-
nor axis and the inner edge of the parietal bone at the bottom of the minor axis 
was calculated as BPD outer-inner. The distance from the outer edge of the pa-
rietal bone at the top of the minor axis to the outer edge of the parietal bone at 
the bottom of the minor axis was calculated as BPD outer-outer measurement. 

Likewise, a straight line corresponding to the widest distance was identified 
inside the converged model of the fetal femur. The endpoints of the line were 
located close to the boundary of the femur. The positions of these endpoints 
were also adjusted to calculate accurate FL. 

3. Results 

The automatic method was able to measure BPD in 147 of 167 images (88%) and  
 

 
Figure 6. Detection of inner and outer edge points of the fetal skull boundary by analyz-
ing pixel gray values. (a) A B-mode image displaying a converged elliptical model for a 
fetal skull. The green straight line represents the minor axis of the ellipse. A region of in-
terest (ROI) near the skull boundary is shown by the red box. (b) The enhanced view of 
the ROI. The red point represents the lower end of the minor axis of the ellipse. The cyan 
and yellow points represent the inner and outer edge points of the skull boundary respec-
tively. The white straight line represents 10 mm vertical distance along the red point. (c) 
The pixel gray value profile along the 10 mm white straight line. Adaptive binary thre-
sholding (value = 78) was performed on these gray values to detect the indices of the in-
ner (cyan point) and outer (yellow point) edge points of the fetal skull boundary. 
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FL in 181 of 197 images (92%) in the validation set. Table 2 presents the success 
rates of the automatic method for the different ultrasound scanners used for the 
acquisition of the images belonging to the validation set. The correlation plots 
and the error versus reference plots between the manual and automatic BPD and 
FL measurements are shown in Figure 7. 

Table 3 presents the correlation coefficient (r), regression line, mean error, 
and the error range with 95% CI in millimeter and percentage scales for the au-
tomatic BPD outer-outer and outer-inner measurements, and for the FL mea-
surements. 

To check for intra- and inter-observer variability, the manual and automatic 
BPD and FL measurements based on 10 randomly selected images in 3 separate 
trials were computed. The ICC for the manual measurements in the 3 trials was 
0.999 (95% CI; 0.997 - 1.0) and for automatic measurements was 1.0. The ICC 
between the average of the manual measurements and automatic measurements 
was 0.999 (95% CI; 0.996 - 1.0). The mean bias ± SD of the automatic measure-
ment was −0.4 ± 0.5 mm. 

To show that the method works equally well for various gain settings, 20 
B-mode images were selected for BPD measurement—10 with high gain and 10 
with relatively low gain. The same procedure was performed on 20 B-mode im-
ages of the femur—10 with high gain and 10 with relatively low gain settings. 
The mean gray value ± SD of the images with high gain were 87 ± 16 (BPD) and 
60 ± 16 (FL). For the images with low gain, these values were 24 ± 8 (BPD) and  

 

 
Figure 7. Correlation and error plots between automatic and manual BPD and FL measurements. Correlation coefficient (r), re-
gression line equation, mean error with 95% confidence interval are shown in the plots. 
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12 ± 5 (FL). For the BPD images with high gain, the ICC between manual and 
automatic measurements was 0.995 (95% CI; 0.981 - 0.999), and for the BPD 
images with low gain, the ICC was 1.0 (95% CI; 0.998 - 1.0). For FL images with 
high gain, the ICC was 0.998 (95% CI; 0.991 - 0.999), and for the FL images with 
low gain, the ICC was 0.999 (95% CI; 0.996 - 1.0). 

