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Abstract 
We studied the continuity equation in presence of a local potential, and a 
non-local potential arising from electron-electron interaction in both com-
mutative and non-commutative phase-space. Furthermore, we examined the 
influence of the phase-space non-commutativity on both the locality and 
the non-locality, where the definition of current density in commutative 
phase-space cannot satisfy the condition of current conservation, but with 
the steady state, in order to solve this problem, we give a new definition of 
the current density including the contribution due to the non-local poten-
tial. We showed that the calculated current based on the new definition of 
current density maintains the current. As well for the case when the non- 
commutativity in phase-space considered, we found that the conservation of 
the current density completely violated; and the non-commutativity is not 
suitable for describing the current density in presence of non-local and local 
potentials. Nevertheless, under some conditions, we modified the current 
density to solve this problem. Subsequently, as an application we studied the 
Frahn-Lemmer non-local potential, taking into account that the employed me-
thods concerning the phase-space non-commutativity are both of Bopp-shift 
linear transformation through the Heisenberg-like commutation relations, 
and the Moyal-Weyl product. 
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1. Introduction 

In physics sometimes the largest descriptive equations reach their limits. A con-
sidered number of physics equations are only approximations. What physicists 
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really want is not an approximation; they want equations that connect the 
world's behaviors directly to the foundations of reality such as the motion equa-
tions, the continuity equations, etc. We can consider that the continuity equa-
tion is one of the equations that describe the basic concepts, where it expresses 
the kinematical aspect of a symmetry and is a useful auxiliary equation. 

In the last years, in the development of nanotechnology, the transport proper-
ties of nanodevices more and more become important, and it is very interesting 
to understand how the current flows inside the nanodevices, and how the cur-
rent density gives the information about the heat dissipation for example [1], as 
well as in the elementary particle physics, for the quarks and the gluons which 
have a color charge [2] [3] (in the theory of quantum chromodynamics (QCD)), 
in which it is always conserved such as the electric charge. There is a continuity 
equation for such a color charge current (given at the gluon field strength tensor).  

There are numerous quantities which are often or always conserved, such as 
the baryon number which is proportional to the number of quarks minus the 
number of antiquarks, also the lepton number, the isospin (term used to de-
scribe groups of particles which have nearly the same mass, such as the proton 
and the neutron), etc. Which means, in order to investigate their own conserva-
tion laws, we have to reach their continuity equations. Where the continuity eq-
uation is an equation that describes the transport of some quantity, furthermore 
there must be a quantity x that can flow or move (such as the energy, the particle 
charge...), with xρ  being the volume density of this quantity, the way this 
quantity flows is described by its flux denoted xJ . Knowing that, the continuity 
equation is another form of the conservation law, will be meaningful if it is ap-
plied to a conserved quantity, and can be expressed in the integral form, or in 
the differential form by the divergence theorem, it is related always to the con-
servation of probability in quantum mechanics (QM). 

In this paper, we derive the continuity equation for a particle subjected to 
non-local and local potentials [4] in non-commutative phase-space (NCPS). 
Why do we care about the non-local potential and the non-commutative geo-
metry (NCG)? The reason behind that, the Schrödinger equation in the presence 
of a non-local potential has been the subject of many investigations for several 
years [5] [6] [7] such as, in the calculations of the transport properties of the 
nanodevices through the density functional theory and the Green’s function 
theory [8] [9] yonder, there are many cases where the non-local potential is 
present. In the scattering theories of nucleons and nuclei [10], the non-locality is 
generated by the exchange interaction between the nucleons in the nucleus 
(considered in Hartree-Fock type calculations) [11]. In addition, the nuclear 
optical potential describing the movement between colliding nuclei is also 
non-local [12] [13]. In most nuclear structure and reaction calculations yet, the 
non-locality has been assumed to be small, and several approximation methods 
have been introduced in the local potential model for reproducing its contribu-
tions.  

