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Abstract 
The paper searched for raw data about wild-caught fish, where a sigmoidal 
growth function described the mass growth significantly better than 
non-sigmoidal functions. Specifically, von Bertalanffy’s sigmoidal growth func-
tion (metabolic exponent-pair a = 2/3, b = 1) was compared with unbounded 
linear growth and with bounded exponential growth using the Akaike informa-
tion criterion. Thereby the maximum likelihood fits were compared, assuming 
a lognormal distribution of mass (i.e. a higher variance for heavier animals). 
Starting from 70+ size-at-age data, the paper focused on 15 data coming from 
large datasets. Of them, six data with 400 - 20,000 data-points were suitable for 
sigmoidal growth modeling. For these, a custom-made optimization tool iden-
tified the best fitting growth function from the general von Bertalanffy-Pütter 
class of models. This class generalizes the well-known models of Verhulst (lo-
gistic growth), Gompertz and von Bertalanffy. Whereas the best-fitting models 
varied widely, their exponent-pairs displayed a remarkable pattern, as their dif-
ference was close to 1/3 (example: von Bertalanffy exponent-pair). This defined 
a new class of models, for which the paper provided a biological motivation that 
relates growth to food consumption. 
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1. Introduction 
1.1. Growth Models 

Size-at-age (length or mass) is an important metric about animals and so there is 
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a large body of literature about which growth models fit best to given size-at-age 
data. The von Bertalanffy [1] and Pütter [2] differential Equation (1) provides a 
comprehensive framework for the most common models for mass-growth:  

( ) ( ) ( )
d

d
a bm t

p m t q m t
t

= ⋅ − ⋅                   (1) 

It describes body mass m(t) > 0 as a function of age t, using the following five 
model parameters: The exponent-pair a < b (“metabolic scaling exponents”) and 
the constants p and q are assumed to be non-negative; m0 > 0 is an initial value, 
i.e. m(0) = m0. In the case of equal exponents, Equation (1) is replaced by the 
generalized Gompertz [3] differential Equation (2), the limiting case of Equation 
(1), when b approaches a:  
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This equation uses four model parameters: a, p, q (non-negative) and m0 > 0. 
In general, the solutions of (1) and (2) are expressed in terms of non-elementary 
functions, namely hypergeometric functions [4] and exponential integrals [5], 
respectively. The present paper used numerical solutions [6] [7]. For several 
“named models” these equations could be solved by elementary means, namely 
for the exponent-pairs a = 2/3 and b = 1 of von Bertalanffy [1], a = 3/4, b = 1 of 
West [8], a = 1, b = 2 for logistic growth of Verhulst [9], and a = b = 1 of Gom-
pertz [3]. There are also elementary solutions for Richards’ [10] model (a = 1 
and b > 1 is a free parameter) and for the generalized von Bertalanffy model (b = 
1 and 0 ≤ a < 1 is a free parameter). The von Bertalanffy growth function for 
length (VBGF) fits to the present framework, too: It is a special case of Equation 
(1) using the exponent pair a = 0, b = 1 (bounded exponential growth). Other 
special cases are power-laws between mass and time (q = 0, p > 0), in particular 
linear growth (a = b = q = 0, p > 0, m0 > 0).  

Figure 1 plots the exponent-pairs for these named models. Several of these 
models were motivated by competing biological theories about the relation be-
tween growth and metabolism; whereby different authors proposed different 
exponent-pairs [11]. However, these models “have only a loose connection to the 
biology behind the actual growth processes” [12]. Therefore, no single growth 
model may be exactly correct for all species [13]. For fish, in particular, the op-
timal parameters of the growth models may depend on environmental factors 
[14] [15]. Where there is no information about other biological factors for 
growth, the models may nevertheless be used to extract relevant information 
from the data, as is current practice fisheries management [16].  

1.2. Shape of the Growth Curves 

The models differ in the assumed exponents and in the number of free parame-
ters (these are optimized to obtain the best fit to given data): For the “named 
models” with given exponent-pairs the parameters p, q and m0 are free; for the 
more general model classes in addition one or two exponents are free. The typical  

https://doi.org/10.4236/ojmsi.2019.71002


K. Renner-Martin et al. 
 

 

DOI: 10.4236/ojmsi.2019.71002 21 Open Journal of Modelling and Simulation 
 

 
Figure 1. Exponent-pairs of named models and optimal fits. Red squares indicate named models, 
grey lines indicate more general model classes, and blue dots indicate best fitting models to the in-
dicated data. The dashed grey line indicates a new model class of this paper. 

 
growth curves (solutions of the model equations) are increasing, bounded and 
sigmoidal (S-shaped): Initially the rate of growth increases, until the inception 
point is reached. Subsequently, it decreases to zero in the limit, when the 
asymptotic mass (mmax) is reached. The latter condition (m' = 0) provides the 
following equation for the asymptotic mass:  

1

max for ,
b apm a b

q
− 

= < 
 

 and max exp  for pm a b
q

 
= = 

 
    (3) 

The parameters a, b, p, q come from Equation (1) and Equation (2), respec-
tively. For exceptional exponents and parameters, the growth curves may be 
non-sigmoidal (a = 0) or unbounded (p > 0, q = 0). For instance, the most 
common growth model in fisheries literature, VBGF for length (Google search 
for “VBGF, fish”: ca. 15,000 results), is not sigmoidal. However, it is equivalent 
to a sigmoidal model for mass-growth in the following sense [1]: If length-growth 
follows VBGF, and if mass is assumed to be proportional to a power Lk of length 
L (k > 1), then mass-growth is described by the exponent-pair a = 1 − 1/k > 0, b 
= 1 (sigmoidal growth curve).  