Finally, the method was implemented in the Umoja scanner prototype which 
used a Samsung P600 tablet (Samsung Electronics, Suwon, South Korea) to vi-
sualize the ultrasound data streamed from a Vivid q portable ultrasound ma-
chine (GE Medical Systems, Tirat Carmel, Israel). The mean execution time ± 
SD for all validation images was: 1.3 ± 0.3 s (BPD) and 1.6 ± 0.4 s (FL) on a 
Nexus 5X mobile device (LG Electronics, Seoul, South Korea), 1.2 ± 0.4 s (BPD) 
and 2.2 ± 0.9 s (FL) on a Nexus 10 tablet device (Samsung Electronics, Suwon, 
South Korea), and 1.2 ± 0.4 s (BPD) and 1.9 ± 0.7 s (FL) on a Samsung P600 
tablet device (Samsung Electronics, Suwon, South Korea). 

4. Discussion 

This feasibility study showed that it was possible to develop an automatic mea-
surement technique of essential fetal parameters and implement it on an 
off-the-shelf tablet device. The obtained detection and accuracy rates are com-
parable to other published automatic state of the art methods, which may be run 
on high end ultrasound machines, only. The success rate of fetal skull and femur 
localization did not vary significantly when using different ultrasound machines 
(Table 2). The correlation coefficients presented in Table 3 are close to 1, which 
shows a strong linear relationship between the manual and automatic BPD and 
FL measurements (Figure 7).  

 
Table 2. The success rates of the automatic method for the scanners used in the valida-
tion set. 

Machines A B C D 

Total images 117 197 20 30 

BPD 59 82 11 15 

FL 58 115 9 15 

Failures 9 18 4 5 

Success rates 92.3% 90.9% 80% 83.3% 

 
Table 3. Comparison between manual and automatic BPD and FL measurements for the 
validation set. 

 r Regression line 
Mean 
error 
(mm) 

Error range 
(95% CI) 

(mm) 

Mean 
error 
(%) 

Error range 
(95% CI) (%) 

BPDa 0.994 y = 0.9x + 0.6 0.3 −4.1 to 4.8 0.6 −5.2 to 6.4 

BPDb 0.995 y = x − 0.1 0.7 −3.5 to 4.8 1.1 −4.5 to 6.6 

FL 0.967 y = 0.9x + 4.7 -1.7 −11.4 to 8.1 −2.2 −19.4 to 15.1 

r = correlation coefficient; CI = confidence interval; aOuter-outer measurement; bOuter-inner measurement. 
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The development of our technique required as input ultrasound images that 
were suitable for BPD or FL measurement. In the context of this study, these 
images were obtained from the local database at our medical center. Therefore, 
our results need a validation of the proposed methods in LMIC; this is the object 
of on-going work. 

The mean error and the error range found between the manual and automatic 
measurements are comparable with the inter-observer variability documented 
on high end ultrasound machine by Perni et al. [9]. Their inter-observer varia-
bility was based on 122 images from singleton pregnancies acquired with Acu-
son 128 XP (Acuson Inc., Mountain View, CA, USA). An ICC value of 1 for in-
tra-observer variability shows that our automatic method achieves consistent 
results; furthermore, a high ICC between the manual and automatic measure-
ments is indicative of the fact that our method correlates very well with manual 
measurements. 

The detection rate of the oval fetal skull plane and the femur was approx-
imately 90% in both cases. In the case of the BPD measurement, the method 
failed when other circular edges or flat shaped parietal bones were present (Fig- 
ure 8(a) & Figure 8(b)). The FL measurement typically failed when the femur  

 

 
Figure 8. Detection failures. (a) A B-mode image with fetal skull. (b) BPD measurement 
failed due to relatively flat parietal bones of the skull. (c) A B-mode image with fetal fe-
mur. (d) FL measurement failed because of inseparable femur from other object in binary 
image. (e) Overestimation of FL by the automatic method shown by red circular mea-
surement calipers. (f) Manual correction by the user. 
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was inseparable from other objects in the binary image, as shown in Figure 8(c) 
& Figure 8(d). An underestimation bias was present in the automatic FL mea-
surements due to the presence of shadows and inhomogeneous brightness for 
femurs of older fetuses. In the case of unsuccessful detection or measurement 
failure, the user can, by dragging, easily adjust the BPD or FL measurement line 
proposed by the automatic method during the measurement acceptance step of 
the protocol as illustrated in Figure 8(e) & Figure 8(f). 