This work is realized in the NCG due to the importance and the advantages of 
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it in both quantum mechanics and quantum fields, and generally in physics to-
day. Knowing that, the origin of the NCG is relative to the search for topological 
spaces (C*-algebras) of functions that are replaced by non-commutative alge-
bras, later the NCG concept was rekindled by A. Connes and others [14] [15] 
[16] [17], who theorized the idea of a differential structure in a non-commutative 
framework, by studying and defining the cyclic cohomology. Where they showed 
that, the notion of differential calculations on varieties had a non-commutative 
equivalent. Then, this type of geometry found great support by many mathe-
matical results: Characterizations of commutative von Neumann algebras, Gel-
fand-Naïmark theorem on C*-algebras, cyclic cohomology of C∞ (M) algebra, K 
theory of C*-algebras, relations between Dirac operators and Riemannian me-
trics. 

A non-commutative space theory replaces the non-commutativity of opera-
tors associated with space-time coordinates with a deformation in the algebra of 
functions defined on space-time, and the non-commutative version of the field 
theory is obtained by changing the commutative theory to the non-commutative 
one, this done by replacing ordinary fields with non-commutative fields and or-
dinary products with Moyal-Weyl products. To be more precise, N. Seiberg and 
E. Witten in the past few years made their famous article [18], which is from the 
most cited articles, encouraged a wide amount of interest in NCG, which became 
the mainstream for a couple of years. 

It is worthwhile to mention that, the idea of NCPS is based essentially on the 
Seiberg-Witten map, the Bopp’s shift method and the Moyal-Weyl product. 

In this paper, our aim is not to solve the equations but to focus on extracting 
continuity equations. The plan of this paper is as follows: In Section 3, we derive 
the continuity equation for non-local and local potentials, taking as an applica-
tion the Frahn-Lemmer non-local potential. In Section 4, we have the interesting 
result of our paper, which is represented in the non-commutative continuity equa-
tion for non-local and local potentials (with an application of the Frahn-Lemmer 
non-local potential). 

2. Review of the Non-Commutative Geometry 

The non-commutative geometry is the theory in which space may not commute 
anymore. Let us consider the operators of coordinates and momentum in a d 
dimensional non-commutative phase-space nc

ix  and nc
ip  respectively. Where 

the non-commutative phase-space operators satisfy the Heisenberg-like com-
mutation relations [19] 

( ), , , , , , 1, , ,nc nc nc nc nc nc eff
i j ij i j ij i j ijx x i p p i x p i i j dη δ     = Θ = = =           (1) 

the effective Planck constant being 

( )1 ,eff ξ= +                            (2) 

where 
( )

24
Tr η

ξ
Θ

=


, the consistency condition is 1ξ  . With ijΘ , ijη  are  
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antisymmetric real constant ( )d d×  matrices and ijδ  is the identity matrix. 
Theoretical predictions for non-commutative systems (concerning the 
non-commutative parameters) have been compared to experimental data (the 
maximum absolute energy shifts allowed by the experiment), leading to bounds 
on the noncommutative parameters [19] [20]: 

40 2 61 2 2 24 10 m , 1.76 10 kg m sη− − −⋅Θ × ⋅≈ ≈ × .            (3) 

These above bounds will be suppressed due to the weak magnetic field used in 
the experiments 5 mgB ≈ . 

Since the system in which we study the effects of non-commutativity, is three 
dimensional, we limit our calculations to the following non-commutative algebra 

( ), , , , , , 1, 2,3 ,nc nc nc nc nc nc eff
i j ijk k i j ijk k i j ijx x i p p i x p i i jη δ     = Θ = = =         (4) 

take into account that we neglect the uncertainty relation between nc
ix  and 

nc
ip . With ijΘ , ijη  are (3 × 3) antisymmetric matrices, and ijk  is Levi-Civita 

symbol and the summation convention is used. We have  

123 231 321 321 132 231 1= = = − = − = − =      . If i j= , j k= , 0ijk = , and kΘ , 

kη  are the non-commutativity parameters. They are real-valued and antisym-
metric constant matrices with the dimension of (lenght)2 and (momentum)2, re-
spectively. 