Summarizing, there seems to be a consensus in literature that the mass-growth 
of fish is bounded and sigmoidal. However, catch data for fish seem not to sup-
port this statement. The authors [17] investigated a set of 60 data for different 
species (37 for fish) and fitted Equation (1) with the exponent b = 1 (generalized 
von Bertalanffy model). They found that for 17 of 37 fish-data, but only for one 
non-fish species, any exponent a could be used to model mass-growth without af-
fecting the fit to the data significantly (when the other free parameters p, q, m0 
were optimized). In particular, a fit by a non-sigmoidal growth curve (a = 0) was 
acceptable. Conversely, for 18 of 20 data, where a = 0 was acceptable, any other 
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exponent was acceptable, too. As the authors noted, such a high variability has 
implications for data-fitting, as standard search strategies may not always find 
the right direction towards the optimum parameters, if there is no significant 
difference in the fits. Indeed, fisheries management literature reported problems 
with convergence [18]. The authors attributed the high variability of the expo-
nents to differences in data quality, as most non-fish data were average values 
from controlled studies, where measurements were conducted repeatedly for the 
same group of animals, while most fish-data were about wild-caught fish, where 
each fish contributed only once in its lifetime to the measurements. Such data 
were also affected by gear-selectivity, where there may be few data about young 
(small) fish, as these could escape from the trawler nets, or as anglers preferred 
to harvest large fish, and few data about older fish, as most of them did not sur-
vive long enough to come close to their maximum size, resulting in many dif-
ferent possible shapes for the catch-curve that describes the age structure of the 
collected data [19]. As a consequence, several data supported unbounded growth 
[20]; [21] reported this for about 1/3 of their fish data. This was considered as an 
indication for too few data about older animals. By similar considerations, where 
data supported bounded non-sigmoidal growth this was considered as an indi-
cation for too few data about young fish.  

1.3. Problem of the Paper 

The conclusion about the high variability for fish-data was drawn from da-
ta-fitting to average weights. The present paper therefore reconsidered this issue 
and asked, if data-fitting to raw data would change the picture. More specifically, 
the paper aimed at identifying data that could be fitted well by a bounded sig-
moidal mass-growth curve and where this fit was clearly superior to the fit by 
typically non-sigmoidal model functions. These data were deemed insofar as 
suitable for the application of sigmoidal growth models, as the variability of the 
exponents was more restricted.  

To achieve this goal, the paper compared the fit of three typical models: Linear 
growth, as it represents unbounded models, bounded exponential growth, as it 
represents bounded non-sigmoidal models, and the von Bertalanffy expo-
nent-pair, as it represents sigmoidal growth. This comparison was applied to 
various data for wild-caught fish, whereby the model curves were fitted to the 
raw data from [22]. Further, data-fitting took into account the typically heteros-
cedastic distributions of size (meaning a larger variance for a higher mass). The 
paper tested, if there was an acceptable fit by the sigmoidal model, but no ac-
ceptable fit by the other two models. The paper then explored, based on this test, 
how many of the considered catch data were suitable for the application of sig-
moidal growth functions. For these data it determined the best fitting sigmoidal 
model amongst models described by Equation (1) and Equation (2) and 
searched for a pattern of the optimal exponent-pairs.  

The term “acceptable fit” needs a technical definition, explained in the Me-
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thods. For instance, a visual inspection alone did not suffice to recognize that the 
fit of the bounded exponential model was acceptable for Figure 2, but not ac-
ceptable for Figure 3, when compared to the von Bertalanffy exponent-pair 
model. For, the plot did not reveal, for how many data-points a good/poor fit 
was achieved.  

2. Methods 
2.1. Materials 

The authors conducted a literature search for growth data of wild-caught fish, 
referring to the following secondary sources: 39 data-sets came from a repository 
by Derek Ogle [22] listed under “growth” (Table 1 for the file names). The con-
version of length-at-age data into mass-at-age was based on Fish Base [23]. All 
data were processed in Mathematica 11.3 of Wolfram Research; Appendix ex-
plains the used code. As it is generally accepted in fisheries research that model 
comparison is a data-hungry exercise, only data for population-level studies with 
initially at least 500 data-points (different fish) were considered. Further, data 
were removed if after the elimination of incomplete data-points (e.g. size at an 
unknown age) and filtering (e.g. by sex) there remained fewer than about 100 
data-points or less than six points of time (The former condition was not strict, 
but the latter was, as the paper compared models with up to 6 free parameters). 

2.2. Data Fitting 

Literature in fisheries management prefers to fit model curves directly to the raw 
data, assuming a heteroscedastic distribution of size. Most common is the as-
sumption of a lognormal distribution [24], as by Equation (4) for a lognormal 
distribution the standard deviation stdev of size is proportional to the expected  
 

 
Figure 2. Mass-at-age data (blue), geometric mean (green), and growth curves, based on 
data #02 about Cabezon with length converted into mass. Parameters of the growth 
curves were: dashed a = b = q = 0, m0 = 1766.7, p = 870.4; black a = 2/3, b = 1, m0 = 
1817.3, p = 9.78, q = 0.39; and red a = 0, b = 1, m0 = 1678.6, p = 1038.2, q = 0.04. 
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Figure 3. Mass-at-age data (blue), geometric mean (green), and four growth curves, 
based on data #11 (male Walleye from Lake Erie). The parameters of the growth curves 
were: dashed curve a = b = q = 0, m0 = 199.7, p = 242.1; black a = 2/3, b = 1, m0 = 151.6, p 
= 12.97, q = 1.03; red a = 0, b = 1, m0 = 73.3, p = 384.95, q = 0.15; blue = best fit: a = 
0.463, b = 0.884, m0 = 120.742, p = 38.483, q = 1.529.  
 
Table 1. Type of the original sources and processing of 39 data-sets. 