As seen in Table 4, the results of our automatic method (see Table 3) are 
comparable to those of the other automatic methods [10]-[16]. All of these me-
thods are PC-based, whereas our method achieved similar results within the li-
mited hardware settings available on portable devices. 

To ensure the robustness of the automatic method, the ultrasound images 
were derived from different ultrasound machines with varying image quality. 
The method’s parameters were automatically adjusted according to the image 
gain setting which was estimated from the upper-middle ROI in the ultrasound 
image. Strong ICC between manual and automatic measurements from the im-
ages with high and low gain showed that the method successfully localized and 
measured the fetal skull and femur on images with different gain settings. A 
uniform setting of the gain is a prerequisite for uniform measurement between 
examiners. This may be achieved by experienced examiners in different centers 
[5] [25] [26]. However, for beginners with limited experience of technology such 
as in LMIC, various levels of gain may result in incorrect measurements, thus 
affecting the various predictions of GA and fetal growth deviation.  

The combined approach of using CHT, PPHT, and RCTL overcame some of 
the common problems in automatic measurements such as: incomplete fetal 
skull contour, high curvature in femur and, in some cases, the intensity variation  

 
Table 4. Performance comparison between existing automatic BPD and FL measure-
ments techniques and the developed automatic method. 

Methods Total images r 
Mean error 

(mm) 
Error range 

(95% CI) (mm) 
Time (sec) 

BPD methods      

Pathak et al. [14]a 10 0.997 0.8 −1 to 2.6b 0.3 

Hanna and Youssef [11] - 0.994 - - - 

Lu et al. [12] 203 0.997a - - 1.6 

Carneiro et al. [10] 300 0.985 2.7 −3.1 to 8.6b 0.5 

FL methods      

Thomas et al. [15] 24 0.999 - - 600 

Carneiro et al. [10] 300 0.982 1.5 −2.3 to 5.3b 0.5 

Mukherjee et al. [13] 90 0.94 - - 8 

Wang [16] 90 - 1.72 −7.7 to 11.1b 2.3 

r = correlation coefficient; CI = confidence interval; aSemi-automatic method; bDerived from the available 
data. 
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within femur. Unlike the database-based segmentation approach [10], our me-
thod did not require any large training data set to train a classifier. 

The method was tested on a mobile phone (Nexus 5X), and low (Nexus 10) 
and high-performance (Samsung P600) tablet devices. The mean execution time 
and SD show that the automatic method was capable of performing quickly on 
devices available on the market. The FL measurement process required a longer 
time to complete because of the additional investigations that were needed to 
differentiate the actual fetal femur from other similarly shaped artefacts such as 
the fetal leg skin and echo from subcutaneous fat. It was possible to implement 
this cross-platform automatic method in PCs and on portable devices with few 
modifications because it used the Open CV and RCTL, which are cross-platform 
libraries. Consequently, the popular fetal measurement tables used worldwide 
may easily be implemented to work with the presented automatic method for 
automatic measurement of fetal BPD and FL to derive GA and EDD of a fetus 
[17] [27] [28] and one is already available on the tablet device [7] [29]. We chose 
to report BPD and FL values as they are independent of the dating formula. 

5. Conclusion 

An automatic measurement technique for use in obstetrics has been developed 
and implemented on an off-the-shelf tablet device. The automatically measured 
BPD and FL values were comparable to the manual measurements. The perfor-
mance and accuracy of the results are similar to those of other state of the art 
automatic methods, which may be run only on high end ultrasound machines. 
Through its integration into an affordable and easy to use ultrasound machine 
such as the Umoja scanner, the method has the potential for clinical usability in 
LMIC. Furthermore, the automatic measurement technique is adaptive to the 
image gain settings. This is a feature which will facilitate the achievement of 
uniform results of measurements among users in a low technological setting 
found in LMIC, and thus will contribute to both increased quality of measure-
ments and ease of use. 
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