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Abstract 
With increasing complexity of today’s electromagnetic problems, the need and 
opportunity to reduce domain sizes, memory requirement, computational time 
and possibility of errors abound for symmetric domains. With several compet-
ing computational methods in recent times, methods with little or no iterations 
are generally preferred as they tend to consume less computer memory re-
sources and time. This paper presents the application of simple and efficient 
Markov Chain Monte Carlo (MCMC) method to the Laplace’s equation in axi-
symmetric homogeneous domains. Two cases of axisymmetric homogeneous 
problems are considered. Simulation results for analytical, finite difference and 
MCMC solutions are reported. The results obtained from the MCMC method 
agree with analytical and finite difference solutions. However, the MCMC me-
thod has the advantage that its implementation is simple and fast. 
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1. Introduction 

Most real-world EM problems are difficult to solve using analytical methods and 
in most cases, analytical solutions are outright intractable [1]. Today, with in-
creasing advancement in computer technologies and with increasing system 
complexities, the need for continuous development of computational techniques 
to address contemporary EM problems is as ever, critical. EM problems in na-
ture are essentially three-dimensional (3D) requiring, in most cases, enormous 
time and computer memory to solve. However, approximations in 1D and 2D 
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are often a smart way of solving 3D problems provided that approximations can 
be made without loss of accuracy. In axisymmetric systems, the cylindrical coor-
dinate, ( ), ,ρ φ z  is essentially independent of φ , reducing the complexity of 
the problem to two-dimensional problems in ,ρ z  plane of the three-dimensional 
domain [2]-[10]. The resulting two-dimensional approximation can be treated 
like a Cartesian coordinate problem with either z or ρ  constant interface.  

Several methods such as the Method of Lines [11], the Finite Element method 
[12] [13], Finite difference method [14] and the Boundary Integral Equation 
methods [15] [16] have all been applied in the modeling and analysis of axi-
symmetric problems. Since the connection between Brownian motion and the 
potential theory was established [17] and the application of probabilistic poten-
tial theory to electrical engineering related problems [18], several Monte Carlo 
techniques such as fixed random walk, floating random walk and Exodus me-
thod [9] [19]-[26] have evolved dramatically. However, conventional Monte 
Carlo techniques are limited in application because they are unsuitable for 
whole-field computation. They only allow single-point calculations. The shrink-
ing boundary and the inscribed figure methods later proposed for whole-field 
calculations are not significantly superior to the classical Monte Carlo methods 
[27] [28]. To address this gap, Markov Chains for whole-field computations was 
proposed by Andrey Markov [29] [30]. The applications of MCMC to rectangu-
lar and axisymmetric problems are presented in [29] [31].   

However, to the best of the authors’ knowledge, the solutions of Laplace’s eq-
uation in axisymmetric homogeneous domains with MCMC with inhomogene-
ous Dirichlet boundary condition are yet to be reported in the literature. Thus, 
this paper presents the MCMC solution of Laplace’s equation in axisymmetric 
homogeneous region.   

2. Axisymmetric Problem Formulation 

When it is necessary and convenient, electromagnetic problems in cylindrical 
coordinates may be approximated to axisymmetric solution region. Suppose a 
cylindrical coordinate system is as shown in Figure 1. It is immediately clear 
that the corresponding axisymmetric approximation in meshed ,ρ z  region is 
as shown in Figure 2. The voltages 0V , 1V  and 2V  imposed in Figure 1 sa-
tisfy the Dirichlet boundary condition, justifying axisymmetric approximation 
shown in Figure 2.  

The Laplace’s equation in the axisymmetric region R depicted in Figure 2 is 
given as 

2 2
2

2 2

1 0
ρ ρρ

∂ ∂ ∂
∇ = + + =

∂∂ ∂
V V VV

z
                 (1) 

The corresponding finite difference equivalence of Equation (1) for 0ρ ≠  
region using square grid is given as 

( ) ( ) ( ) ( ) ( ), , , , ,ρ ρρ ρ ρ ρ ρ+ − + −= + ∆ + − ∆ + + ∆ + − ∆z zV z p V z p V z p V z p V z (2) 
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Figure 1. Cylindrical geometry. 