File name 
in [22] 

Data 
points 

Type of source Actiona 

AHerringChile 121 published graphic removed: too few data 

AnchovetaChile 207 private, personal communication removed: too few data 

BlackDrum2001 141 government, personal communication removed: too few data 

BlueCatfish 119 published graphic removed: too few data 

BluegillIL 61 private, personal communication removed: not size at age 

Bonito 253 published graphic removed: too few data 

BullTroutRML2 96 published graphic removed: too few data 

Cabezon 525 private, personal communication selected: retrieved #2 

CreekChub 218 published graphic removed: too few data 

Croaker2 318 published graphic removed: too few data 

DarterOnt 54 published graphic removed: too few data 

EuroPerchTJ 69 published graphic removed: too few data 

FWDrumLE1 1577 published table selected: retrieved #3 

Jonubi1 410 published table removed: too few data 

LakeTroutALTER 86 Repository removed: too few data 

LJCisco 378 published table removed: too few data 

Morwong4 392 Repository removed: too few data 

Mosquitofish 9127 published graphic 
removed: too few ages  

(3 years) 

RBTroutKenai 102 published table removed: not size at age 

RedDrum 393 published graphic removed: too few data 
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Continued 

RockBassLO1 1288 published table selected: retrieved #7 

RuffeSLRH92 739 government, personal communication 
removed: too few ages  

(4 years) 

RWhitefishAI 995 published table selected: retrieved #8 

RWhitefishIR 103 published table removed: too few data 

SardineChile 196 private, personal communication removed: too few data 

SardineLK 75 published graphic removed: too few data 

SculpinALTER 117 repository removed: too few data 

SiscowetMI2004 780 government, personal communication selected: retrieved #4 - 5 

SMBassWB 445 repository selected: retrieved #9 

SpottedSucker1 96 secondary source removed: too few data 

SpotVA1 403 report removed: too few data 

StripedBass2 1201 report selected: retrieved #10 

TroutBR 851 report selected: retrieved #1 and #6 

TroutperchLM1 431 published table removed: too few data 

WalleyeErie2 33,734 government, personal communication selected: retrieved #11 - 12 

WalleyeML 14,583 government, personal communication selected: retrieved #13 - 14 

WalleyeRL 1543 published table selected: retrieved #15 

WhiteGrunt2 465 published graphic removed: too few data 

YERockfish 159 private, personal communication removed: too few data 

a#n is the numbering of the data that were retrieved from the selected dataset. 

 
value ev of size with the shape parameter as (approximate) constant of propor-
tionality:  
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Here, m is the location parameter and s > 0 is the shape parameter of a log-
normal distribution and the rightmost term in Equation (4) assumes s ≈ 0 (whe-
reby O(∙) refers to the Taylor series remainder). The present paper used this ap-
proach in order to conform to established practice in fisheries management lite-
rature (A different approach assumes a normal distribution for each age class, 
but an age dependent variance; e.g. [25]). 

The hypothesis of lognormally distributed data was not always exactly correct: 
For the data of Figure 3 the Cramér-von Mises distribution fit test [26] identi-
fied significant deviations from a normal distribution. This was due to the large 
number of data points. However, for practical purposes (convenience for da-
ta-fitting) the hypothesis of a lognormal distribution could be retained, as a 
probability plot (Figure 4) confirmed that the lognormal distribution was a rea-
sonable approximation to the true distribution (closeness to the diagonal). Fur-
ther, the paper avoided to draw conclusions that would essentially depend on 
this distribution assumption. 
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Figure 4. Probability plot. The figure assesses the fit of a normal distribution (location 
parameter m = 0, shape parameter s = 0.241) with the differences of the logarithm of 
mass and the respective age-class averages of the logarithm of mass for the data of Figure 
3. The dotted line is the diagonal and the solid line is the P-P-plot, which compares the 
normal distribution (x-axis) with the observed cumulative distribution function (whereby 
a good fit is indicated by closeness to the diagonal). 

2.3. Optimization 

There are several approaches for heteroscedastic data fitting, amongst them 
weighted least-squares for the mass-at-age data, using the reciprocals of the 
standard deviations (of mass at each age class) as weights. The present paper 
uses instead transformed data. For, technically data-fitting to lognormally dis-
tributed mass-at-age data (i.e. maximum likelihood estimation of the optimal 
distribution and growth function parameters) is equivalent to using a logarith-
mic transformation of mass and the method of least squares to fit the trans-
formed growth function u(t) = ln(m(t)) to these transformed data (Thereby also 
the parameters for linear growth, m = m0 + p⋅t, were determined from a nonli-
near regression for u).  

Further, (for the transformed data) the least squares method is equivalent to 
the minimization of the lack-of-fit sum of squares LFSS, where LFSS is the 
weighted sum of the deviations of the model curve from the averages at each age 
(the weight is the count of data at this age). The present paper used this refor-
mulation of the least squares method to speed up computations (It has been used 
earlier in fisheries management, e.g. [27]). The use of LFSS has the following 
justification: The method of least squares assumes that the errors (deviations 
from the model curve) are random, meaning independent (normally distributed) 
random variables with expected value 0. Therefore, the sum of the squared er-
rors, SSE, may be decomposed into SSE = LFSS + PESS, where PESS, the sum of 
squares of pure errors, is the sum of the squared deviations of the data at each 
age from the averages at each age. Curve fitting can only minimize LFSS, while 
PESS remains unchanged and can be ignored for the purpose of data-fitting. 
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Summarizing, data fitting was reduced to minimizing LFSS, a weighted sum of 
the squared differences between the average of the logarithmic weights at this 
age and the logarithm of the growth curve at this age.  

The data fit to the three test models (linear, bounded exponential, and von 
Bertalanffy exponent-pair) used the Mathematica function NMinimize and si-
mulated annealing [28] as optimization method. Further, the parameters of the 
bounded models were restricted so as to ensure an “empirically meaningful” 
asymptotic mass, defined from a comparison of the asymptotic mass mmax of 
Equation (3) with the maximal (arithmetic) mean value of the mass at different 
ages. If mmax was in the interval between half and twice that maximal average 
mass, as could be observed e.g. for the model curves in Figure 3, then the cor-
responding model curve was accepted as empirically meaningful. This constraint 
helped to avoid that optimization was trapped at clearly false growth functions 
(e.g. constant functions). Note that the paper did not simplify optimization by 
using literature values for the initial condition m0 (e.g. natal mass) or for the 
asymptotic mass mmax.  