In the three dimensional commutative phase-space, the coordinates ix  and 
momentum ip  satisfy the usual canonical commutation relations  

( ), , 0, , , 1, 2,3 .i j i j i j ijx x p p x p i i jδ    = = = =                (5) 

The non-commutative geometry Equation (1) is described at the level of fields 
and actions by the Moyal-Weyl product (⋆-product) [21] [22] [23]. Let f and g 
be two arbitrary functions from D , we define ⋆-product as follows 

( )( ) ( ) ( )

( ) ( ) ( ) ( )1 1
1 11

exp Θ
2

1 .
! 2

a b

n n
k k

ab x x a b

n
a ba b

a a b bn

if g x f x g x

if x g x f x g x
n=

 = ∂ ∂  

  = + Θ Θ ∂ ∂ ∂ ∂  
  

∑   



 (6) 

Note that in our calculations, we use the following ⋆-product properties:  
The Complex conjugation 

( ) ( )( ) ( ) ( )* * * .f x g x g x f x=                    (7) 

The ⋆-product under the integral sign 

( )( ) ( )( ) ( )( )4 4 4d d d .f g x x g f x x fg x x= =∫ ∫ ∫            (8) 

The non-commutative field theories for the low energies ( 2 1EΘ < ) or the 
slowly varying fields effectively reduce to their commutative version due to the 
nature of the ⋆-product. 

The non-commutative phase-space operators are related to the commutative 
phase-space one through the commutative Heisenberg-Weyl algebra in terms of 
the known Bopp-shift linear transformation which was introduced from the Eq-
uation (6) [24] [25], and it is given by 
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1 1 , .
2 2

nc nc
i i ij j i i ij jx x p p p xη= − Θ = +

 

                (9) 

If 0ηΘ = = , the non-commutative phase-space framework will become 
commutative one. 

3. Schrödinger Equation in Presence of a Nonlocal Potential  
in Commutative Phase-Space 

In presence of a non-local potential ( ),NLV ′r r , the wave function obeys the fol-
lowing Schrödinger equation 

( ) ( ) ( ) ( )
2

, , , d , .
2 NLt V t i t

m t
ψ ψ ψ∂′ ′ ′+ =

∂∫ 

p r r r r r r           (10) 

A non-local potential operating on a wave function [26] has the form 

( ) ( ) ( ) ( ), , d , , d ,NL NLV t V tψ ψ′ ′ ′ = + +∫ ∫r r r r r r s r s s          (11) 

with ′ = +r r s , and d d′ =r s , taking into account that  

( ) ( ), ,NL NLRe V Re V′ ′=      r r r r  (symmetric), and using the Taylor series 

( ) ( ) ( )
2 2 3 3

2 31 e
2 3!

i

ψ ψ ψ
 ∂ ∂ ∂

+ = + + + + = ∂ ∂ ∂ 

sps sr s s r r
r r r



 . We find 

( ) ( ) ( ) ( ), , d , e d .
i

NL NLV t Vψ ψ′ ′ ′ = +∫ ∫ 

sp

r r r r r r s s r           (12) 

We can denote 

( ) ( )

( ) ( ) ( )2 2

, e d ,

d e , e , , , ,
2 2

i

NL

i i

NL NL

V t

V t V t

ψ

ψ ψ

+

 = − + = 
 

∫

∫

sp

sp sp

r r s s r

s ss r r r r p r



 

      (13) 

then simply Equation (10) takes the form 

( ) ( ) ( ) ( )
2

, , , , .
2 NLt V t i t

m t
ψ ψ ψ∂+ =

∂
p r r p r r            (14) 

3.1. Frahn-Lemmer Non-Local Potential 

In order to facilitate the calculations, and as an application concerning the 
non-local potential, we choose the Frahn-Lemmer potential [10] [27] defined as 

( ) ( )1, ,
2NLV  ′ ′ ′= + − 

 
r r r r r r                  (15) 

where ,   represent the local average value and the width of the non-locality 

respectively, knowing that, for simplicity we consider 0
1
2

 ′+ ≈ 
 

r r   and 

  should be a normalized Gaussian function as 

( )
( )