 

 
Figure 2. Axisymmetric Solution Region. 

 
The transition probabilities in the Equation (2) are given as [14] 

1
4+ −= =z zp p ; 1 1

4 8ρ+ = +p
i

; 1 1
4 8ρ− = −p

i
 

Similarly, the finite difference equivalence of Equation (1) for 0ρ =  region 
is given as [14] 

           
( ) ( ) ( ) ( )0, , 0, 0,ρ+ + −= ∆ + + ∆ + − ∆z zV z p V z p V z p V z         (3) 

The corresponding transition probabilities in the Equation (3) are given as 
[14] 

4
6ρ+ =p ; 0ρ− =p ; 1

6+ −= =z zp p  

3. Absorbing Markov Chain 

A Markov chain is a mathematical model that represents a sequence of random 
variables ( ) ( ) ( )0 1, , ,

nX X X , such that the probability distribution of ( )nX  de-
pends on the probability distribution of ( )1−nX  [14] [32] [33]. The process has a 
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memoryless property—remembering only the most recent past. This paper con-
siders discrete-state, discrete-time Markov chains where the Markov chain 
represents the random walk and the states represent the grid nodes. The transi-
tion probability ijP  is the probability that a randomly walking particle starting 
at node i will move to node j. The ijP  is expressed as 

( ) ( )1 0 1 1| , , , | , , 0,1, 2,+ += = = = ∈ = ij n n n nP P x j x x x P x j x j X n     (4) 

The transition probability P is defined as  

00 01 02

10 11 12

20 21 22

 
 
 =
 
 
 

P







   

P P P
P P P
P P P

; 1,
∈

= ∈∑ ij
j X

P i X               (5) 

The sum of each row elements in P matrix is 1. This shows that the matrix P is 
stochastic as described in Equation (5). 

The size of the transition matrix P is ×n n , where 

= +f pn n n                              (6) 

From the Equation (6), fn  are the free (non-absorbing) nodes which 
represent the nodes in the solution region excluding those on the boundary. pn , 
on the other hand, are fixed (absorbing) nodes which are nodes on the boun-
dary. 

The transition matrix P in which absorbing nodes and the non-absorbing 
nodes are numbered first and last respectively is given by [14] 

 
=  
 

I
P

R Q
0

                            (7) 

where  
R is a ×f pn n  matrix which describes the probabilities of moving from free 

nodes to fixed ones;  
Q is a ×f fn n  matrix which describes the probabilities of moving from one 

fixed node to another;  
I is a ×f fn n  identity matrix which describes the transitions between fixed 

nodes ( 1=iiP  and 0=ijP );  
0 is a ×p fn n  null matrix which shows that no transitions exist from fixed to 

free nodes.  
To solve Laplace’s equation in the region R, the elements of matrix Q for 

nodes in the 0ρ ≠  region are obtained from the Equation (2) as  

1 , if is directly connected to
4
2 1 , if is directly connected to 1

8
2 1 , if is directly connected to 1

8
0, if or is not directly connected to





+  + =  
 −  − 
 
 =

ij

i j

i i i
iQ

i i i
i

i j i j

       (8) 
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Equation (8) describes the probabilities of moving from one node to another in 
the 0ρ ≠  region.  

Similarly, the elements of matrix Q for nodes at the line of symmetry, 0ρ = , 
are obtained from the Equation (3) as 

1 , if 0 and is directly connected to and 1
6
4 , if 0 and is directly connected to 1
6
0, if or is not directly connected to

 = −


=  = +


=

ij

i j j

Q i i

i j i j

         (9) 

The same Equation (8) and Equation (9) apply to ijR  except that j is a fixed 
node.  