For the subsequent optimization of the general models (1) and (2), the paper 
used a custom-made variant of simulated annealing to minimize LFSS, but 
without constraints. This approach is explained below for the search of the pa-
rameters for the general von Bertalanffy-Pütter model (1). The following com-
putations were repeated in a loop of 500,000 steps. Using starting values for the 
parameters a, b, m0, p, q (starting from the optimal parameters of the von Berta-
lanffy exponent-pair or, Equation (2), from random numbers), it multiplied 
them by random numbers between 1 ± dist, but close to 1 (e.g. dist = 0.01); this 
deviated from the usual simulated annealing, where small random numbers are 
added. If the altered parameters improved LFSS, they were accepted. Otherwise, 
the increase of ln(LFSS/N) was compared with an exponentially distributed 
random number (e.g. mean value exm = 1; N = number of data points); this 
function was motivated by Akaike’s [29] index explained below. If the increase 
was below this random number, the altered parameters were accepted. Other-
wise, the previous parameters were retained. The parameters dist and exm were 
set by the authors so as to obtain a reasonable convergence (several experments). 
After each 10,000 steps, dist and exm were reset: They were reduced by 10% in 
order to avoid moving too fast too far away from a good candidate for the opti-
mum and the computations were restarted with the best hitherto found parame-
ters. For several data the loop was repeated. In case that the optimal exponents 
were close to the diagonal (distance below 0.1), the optimization was repeated 
for the generalized Gompertz Equation (2). For the present data this did not oc-
cur. For three data the custom-made optimization approach was needed also for 
the von Bertalanffy exponent-pair, as the general purpose procedures produced a 
stack-overflow.  

2.4. Model Selection 

For the definition of an acceptable fit, the paper defined a measure of fit that was 
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motivated by the Akaike information criterion [29], namely the following pseu-
do-Akaike-weight pprob defined from a pseudo-Akaike index PAIC. In terms of 
this index, the most acceptable model has the least PAIC, defined below. The 
best fitting model (least LFSS) needs not be most acceptable (penalty for addi-
tional parameters). 

( ) ( ) ( )model 2 1
model ln 2

1
LFSS K K

PAIC AC K
N AC K

⋅ ⋅ + 
= ⋅ + ⋅ + 

− − 
     (5) 

The relation of formula (4) to the usual AIC is explained below. PAIC was de-
fined from the lack-of-fit sum of squares for the model, LFSS (model), from the 
number N of data-points, from the number AC of age classes and from the 
number K of optimized parameters. Thereby, K = 4 for the test models (except 
for linear growth: K = 3), as m0, p, q and implicitly the shape parameter s of the 
lognormal distribution were optimized. Further, K = 5 and K = 6 for the genera-
lized Gompertz model (2) and the von Bertalanffy-Pütter model (2), respectively. 
The index pprob compares a given model with the most acceptable one.  

( )
2

2model ,
1

epprob
e

−∆

−∆=
+

                    (6) 

Here, ∆ = PAIC (model) – PAIC (most acceptable model) > 0. The paper de-
fined a fit as acceptable, if pprob ≥ 2.5%. As the maximal value is pprob = 50%, 
inacceptable fits were linked to the lowest 5% of possible values of pprob. For 
example, in Figure 3 and Figure 2 the von Bertalanffy exponent-pair model had 
the best fit amongst the three compared models. For Figure 3, but not for Fig-
ure 2, the fit was insofar significantly better, as none (respectively both) of the 
non-sigmoidal models had an acceptable fit. Further, for both figures the best 
fitting model (amongst those considered) did not reduce LFSS enough to mi-
nimize also pprob. Thus, its predictive power was highest amongst the consi-
dered models, but the loss in simplicity may not have been justified by the gain 
in predictive power.  

The following outline explains, why the authors decided to use pprob as a 
measure of the goodness of fit. PAIC is a modification of the Akaike index AICc 
for small samples [30] [31]; for variants c.f. [32]. Recall AICc = N∙ln(SSE/N) + 
2∙K + 2∙K∙(K + 1)/(N − K − 1); in this formula the authors replaced N by AC and 
SSE by LFSS⋅AC/N. Thus, PAIC assessed the fit of the models in terms of their 
fit to the averages (of the logarithmically transformed data) at age, weighted by 
the percentage of data represented by this age. Therefore, pprob was the Akaike 
weight relative to this fit to averages.  

Clearly, PAIC penalized complex models more, than AICc did, because for the 
averages there were only few degrees of freedom. However, in the context of fit-
ting growth models the degrees of freedom attainable for large sample sizes may 
be illusory, if data come from a few age classes. For instance, data for thousands 
of fish, but all at age 0, do not confer any information about growth. PAIC has 
the advantage that with a high number of data points a slightly better fitting 
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model with more parameters is not deemed as better, unless the number of age 
classes is high enough to support more parameters. Further, the Akaike meas-
ures depend heavily on the assumption of normally distributed data, which is 
not exactly true for all fish data, as was noted previously. By contrast, for 
(weighted) averages of large samples (of logarithmically transformed mass) there 
is a theoretical justification for assuming a normal distribution, whence for 
PAIC and pprob the usual interpretations for the Akaike index and the Akaike 
weight may be assumed. In particular, pprob may be interpreted as a probability 
that a model is true, assuming that one of the considered models is true. In view 
of this interpretation, pprob has the same meaning, independently of the consi-
dered data, whence it could be used to define the notion of an acceptable fit. 