( )2
2

3
2 2

1 e ,
π

β

β

′−
−

′− =
r r

r r                     (16) 
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which is normalized so that 

( )d 1.′ ′− =∫ r r r                          (17) 

Then, our non-local potential takes the form [once the range parameter is 
very small, the non-local potential tends to ( )0δ ′≈ −r r ] 

( )
( )

( )2
20

3
2 2

, e ,
π

NLV β

β

′−
−

′ =
r r

r r
                     (18) 

with 0,β   are the non-locality range (typically takes on a value of 0.85 Fm) and 
the depth of the nuclear potential (Wood-Saxon function type) respectively. 

The following equation, obtained by putting Equation (17) into Equation (10) 

( )
( )

( )

( ) ( )
2

2
2

0
3

2 2

, e , d , .
2

π
t t i t

m t
βψ ψ ψ

β

′−
− ∂′ ′+ =

∂∫ 

r r
p r r r r


       (19) 

Using Equation (13), we have 

( )
( ) ( )

( )
2

2

2 2
2 2

0 02 2
3 3

2 22 2

, d e e e e ,
π π

ii i

NLV β β

β β

 − − − 
 − − +

= =∫

s sr r ssp sp sp

r p s 

 

 
    (20) 

then, using the integral 
2

2 2 24πe d e
B

A s A

A
−∞ − +

+∞
=∫ Bs s



, with 
1A
β

= , i
=B p


 Eq-

uation (18) turns to 

( ) ( ) ( )
2 2

2
2

4
0, e , , .

2
t t i t

m t

β

ψ ψ ψ
− ∂

+ =
∂

pp r r r

            (21) 

what we need here is to show the form of the Schrödinger equation in interac-
tion with the Frahn-Lemmer non-local potential, knowing that if we want to 
solve the above equation, we have to use the Fourier transform to switch for the 
momentum representation (P representation), there the calculations shall be 
very easy, knowing that the equation will be time-independently considered, 
with =p k , Equation (20) becomes 

( ) 2 22

4
0e

2
.

k

E
m

β
−

− =
k

                       (22) 

This explains the connection between nuclear potential and momentum. In 
another way, the strength of the potential decreases rapidly with increasing mo-
mentum. 

3.2. The Continuity Equation in Commutative Phase-Space 

The Schrödinger equation in presence of a non-local potential ( ),NLV ′r r  and a 
local potential ( )LV r  is written as follows 

( ) ( ) ( ) ( ) ( ) ( )
2

2 , , , d , , .
2 NL Lt V t V t i t

m t
ψ ψ ψ ψ∂′ ′ ′− + + =

∂∫


r r r r r r r r∇   (23) 
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The complex conjugate of the above equation written as 

( ) ( ) ( ) ( ) ( ) ( )
2

2 , , , d , , .
2 NL Lt V t V t i t

m t
ψ ψ ψ ψ∗ ∗ ∂′ ′ ′− + + = −

∂∫


r r r r r r r r∇ † † † † (24) 

Here ,∗† stand for the complex conjugation of the potentials and for the 
wave-functions successively. 

In order to find the continuity equation, we have ( ), tψ r† Equation (23) and 
( ), tψ r Equation (24), so that we obtain 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2
2, , , , , d

2

, , , , ,

NL

L

t t t V t
m

t V t i t t
t

ψ ψ ψ ψ

ψ ψ ψ ψ

′ ′ ′− +

∂
+ =

∂

∫r r r r r r r

r r r r r





∇† †

† †

       (25) 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2
2, , , , , d

2

, , , , .

NL

L

t t t V t
m

t V t i t t
t

ψ ψ ψ ψ

ψ ψ ψ ψ

∗

∗

′ ′ ′− +

∂
+ = −

∂

∫




r r r r r r r

r r r r r

∇ † †

† †

       (26) 

According to the subtraction of Equation (25) from Equation (26) we find 

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( )

2

, , , ,
2

, , , , , , d

, , , ,

, , .