For any absorbing Markov chains, the fundamental matrix, ijN  describes the 
average number of times the randomly walking particles originating from node i 
passes through the node j before being absorbed. The fundamental matrix N 
with size ×f fn n  is given as 

( ) 1−= −N I Q                          (10) 

The absorption probability matrix B which describes the probabilities that a 
randomly walking particle starting at free node i will be absorbed at a fixed node 
j is given as  

=B NR                            (11) 

The size of matrix B is ×f pn n . The matrix B is stochastic and it is given as  

1
1, 1, 2, ,

=

= =∑ 

pn

ij f
j

B i n                       (12) 

=V BVf p                             (13) 

where V f  with size 1×fn  and Vp  with size 1×pn  are free and fixed (pre-
scribed) nodes potentials respectively. 

Finally, the potential at any free node i is given as  

1
, 1, 2, ,

=

= =∑ 

pn

i ij j f
j

V B V i n                   (14)  

where jV  are the prescribed potentials, 1 2, , , npV V V .       

4. Simulation Results 

In this section, simulation results are presented for the two cases of homogene-
ous axisymmetric problems considered. The inhomogeneous Dirichlet boundary 
condition with different levels of complexity was enforced for the two cases pre-
sented. At the line of symmetry, the Neumann boundary condition was imposed. 
Simulation results are reported for both cases.  

Case I: Axisymmetric homogeneous Problem with Inhomogeneous Dirichlet 
Boundary Condition 
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Figure 3. Meshed Solution Region for Case I. 

 
Suppose the axisymmetric cylinder given in Figure 3 has its ends at 0=z   

and =z L  grounded respectively. The boundary condition imposed at ( ),V a z  
is given as [14]:  

( )
0

0

, 0
2,

1 ,
2

 < <= 
  − < <   

z LV z
LV a z

z LV z L
L

                 (15) 

In order to demonstrate the effectiveness of the MCMC method for axi-
symmetric homogeneous problems, the following simulation is carried out. 
The parameters used for the simulations are given in Table 1. Simulation is 
performed on MATLAB. With the length of the cylinder, 2 m=L  and radius, 

1 m=a  given as dimensions of the axisymmetric region R, the solution region 
is discretized into grids using a step size of 0.025 m. This gives 3160 grid 
points excluding the nodes on the boundary. The inhomogeneous Dirichlet 
boundary condition imposed at ( ),V a z  is given in Equation (15). Other step 
sizes used are 0.05 m, 0.1 m and 0.2 m giving 780, 190 and 45 grid points re-
spectively.  

From the given parameters, the elements of matrix Q with the size 3160 × 
3160 are formed based on the Equation (8) and Equation (9). Similarly, the ele-
ments of matrix R with size 3160 × 159 are formed from the Equation (8) and 
Equation (9) except that j is a fixed node. Then the identity matrix I with size 
3160 × 3160 is determined.  

Based on the foregoing, the fundamental matrix N with size 3160 × 3160 and 
the absorption matrix B with size 3160 159×  are determined. Finally, the free 
node potentials are then determined from =V BVf p . The prescribed potential, 
Vp  has a size 159 × 1 and it is determined from the nodes on the boundary of 
the solution region. The simulation results from MCMC method are validated 
with the analytical solution given in [14]: 
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Table 1. Parameters for homogeneous axisymmetric problems. 

Parameter Value 

V0 100 V 

a 1 m 

L 2 m 

 

( ) ( ) ( )0
1

, sinρ ρ
∞

=

= π π∑ n
n

V z A n z L I n L              (16) 

where 

( )
( )

( ) ( )

0
2 2

0

0

0

2
2sin 2 cos 2

2
sin cos 2

= π − π π
π π

− π− π
π π

n
V

A n n n
n I n a L

V
n n

n I n a L

 

 
0I  is a modified Bessel function of the order zero. 
A solution to the present problem is also obtained with the finite difference me-

thod and comparison was made with the MCMC and analytical solutions. Simula-
tion results are presented in Figure 4. The results for the potential distributions 
along 0.5 m, 0 2 mρ = ≤ ≤z  (middle of the grid nodes), 0, 0 2 mρ = ≤ ≤z , and 