3. Results 

The authors screened 39 datasets from the repository [22]. As Table 1 explains, 
two datasets were removed as they did not inform about size-at-age, 24 were 
removed, as they informed about less than 500 fish, and two were removed, as 
they informed about only 3 - 4 years of growth. For datasets with 400 - 500 fish 
inclusion was reconsidered; a dataset from an internet repository was included. 
31% of datasets were retrieved from published graphics, 26% came from person-
al communications (from the government or a private data collector), 23% came 
from published tables that used only a mild aggregation (e.g. counting fish for 
each possible length-age class), 10% came from internet repositories, 8% from 
locally distributed reports, and one from another secondary source. The selec-
tion process was not uniform over the sources; local reports and government 
communications met the selection criteria best (about 2/3 of them were selected) 
and published graphics worst (all removed by lack of data or ages). 

The finally retained 11 datasets could be further split by species and by gend-
er, resulting in 15 fish data (Table 2). They inform #1 about Brown Trout (Sal-
mo trutta); #2 about Cabezon (Scorpaenichthys marmoratus); #3 about Fresh-
water Drum (Aplodinotus grunniens); #4 - 5 about Lake Trout (Salvelinus na-
maycush) of the Siscowet strain; #6 about Rainbow Trout (Oncorhynchus my-
kiss); #7 about Rock Bass (Ambloplites rupestris); #8 about Round Whitefish 
(Prosopium cylindraceum); #9 about Smallmouth Bass (Micropterus dolomieu); 
#10 about Striped Bass (Morone saxatilis); and #11 - 15 about Walleye (Sander 
vitreus).  

The authors did not aim at including data retrieved from diagrams. For, when 
retrieving data from diagrams, then the information about multiplicity is lost. 
For example, digitalizing Figure 3 could (at best) identify 6489 different da-
ta-points but it could not discern the 13,677 duplicates (67.8% of the data). Fig-
ure 5 illustrates that the duplicates were not distributed uniformly across all age 
classes, which could impact the data fit. Further, authors did not consider tables 
of average size at age, which were readily available in literature, as for such high-
ly aggregated data optimization would have to assume equal weights for each  
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Table 2. Characteristics of the data. 

No. Locationa Sexb Data Duplicates Sizec Ages Conversiond of L in M 

#1 Bois Brule River U 224 84.8% inch 7 0.01127 × (L × 2.54)2.96 

#2 Oregon Coast F 299 62.2% cm 13 0.02914 × L3 

#3 Lake Erie U 1577 60.6% mm 13 0.0483 × (L/10)3 

#4 
Lake Superior 

M 94 34.0% gram 10 
none 

#5 F 104 29.8% gram 15 

#6 Bois Brule River U 627 90.3% inch 8 0.0101 × (L × 2.54)3.063 

#7 Lake Ontario U 1288 72.7% mm 9 0.0314 × (L/10)2.923 

#8 Lake Superior U 995 77.0% inch 9 0.00885 × (L × 2.54)3.223 

#9 West Bearskin Lake U 445 35.5% mm 11 0.00469 × (L/10)3.2 

#10 Atlantic coast U 1201 84.4% inch 18 0.00945 × (L × 2.54)2.907 

#11 
Lake Erie 

M 20,166 67.8% gram 20 
none 

#12 F 13,155 60.9% gram 17 

#13 
Mills Lacs Lake 

M 6414 88.2% mm 17 

0.02914 × (L/10)3.008 #14 F 8169 88.5% mm 16 

#15 Red Lakes U 1543 64.2% mm 6 

aLocations from the USA; bF female, M male, U unsexed; cSize at age in years; dConversion into gram. 

 

 
Figure 5. Catch curve for data #11 of Figure 3 (male Walleye from Lake Erie, USA) based 
on (a) all data and (b) data without duplicates (lower bars). The figure counts, how many 
fish were observed for each age-class. 
 
average value, although these values represented samples of different sizes. Some 
sources [33] supplemented such data with information about the count of da-
ta-points for each age class. As was explained for optimization, data-fitting using 
geometric means plus this information would result in the same outcome as data 
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fitting using the raw data. However, as averages (arithmetic means) may differ 
significantly from geometric means (Figure 6), data of the form average size and 
count at age were not considered, either. 

Table 3 and Figure 1 summarize the results of data fitting. All data were 
plotted to check their plausibility (For one dataset, paste & copy changed age 10 
to age 1 generating a U-shaped growth curve; this was then corrected). All data 
had between 30% - 90% duplicates (Table 2). For two of the 15 selected data, the 
bounded linear growth had the best fit (least LFSS); for eight it had an acceptable 
fit (pprob ≥ 2.5%). Further, for eight data linear growth had an acceptable fit. 
Thus, for six (ca. 2/3) of data the fit by the representative for sigmoidal growth 
was not significantly more acceptable than the fit by the (simpler) non-sigmoidal 
models, whence it was considered to be futile to seek the best fitting sigmoidal 
model. Data quality appeared to matter insofar, as the percentage of data that 
were suitable for fitting sigmoidal growth models was higher for data with 16 or 
more ages (c.f. Table 2). This was insofar plausible, as many species of fish con-
tinue to grow over many years. Further, for the 15 selected data there was a sig-
nificantly positive correlation coefficient (0.69) between the number of data-points 
and the number of ages (t-test at 99.5% significance), which was plausible, too. 

Six data were identified as suitable for sigmoidal growth. For these, the optim-
al exponent-pairs (fit of the general von Bertalanffy-Pütter model) were com-
puted (Table 4). Figure 1 plots the location of the optimal exponent-pairs in re-
lation to the traditional named models with assumed exponent pairs. Apparent-
ly, the optimal exponent-pairs were unrelated to any model or model class (ex-
cept for one Walleye close to the West model). All exponent-pairs were remote 
from the Gompertz-class (diagonal a = b), from the non-sigmoidal class (a = 0 
and b > 0) and (except for Smallmouth Bass) from Richards’ model (a = 1 and 
b > 1). In comparison, the exponent-pairs seemed to be close to the generalized 
von Bertalanffy models (b = 1 and a < 1), but for the two species (Bass) the ex-
ponent a > 1 was incompatible with this model class. Also the distances between 
 

 
Figure 6. Mass-at-age data #3 (blue) about Freshwater Drum from Lake Erie, arithmetic 
mean (red) and geometric mean (green), using a conversion of length-at-age data. 
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Table 3. Comparison of three models to test the sigmoidal shape of the data. 