NL NL

L L

t t t t
m

t V t t V t

t V t t V t

i t t
t

ψ ψ ψ ψ

ψ ψ ψ ψ

ψ ψ ψ ψ

ψ ψ

∗

∗

− −

′ ′ ′ ′ ′+ −

+ −

∂
=

∂

∫





r r r r

r r r r r r r r r

r r r r r r

r r

∇ ∇ ∇† †

† †

† †

†

    (27) 

If we multiply the above equation by the charge carried by the particle, we ob-
tain the continuity equation of the corresponding particle, as in the case of the 
electron, we multiply by (−e). 

Equation (27) may be contracted as 

0.NL Lt
ρ ρ ρ∂
+ + + =

∂
J∇                      (28) 

The obtained continuity Equation (28) contains new quantities, which are the 
non-local current density NLρ , and the local density Lρ , that is because of the 
consideration of the non-local and the local interactions in the Schrödinger equ-
ation, where 

( ) ( ) ( )

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )

20

2

.

, , ,

, , , ,
2

, , , , , ,

, , , ,

NL NL NL

L L L

J t t t

t t t t
m

t V t t V t

t V t t V t

ρ ψ ψ ψ

ψ ψ ψ ψ

ρ ψ ψ ψ ψ

ρ ψ ψ ψ ψ

∗

∗

= = =

−
= −

′ ′ ′ ′= −

= −

∫



r r r

J r r r r

r r r r r r r r

r r r r r r

∇ ∇

†

† †

† †

† †

   (29) 

If the local potential ( )LV r  is Hermitian, implying that Lρ  vanishes, which 
means that its symmetry maintained, these results are similar to the calculations 
of Changsheng Li and his colleagues [28]. 

In the steady state 0
t
ρ∂
=

∂
, Equation (28) becomes 
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0.NLρ+ =J∇                            (30) 

If the non-local potential ( ),NLV ′r r  is a real diagonal matrix, the quantity 

NLρ  vanishes; its symmetry is maintained also. The current calculated from J  
is conserved since 0=J∇ . However, in presence of a non-local potential, the 
quantity NLρ  is nonzero, and therefore 0≠J∇ . As a result, the current calcu-
lated from the current density is not conserved. Therefore, we need to modify 
the conventional definition of the current density to include the contribution 

NLρ  of Lρ  and induced by the non-local and the local potentials. 
We define the new current density in presence of non-local and local poten-

tials as 

,tot NL L= + +J J J J                         (31) 

where ,L NLJ J  are the local current density and the non-local current density 
(We call it the non-local current density because it is merely due to the non-local 
potential) defined as 

( )
( ) ,

J r

J r

= −

= −
NL NL

L L

χ

ϕ

∇

∇
                         (32) 

where ,NL Lχ ϕ  determined by the following Poisson equation set 

( )
( )

2

2

0

0,

r

r

+ =

+ =
NL NL

L L

χ ρ

ϕ ρ

∇

∇
                        (33) 

by solving each Poisson equation with proper boundary conditions, we can cal-
culate NLJ  and LJ . 

It is obvious that the newly defined current density satisfies 0tot =J∇  and 
therefore, the calculated current from this current density satisfies the current 
conservation. 

Anywise, in absence of the interactions, the continuity equation takes its sim-
ple known form in the quantum mechanics 

( ) ( ) ( ) ( ) ( )( )
2

2
, , , , , 0.

2
i t t t t t

t m
ψ ψ ψ ψ ψ∂

+ − =
∂

r r r r r

 ∇ ∇† †     (34) 

4. Schrödinger Equation in Presence of a Nonlocal Potential  
in Non-Commutative Phase-Space 

We introduce the non-commutativity in space through the ⋆-product, the 
Schrödinger equation in presence of non-local and local potentials in non- 
commutative space is written as 

( ) ( ) ( ) ( ) ( ) ( )
2

, , , d , , ,
2 NL Lt V t V t i t

m t
ψ ψ ψ ψ∂′ ′ ′+ + =

∂∫
p r r r r r r r r    (35) 

taking into account that the ⋆-product under the integral sign become ordinary 
product as shown in Equation (8), leading to found out that the symmetry of the 
real part of the non-local potential maintained in the non-commutative frame-
work. 