0.9 m, 0 2 mρ = ≤ ≤z  are presented in Figures 4(a)-(c). At 0, 0 2 mρ = ≤ ≤z , 
the potential distribution at the line of symmetry is reported. Also, the potential 
distribution along 1, 0 1 mρ= ≤ ≤z  as well as the surface and contour plots for 
all the grid nodes are reported in Figures 4(d)-(f). The MCMC simulations were 
repeated with step sizes of 0.05 m∆ = , 0.1 m∆ =  and 0.2 m∆ =  respectively 
and the results reported as shown in Figure 4. The smaller the step size, the 
closer the results are to the exact solution. In Table 2, the MCMC, analytical 
and finite difference solutions for some selected grid points are compared. As 
evident, the MCMC solutions agree well with the results obtained with the 
analytical solution and the finite difference method (FDM). The computation 
time for MCMC and FDM for this problem is respectively 2.1717 seconds and 
1.0486 seconds. Hence, the computation time cannot be used as a basis for 
comparison. 

Case II: Axisymmetric Homogeneous Problem with Inhomogeneous Dirichlet 
Boundary Condition. 

In this section, another case of Laplace’s equation with inhomogeneous Di-
richlet boundary conditions is presented. Suppose the cylinder given in Figure 5 
has its ends 0=z  grounded and =z L  given as 100 V respectively. The 
boundary at ( ),V a z  is described as in the Equation (15) where voltage 0V  is 
100 V. The Neumann boundary condition is imposed at ( )0,V z . Since the 
Laplace’s equation is a linear homogeneous equation, the problem in Figure 5 is 
simplified into Figure 5(a) and Figure 5(b). An analytical solution to the solu-
tion Region I is given as [34]: 
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Figure 4. Potential distribution along (a) 0.5 m, 0 2 mρ = ≤ ≤z ; (b) line of symmetry, 0, 0 2 mρ = ≤ ≤z ; (c)  

0.9 m, 0 2 mρ = ≤ ≤z ; (d) 1, 0 1 mρ= ≤ ≤z ; (e) surface plot; (f) contour plot for Laplace’s equation in Homogeneous Axisym-
metric domain with Inhomogeneous Dirichlet boundary condition: Case I.  

 
Table 2. Results comparison for analytical, FDM and MCMC for Laplace’s equation with 
inhomogeneous Dirichlet boundary condition: Case I.  

Coordinate 
( ,ρ z ) 

Analytical 
(V) 

FDM 
(V) 
0.05 m∆ =  

Iteration = 1000 

FDM 
(V) 
0.025 m∆ =  

Iteration = 4000 

MCMC 
(V) 
0.05 m∆ =  

MCMC 
(V) 
0.025 m∆ =  

(0.25, 0.3) 10.8381 10.8427 10.8387 10.7346 10.8394 

(0.35, 1.5) 17.6737 17.6838 17.6756 17.3850 17.6765 

(0.5, 1.05) 27.9346 27.9713 27.9431 27.2701 27.9441 

(0.6, 1.6) 16.2614 16.2642 16.2616 16.0837 16.2621 

(0.8, 0.6) 26.3891 26.3983 26.3960 26.2916 26.3963 

 

( ) ( )
( ) ( )

0
0

1 1

sinh
2

sinh
ρ∞

=

= ∑ n n

n n n n

J k a k z a
V V

k J k k L a
                (17)  

where a and L are given in Table 1. nk  are the roots of ( )0 0=nJ k a ; 0J  and 

1J  are Bessel functions of the first kind, order zero and one, respectively.  
Similarly, recall that the analytical solution for region II depicted in Figure 

5(b) is already provided in the Equation (16). Since the Laplace’s equation can 
be linearized, the analytical solution to the problem depicted in Figure 5 is given  
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(a) 

 
(b) 

 
(c) 

Figure 5. (a) Meshed Solution Region for Case II; (b) Solution Region I; (c) Solution Re-
gion II. 
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as: 

( ) ( ) ( )
( ) ( ) ( ) ( )0

0 0
1 11

sinh
, 2 sin

sinh
ρ

ρ ρ
∞ ∞

= =

= + π π∑ ∑n n
n

n nn n n

J k a k z a
V z V A n z L I n L

k J k k L a
  (18) 

where  

( )
( )

( ) ( )

0
2 2

0

0

0

2
2sin 2 cos 2

2
sin cos 2

= π − π π
π π

− π− π
π π

n
V

A n n n
n I n a L

V
n n

n I n a L

 

0I  is a modified Bessel function of the order zero. 
With the step size of 0.025 m, the MCMC results are reported in the Figure 6. 