No 

LFSS pprob 

Sigmoidala 
Linear 

Bounded 
exponential 

Von 
Bertalanffy 

Linear 
Bounded 

Exponential 
Von 

Bertalanffy 

1 0.995 1.17 0.506 50% 0% 1% N 

2 0.727 0.818 0.566 50% 5% 36.7% N 

3 63.9 64.75 46.47 50% 9.5% 47.57% N 

4 0.693 0.636 0.61 50% 7.1% 8.6% N 

5 2.202 1.906 1.714 50% 30.5% 49.3% N 

6 7.468 1.427 1.033 3.7% 21.5% 50% N 

7 14.031 13.24 12.7584 50% 3.4% 4.0% N 

8 24.607 36.756 1.269 0% 0% 50% Y 

9 63.792 66.611 3.804 0% 0% 50% Y 

10 40.605 46.562 13.889 0% 0% 50% Y 

11 192.21 28.72 16.94 0% 0.5% 50% Y 

12 99.09 122.54 10.38 0% 0% 50% Y 

13 170.79 3.81 8.55 0% 50% 0.1% N 

14 73.1 32.95 19.43 0% 1.4% 50% Y 

15 23.12 1.94 15.84 50% 0% 0% N 

aY yes, N no. 

 
Table 4. Comparison of three models for optimality. 

No 

LFSS (top) and pprob (bottom) Exponents: new classa (top) and optimal (bottom) 

Von 
Bertalanffy 

New 
classa 

Optimal a b m0 p Q 

8 
1.269 0.385 0.385 0.488 =a + 1/3 20.0 14.98 0.88 

50% 34.7% 0% 0.483 0.837 20.0 14.9 0.74 

9 
3.804 1.853 1.841 0.973 =a + 1/3 6.1 1.22 0.16 

42.8% 50% 0.4% 1.007 1.243 6.1 1.36 0.32 

10 
13.889 3.597 3.596 1.947 =a + 1/3 699.1 0.00066 0.0000037 

0% 50% 9.0% 1.951 2.279 699.7 0.00065 0.000038 

11 
16.943 13.560 13.560 0.506 =a + 1/3 119.9 38.0 3.78 

39.7% 50% 11.0% 0.506 0.807 119.9 38.0 3.78 

12 
10.382 10.08 10.0 0.713 =a + 1/3 112.3 10.48 0.69 

50% 14.0% 1.5% 0.742 1.009 112.9 10.31 1.17 

14 
19.433 17.741 17.741 0.557 =a + 1/3 427.7 33.92 1.66 

50% 19.0% 1.6% 0.557 0.891 427.7 33.92 1.66 

aThe “new class” refers to the Parks-1/3 model explained in the Discussion section. 

 
the optimal and the von Bertalanffy exponent-pair were notable. This indicates 
that the exponent-pairs with a reasonable fit to the data (LFSS close to the mi-
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nimal LFSS) may extend over a wide region; the authors [34] observed this also 
in a different context (least squares approximation to average size at age data). 
Further, Figure 1 displayed a pattern for the approximate location of the optim-
al exponent-pairs. They were close to the dashed line b = a + 1/3, even for large 
values of the exponents. Thereby 1/3 was not the optimal difference between the 
exponents, but it was chosen, as it defines a new model class introduced in this 
paper. The Discussion will provide a biological interpretation for the difference 
d = b – a of the exponents, based on an alternative explanation of Equation (1). 

4. Discussion and Conclusion 
4.1. The Parks—1/3 Model Class 

The traditional explanation of differential Equation (1) proposed that the rate of 
growth would be proportional to the difference between anabolism and catabol-
ism, both of which would be proportional to a power of mass. Specific values of 
the exponents were then derived from biophysical arguments; e.g.: b = 1, as ca-
tabolism would be proportional to mass (number of sustained cells) and a = 2/3, 
as anabolism would be proportional to the gills’ surface (oxygen consumption) 
and therefore to the 2/3th power of mass [1]. 

The present alternative explanation of Equation (1) hypothesizes that body 
mass would be a function of the total food intake F(t) since birth (t = 0), where-
by the (individual) asymptotic mass mmax would be approached at a rate depen-
dent on instantaneous food intake:  

( ) 1
max

d
d

d d
dd

Fk
tm m

m t
t

= ⋅
−

                    (7) 

In the formula, k1 > 0 a constant of proportionality and d is a constant that 
explains the speed of growth: With the same total food intake F, with a larger d 
the asymptotic mass mmax is approached faster. This model, using d = 1, was 
proposed by Parks ([35] at p. 26), who supported it by evidence from farmed 
animals. The food consumption, which cannot be observed for wild-caught fish, 
can be eliminated by the additional hypothesis that the instantaneous food in-
take dF/dt would be proportional to the energy needs E (i.e. dF/dt = k2∙E), which 
in turn would be proportional to a power of body mass (i.e. E = k3∙ma). Substi-
tuting this into Equation (7), then after a multiplication and renaming of con-
stants (p = k1∙k2∙k3∙(mmax)d, q = k1∙k2∙k3) this simplifies to Equation (8), which is 
just another parametrization of Equation (1):  

( ) ( ) ( )
d

d
a a dm t

p m t q m t
t

+= ⋅ − ⋅                   (8) 

This parametrization suggests to consider model classes that are defined by 
assuming a value of d. As the original motivation comes from Parks, this paper 
calls this the Parks-d model class. For instance, Parks’ assumption would define 
the Parks-1 model class with bounded exponential growth (a = 0: constant ener-
gy needs) and logistic growth (a = 1: energy needs proportional to mass) as spe-
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cial cases. As the von Bertalanffy exponent-pair is a special case of the Parks-1/3 
model class, the present paper investigates this class.  