For ( )LV hr∼r , with h is real-valued, and using Equation (6) we find 
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( ) ( ) ( ) ( ) ( ) ( ) ( )2, , Θ , 0 Θ .L L ab a L bV t V t i V tψ ψ ψ= + ∂ ∂ +r r r r r r     (36) 

Then we introduce the non-commutativity in phase by the mapping nc→p p  
through Bopp-shift translation Equation (9), we have 

( )
( ) ( ) ( ) ( ) ( ) ( )

2

, , , d , , ,
2

nc

NL Lt V t V t i t
m t

ψ ψ ψ ψ∂′ ′ ′+ + =
∂∫

p
r r r r r r r r   (37) 

where 

( ) ( )
2

2 2
2

1 1 1 1 ,
2 2 2 4

nc
i ij j i ij i j ij j i ij ik j kp r p p r p r r rη η η η η = + = + + + 

 
p

   

 (38) 

we restrict ourselves only to the 1st order of the non-commutativity in phase 
( )20 η , [for the equilibrium with the non-commutativity in space considered in 

this work]. 

With ij ji jiη η η== −  , and 1
2k kij ijη η=   where 2ij k kijη η=  , knowing that 

( )2
1kij = , and ( ) kij i jkU V U V× =  , = ×L r p  then 

( )

( )

1 1 1 1
2
1 1 1 1 1
2 2

p r L

r p L

η η

η η

= = × = −

= − = − = − × = − ,

   

    

ij i j k kij i j

ij j i ji j i k kji j i

p r p r

p r r p r p

η η

η η η




    (39) 

substituting the above relations in Equation (38). Finally, we obtain 

( ) ( )2 2 22 0 .nc η= − +p p L


η                     (40) 

Substituting Equations (36)-(40) in Equation (37), we obtain 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2
2 1, , , , d ,

2

Θ , , .

NL L

ab a L b

t t V t V t
m m

i V t i t
t

ψ ψ ψ ψ

ψ ψ

′ ′ ′− − + +

∂
+ ∂ ∂ =

∂

∫r L r r r r r r r

r r r







∇ η
 (41) 

4.1. The Frahn-Lemmer Non-local Potential in Non-Commutative  
Phase-Space 

Knowing that ( ) ( ), , dNLV tψ′ ′ ′∫ r r r r  goes to ( ) ( ), ,NLV tψr p r , the Schrödin-
ger equation in interaction with Frahn-Lemmer non-local potential and a local 
potential in non-commutative phase-space is given by 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2 2

2

2

2
4

0
1, , e , ,

2

Θ , , ,

L

ab a L b

t t t V t
m m

i V t i t
t

β

ψ ψ ψ ψ

ψ ψ

 − 
 −

− + +

∂
+ ∂ ∂ =

∂

p L

p r L r r r r

r r r











η

η
   (42) 

for 
2

2
2

2 4
β

 − 
 

p L 





η , let us approximate as 

2 2

2

2

2 2 2
4

2 3e 1 ,
4 2

β

β β
 − 
 −

= − +

p L

p L



 

η

η                   (43) 
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with 
2 2

02 4
a

m
β

= +


 , 
2

0
3

1
2

b
m

β
= −




 and substituting Equation (43) into Eq-

uation (42), we obtain 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2
0, , , ,

Θ , , .

L

ab a L b

a t b t t V t

i V t i t
t

ψ ψ ψ ψ

ψ ψ

− + + +

∂
+ ∂ ∂ =

∂

r L r r r r

r r r

∇ η
         (44) 

The above equation is the non-commutative Schrödinger equation in interaction 
with Frahn-Lemmer non-local potential and a local potential. The non-commuta- 
tivity in space influenced the local part, while the noncommutativity in phase 
touched the non-local part. 