The potential distributions along 0.5 m,0 2 mρ = ≤ ≤z , 0,0 2 mρ = ≤ ≤z   
(symmetry line) and 0.9 m, 0 2 mρ = ≤ ≤z  are given in the Figures 6(a)-(c). 
Similarly, the potential distribution along 1, 0 1 mρ= ≤ ≤z , the surface plot 
and the contour plot for all the grid nodes are reported in the Figures 6(d)-(f) 
respectively. The results for selected grid points for MCMC and FDM using step 
size of 0.025 m agree perfectly with the analytical solution as shown in the Table 
3. Computation time for MCMC and FDM for the problem is 1.8602 seconds 
and 0.8658 seconds respectively. The reduction in step size increases the accura-
cy of the solutions. 

  

 
Figure 6. Potential distribution along (a) 0.5 m, 0 2 mρ = ≤ ≤z ; (b) line of symmetry, mz, 200 ≤≤=ρ ; (c)  

0.9 m, 0 2 mρ = ≤ ≤z ; (d) 1, 0 1 mρ= ≤ ≤z ; (e) surface plot; (f) contour plot for Laplace’s equation in Axisymmetric Homoge-
neous Domain with Inhomogeneous Dirichlet Boundary Condition: Case II.  
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Table 3. Results comparison for analytical, FDM and MCMC for Laplace’s equation with 
inhomogeneous Dirichlet boundary condition: Case II.    

Coordinate 
( ,ρ z ) 

Analytical 
(V) 

FDM 
(V) 
0.05 m∆ =  

Iteration = 1000 

FDM 
(V) 
0.025 m∆ =  

Iteration = 4000 

MCMC 
(V) 
0.05 m∆ =  

MCMC 
(V) 
0.025 m∆ =  

(0.25, 0.3) 12.7037 12.5030 12.7054 12.5798 12.7065 

(0.35, 1.5) 55.6216 55.3465 55.6180 55.2416 55.6195 

(0.5, 1.05) 38.8788 38.6227 38.8909 38.0625 38.8926 

(0.6, 1.6) 53.0784 52.9373 53.0772 52.8529 53.0780 

(0.8, 0.6) 27.8036 27.7157 27.8114 27.6848 27.8119 

5. Conclusion 

This paper presents a comprehensive application of MCMC method to Laplace’s 
equation in homogeneous axisymmetric domains. Two broad cases of homoge-
neous axisymmetric problems were investigated. For Case I, the MCMC method 
was used to solve Laplace’s equation with inhomogeneous Dirichlet boundary 
condition in which the top and bottom boundaries were characterized by the 
same potential. For case II, the MCMC method was investigated with the Lap-
lace’s equation using inhomogeneous Dirichlet boundary condition in which the 
top and bottom boundaries (prescribed potentials) were at different potentials. 
Also, Neumann boundary condition was imposed at the line of symmetry. Sev-
eral plots were reported. The MCMC results were compared with the analytical 
and finite difference solutions. The proposed MCMC method agreed with the 
analytical and finite difference solutions for all reported cases. However, the dif-
ference in computation time between MCMC and FDM is in the order of 
seconds for the problems considered and thus cannot be used as a basis for 
comparison.  
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Nomenclature 

MCMC: Markov Chain Monte Carlo; 
1D: One dimension; 
2D: Two dimension; 
3D: Three dimension; 
EM: Electromagnetics; 
FDM: Finite difference method; 
P: Transition probability; 
N: Fundamental matrix; 
B: Absorption probability matrix. 
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