Figure 1 suggests that the Parks-1/3 model class may come close to providing 
the best-fitting description of the mass-growth of several species of fish. Figure 7 
illustrates the good fit compared to the best-fitting and the von Bertalanffy mod-
els for the six considered data. The optimization used the custom-made ap-
proach, starting with a, m0, p, q of the optimal model (setting b = a + 1/3). Table 
4 summarizes the outcome of the data-fit for this model class. In comparison to 
the von Bertalanffy exponent-pair model and the best fitting von Bertalanf-
fy-Pütter model, the Parks-1/3 model had the most acceptable fit for three data 
and an acceptable fit for the three other data, where the von Bertalanffy expo-
nent-pair model had the most acceptable fit. However, the fit of the von Berta-
lanffy exponent-pair model was not acceptable for data #10 (It was acceptable,  
 

 

 

 
Figure 7. Comparison of three models fitted to the six sigmoidal data of Table 4 (left from above: #8 - 10, right #11 - 12 and #14). 
The figure compares the geometric mean (green), the von Bertalanffy model (black), the optimal von Bertalanffy-Pütter model 
(blue, below the red curve) and the Parks-1/3 model (red). 
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when compared with the non-sigmoidal models, but the consideration of the 
best-fitting model changed the assessment). Further, the fit of the Parks-1/3 
model was nearly optimal, as seen in Figure 7: For all data the Parks-1/3 curve 
coincided with the best-fitting von Bertalanffy-Pütter curve. Consequently, the 
Parks-1/3 model was more acceptable, as it used fewer parameters.  

4.2. Conclusions 

There were surprisingly few data that supported the hypothesis of a sigmoidal 
shape of mass growth, and those did support the new Parks-1/3 model (expo-
nent-pairs b = a + 1/3).  

The 39 datasets allowed to define 70+ data using additional stratifications. 
When testing the suitability of these data for modeling sigmoidal growth, more 
than 3/4 of these data were removed due to poor data quality (insufficient size). 
Of the remaining 15 data almost 2/3 were removed due to the insufficient fit of a 
sigmoidal growth function. A speculative explanation for the insufficient fit may 
be data quality, again. There were some data with notable differences between 
the arithmetic and geometric mean (Figure 6). This difference was caused by the 
presence of atypically small fish. In case that this difference has a biological 
meaning (e.g. slow and fast growth as different survival strategies), then it may 
be meaningful to split the data and model the growth of slow and of fast growing 
fish separately.   

For all six data that were suitable for modeling sigmoidal growth, the 
Parks-1/3 model provided an acceptable fit; for 50% of the data it improved 
upon the von Bertalanffy exponent-pair model (one significant improvement) 
despite the penalty for the additional free parameter. Therefore, when compared 
to the model classes of Richards, Gompertz or the generalized von Bertalanffy 
model, the Parks-1/3 model may provide the most realistic description of the 
mass growth of fish. In particular, the advantage of this model is its considera-
tion food consumption and the flexibility gained by an additional parameter that 
for all data resulted in a near optimal fit.  
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Appendix: Annotated Mathematica Code 

Data were imported from sheet n of an Excel file, sorted (lexicographically) and 
the title line was dropped:  

dat1 = Import[“C:\\...\\filename.xlsx”]; dataraw = Sort[Drop[dat1[[n]], 1]];  
Authors first checked the size (minimum about 100), the percentage of dupli-

cates (minimum about 30% to remove data retrieved from diagrams) and the 
number of ages (minimum 6). Further, authors plotted the catch curve to check 
for irregularities.  

Length[dataraw];  
1-Length[Union[dataraw]]/Length[dataraw];  
Length[GatherBy[dataraw, First]];counts = Tally[Transpose[rawdata][[1]]];  
chartcounts =  
BarChart[Apply[Labeled, Reverse[counts, 2], {1}], AxesLabel -> {“age”, 

“count”}] 
Several data were length-at-age, using different units (inch, cm, mm); these 

were converted into mass (in g) at age, using literature values (FishBase for total 
length in cm in g). Further, the range of the data (minimal and maximal ages 
and masses) was checked and the arithmetic mean of mass at age together with 
its maximum value (for assessing empirical meaningfulness) was evaluated.  

datamass = Map[{#[[1]], cona*(#[[2]]*conunits)^conb} &, dataraw]  
/. {conunits -> unit conversion, cona -> literature value, conb -> literature 

value}; 
sort = Sort[datamass]; 
{timemin, timemax, weightmin, weightmax} =  
{Min[Transpose[sort][[1]]], Max[Transpose[sort][[1]]], 

Min[Transpose[sort][[2]]], Max[Transpose[sort][[2]]]} // N; 
gdata = GatherBy[sort, First];  
avarith = Map[Mean, gdata] // N; 
gweightmax = Max[Transpose[avarith][[2]]]; 
In order to prepare the best fit, a logarithmic transformation was applied to 

the mass data. Further, the geometric means at each age were evaluated and 
plotted together with the mass-at-age data. 