4.2. The Continuity Equation in Non-Commutative Phase-Space 

The Schrödinger equation in presence of non-local and local potentials in 
non-commutative phase-space is given by the Equation (41), and its complex 
conjugate is given by 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2
2

*

1, , , , d
2

, Θ , , ,

NL

L ab a L b

t t V t
m m

V t i V t i t
t

ψ ψ ψ

ψ ψ ψ

∗

∗

′ ′ ′− − +

∂
+ − ∂ ∂ = −

∂

∫r L r r r r r

r r r r r







∇ † † †

† † †

η
      (45) 

from the multiplications ( ), tψ r† Equation (41) and ( ), tψ r Equation (45), it 
comes 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2
2 1, , , ,

2
, , , d , ,

Θ , , , , ,

NL L

ab a L b

t t t t
m m

t V t t V t

i t V t i t t
t

ψ ψ ψ ψ

ψ ψ ψ ψ

ψ ψ ψ ψ

− −

′ ′ ′ ++

∂
+ ∂ ∂ =

∂

∫

r r r L r

r r r r r r r r

r r r r r







∇† †

† †

† †

η

         (46) 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2
2 1, , , ,

2
, , , d , ,

Θ , , , , ,

NL L

ab a L b

t t t t
m m

t V t t V t

i t V t i t t
t

ψ ψ ψ ψ

ψ ψ ψ ψ

ψ ψ ψ ψ

∗ ∗

∗

− −

′ ′ ′+ +

∂
− ∂ ∂ = −

∂

∫

r r r L r

r r r r r r r r

r r r r r







∇ † †

† †

† †

η

        (47) 

then, by the subtraction of Equation (46) from Equation (47) we obtain 

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )( )

2

, , , ,
2
1 , , , ,

, , , , , , dNL NL

t t t t
m

t t t t
m

t V t t V t

ψ ψ ψ ψ

ψ ψ ψ ψ

ψ ψ ψ ψ∗

− −

+ −

′ ′ ′ ′ ′+ −∫

r r r r

r L r r L r

r r r r r r r r r





∇ ∇ ∇

η η

† †

† †

† †

 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( )( )

, , , ,

Θ , , , ,

, , ,

L L

ab a L b a L b

t V t t V t

i t V t t V t

i t t
t

ψ ψ ψ ψ

ψ ψ ψ ψ

ψ ψ

∗

∗

+ −

+ ∂ ∂ + ∂ ∂

∂
=

∂

r r r r r r

r r r r r r

r r

† †

† †

†

    (48) 
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contracting the above equation as follows 

0,nc nc
NL Lt

ρ ρ ρ∂
+ + + + =

∂
J ∇                     (49) 

Equation (48) will be recognized as the non-commutative continuity equation, 
denoting the separate terms in it as follows 

 

( ) ( ) ( )

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )

20

2
†

, , ,

, , , ,
2

, , , , , ,

, , , ,

NL NL NL

L L L

J t t t

t t t t
m

t V t t V t

t V t t V t

ρ ψ ψ ψ

ψ ψ ψ ψ

ρ ψ ψ ψ ψ

ρ ψ ψ ψ ψ

∗

∗

= = =

−
= −

′ ′ ′ ′= −

= −

∫

r r r

J r r r r

r r r r r r r r

r r r r r r



∇ ∇

†

†

† †

† †

 

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

Θ

Θ

Θ , , , ,

1 , , , ,

.

r r r r r r

r L r r L rη η

∗= ∂ ∂ + ∂ ∂

= −

= +


L ab a L b a L b

nc

nc
L L L

i t V t t V t

t t t t
m

ρ ψ ψ ψ ψ

ψ ψ ψ ψ

ρ ρ ρ



† †

† †  (50) 

It is obvious that the conservation of the current density in the non-commutative 
phase-space completely violated, which means that the current density does not 
satisfy the current conservation. Then we move to the interpretation of the se-
parating terms, the existence of the quantities corresponding to the explicit Θ , 
η  parameters, which are involved in the obtained Equation (50) due to the ef-
fect of the phase-space non-commutativity on the Schrödinger equation. Firstly, 
these quantities emerged merely as terms containing the parameters Θ , η  
consequently after extracting the non-commutative continuity equation, those 
terms being responsible for generating the new quantities collectively with the 
correction term that contains Θ  parameter. 