logdata = Map[{#[[1]], Log[#[[2]]]} &, sort]; 
ldata = GatherBy[logdata, First];  
avlog = Map[Mean, ldata] // N;  
avgeo = Map[{#[[1]], Exp[#[[2]]]} &, avlog]; 
dataplot =  
ListPlot[{sort, avgeo},  
PlotStyle -> {{PointSize[0.01], Blue}, {PointSize[0.015], Green}},  
AxesLabel -> {“age in years”, “mass in gram”}, PlotRange -> All,  
PlotLegends -> {“data”, “geometric mean”}]; 
The optimization goal was the minimization of LFSS as a function ssr of the 

exponents a, b, the initial value m0 = c and the parameters p, q (?NumberQ de-
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fines these as numeric variables). This function was defined from using a nu-
meric solution f = sol of the differential Equation (1); thereby the Block-method 
was used to define local variables:  

ssr[a_?NumberQ, b_?NumberQ, c_?NumberQ, p_?NumberQ, q_?NumberQ] :=  
Block[{sol, f},  
sol = NDSolve[{f'[t] == p*f[t]^a - q*f[t]^b, f[timemin] == c}, f,  
{t, timemin, timemax}][[1]]; 
Sum[counts[[n, 2]]*(Log[f[avlog[[n, 1]]] /. sol] - avlog[[n, 2]])^2,  
{n, 1, Length[avlog]}]];  
The subsequent optimization using Simulated Annealing was conducted by 

the same scheme for each test model: linear growth, sigmoidal von Bertalanffy 
growth, non-sigmoidal bounded growth. For linear growth, the constraints m0 > 
0 for the initial value and p > 0 for the rate of increase were added. For the other 
growth functions these constraints were restricted further: The initial value was 
constrained to exceed 10% of the least observed mass and the parameter q was 
constrained so as to ensure an empirically meaningful asymptotic mass. Further, 
the optimal growth curves, the data and the geometric means were plotted and 
finally LFSS was compared:  

optlin =  
NMinimize[{ssr[0, 0, c, p, 0], c > 0, p > 0}, {c, p}, Method -> “SimulatedAn-

nealing”]; 
optbert = NMinimize[{ssr[2/3, 1, c, p, q], c > weightmin/10, p > 0,  
q > p/(2*gweightmax^(1/3)), q < p/(0.5*gweightmax^(1/3))},  
{c, p, q}, Method -> “SimulatedAnnealing”]; 
optexp = NMinimize[{ssr[0, 1, c, p, q], c > weightmin/10, p > 0,  
q > p/(2*gweightmax), q < p/(0.5*gweightmax)}, {c, p, q},  
Method -> “SimulatedAnnealing”]; 
lin = f /. NDSolve[{f'[t] == p, f[timemin] == c} /. optlin[[2]], f,  
{t, timemin, timemax}][[1]]; 
linplot = Plot[lin[x], {x, timemin, timemax}, PlotStyle -> Dashed]; 
bert = f /. NDSolve[{f'[t] == p*f[t]^(2/3) - q*f[t], f[timemin] == c} /. opt-

bert[[2]], f, {t, timemin, timemax}][[1]]; 
bertplot = Plot[bert[x], {x, timemin, timemax}, PlotStyle -> Black]; 
exp = f /. NDSolve[{f'[t] == p - q*f[t], f[timemin] == c} /. optexp[[2]], f,  
{t, timemin, timemax}][[1]]; 
explot = Plot[exp[\[FormalX]], {\[FormalX], timemin, timemax}, PlotStyle -> 

Red]; 
Show[{ListPlot[sort, PlotStyle -> {PointSize[0.01], Blue}],  
ListPlot[avgeo, PlotStyle -> {PointSize[0.015], Green}], linplot, explot, 

bertplot},  
AxesLabel -> {“age in years”, “mass in gram”}, PlotRange -> All] 
{lfsslin, lfssbert, lfssexp}={optlin[[1]], optbert[[1]], optexp[[1]]} 
Models were compared using PAIC and pprob:  
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paic[sse_?NumberQ, n_?IntegerQ, m_?IntegerQ, k_?IntegerQ] :=  
m*Log[sse/n] + 2*k + 2*k*(k + 1)/(m - k - 1); 
probaic[x_, y_] = Exp[-(x - y)/2]/(1 + Exp[-(x - y)/2]); 
pseudoaics =  
{paic[lfsslin, Length[sort], Length[counts], 3],  
paic[lfssexp, Length[sort], Length[counts], 4],  
paic[lfssbert, Length[sort], Length[counts], 4]}; 
minaic = Min[pseudoaics]; 
pprob =  
{probaic[pseudoaics[[1]], minaic], probaic[pseudoaics[[2]], minaic],  
probaic[pseudoaics[[3]], minaic]}; 
The custom-made simulated annealing started with the optimal parameters 

for the Von Bertalanffy exponent-pair model and followed the procedures ex-
plained in text, whereby the logarithm of LFSS was optimized. Also this optimal 
growth function was plotted. 

{a0, b0, c0, p0, q0} = {2/3, 1, c, p, q} /. optbert[[2]]; 
sse = ssr[a0, b0, c0, p0, q0]; llh = - Log[sse]; 
{ssemin, amin, bmin, cmin, pmin, qmin} = {sse, a0, b0, c0, p0, q0}; 
\[Alpha] = 1.0; s = 0.01; 
Do[ 
If[Mod[i, 10000] == 0, \[Alpha] *= 0.9;  
Print[i, “   ”, \[Alpha] s];  
{sse, a, b, c, p, q} = {ssemin, amin, bmin, cmin, pmin, qmin}]; 
{ac, bc, cc, pc, qc} = RandomReal[{1 - \[Alpha]*s, 1 + \[Alpha]*s}, 5] {a, b, c, 

p, q}; 
ssec = ssr[ac, bc, cc, pc, qc]; llhc = -Log[ssec]; 
If[Log[RandomReal[]] < (llhc - llh)/\[Alpha], {a, b, c, p, q} = {ac, bc, cc, pc, 

qc}]; 
sse = ssec; llh = llhc; 
If[sse < ssemin,  
Print[i, “   ”, {ssemin, amin, bmin, cmin, pmin, qmin} =  
{sse, a, b, c, p, q}]], {i, 500000}]  
puett =  
f /. NDSolve[{f'[t] == pmin*f[t]^amin - qmin*f[t]^bmin, f[timemin] == 

cmin}, f,  
{t, timemin, timemax}][[1]]; 
puettplot = Plot[puett[x], {x, timemin, timemax}, PlotStyle -> Blue];  
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