More accurately, the effect of the non-local potential on the continuity equa-
tion arises as a non-local quantity of density type, as well as for the locality effect, it 
appears as a local quantity of density type also, where the non-commutativity in 
phase formed only a correction term nc , which appeared in the non-commutative 
continuity equation, but for the non-commutativity in space affected only the 
local quantity nc

Lρ  through a first-order correction. Once the local potential is 
null, the local density quantity with its non-commutative correction will disap-
pear. 

Comparing the continuity equation in commutative and in non-commutative 
cases, we find that the non-commutativity influence is very clear in the amount 
of the local potential, but for the non-locality amount vanishes, we find that the 
non-commutativity effect violates the conservation of the continuity equation. 

In what follows, we modify the expression of the density current, in which, it 
will be conserved in the non-commutative phase-space: 

If the local potential ( )LV r  is real, the quantity nc
Lρ  vanishes (similar to the 

commutative case), also when the non-local potential ( ),NLV ′r r  is a real di-
agonal matrix, the quantity NLρ  vanishes. But the current calculated from J  
is not conserved due to the phase non-commutativity correction nc . However, 
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while NLρ  and Lρ  are nonzero. As a result, the current density not conserva-
ble, as well as of the symmetry is not maintained in the non-commutative 
phase-space. Therefore, we need to modify the conventional definition of the 
current density to include the contribution of NLρ  and nc

Lρ , and in the steady  

state 0
t
ρ∂
=

∂
, Equation (49) becomes 

0.+ + + =nc nc
NL LJ Cρ ρ∇                      (51) 

We make the following replacement 

, with ,J + = =nc nc nc ncC                    (52) 

with the condition 0∇ =ncC . We define the new global current density in 
presence of a non-local and a local potential where the non-commutativity is 
considered, as 

,nc nc nc
tot NL L= + +J J J                       (53) 

where ,nc
L NLJ J  are the non-commutative local current density, and the non-local 

current density defined as 

( )

( )
NL NL

nc nc
L L

χ

ϕ

= −

′= −

J r

J r

∇

∇
                         (54) 

where , nc
NL Lχ ϕ  determined by the following Poisson equation set 

( )
( )

2

2

0

0
NL NL

nc nc
L L

χ ρ

ϕ ρ

+ =

′+ =

r

r

∇

∇
                       (55) 

by solving each Poisson equation through the proper boundary conditions, we 
obtain NLJ  and nc

LJ . Therefore, the newly defined total current density satis-
fies 0nc

tot =J∇  and therefore, the calculated non-commutative current from this 
current density satisfies the current conservation. 

5. Conclusions 

In conclusion, the phase-space non-commutativity introduced in the Schrödin-
ger equation and consequently, the continuity equation obtained in the case of 
commutativity and in the case of non-commutativity, without forgetting that the 
Schrödinger equation considered in interaction with non-local and local poten-
tials, this, in turn, is responsible for causing new quantities of density type in the 
continuity equation. We found that the non-commutativity in phase-space is not 
suitable for describing the current density in presence of non-local and local po-
tentials. Knowing that the phase-space non-commutativity effect introduced 
through both of the Bopp-shift linear translation method and the Moyal-Weyl 
product, under the condition that space-space and momentum-momentum are 
all commutative, the results in non-commutative phase-space return to that of 
the usual quantum mechanics. 

The results of the present work can be used to investigate the conservation 
laws by involving the non-commutative geometry such as the non-commutative 

https://doi.org/10.4236/ojm.2019.93003


I. Haouam 
 

 

DOI: 10.4236/ojm.2019.93003 27 Open Journal of Microphysics 
 

CPT symmetry (with the Lorentz invariance), the conservation of weak isospin 
(with SU(2), Gauge invariance). In the electromagnetism also such as the 
non-commutative Maxwell’s equations, maybe also used in the non-commutative 
general relativity. We are out looking to investigate the Klein-paradox depend-
ing on these results. 
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