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Abstract 
A numerical method for simulating the stability of particle-packing structures 
is presented. The packing structures were modeled on the basis of face-centered 
cubic (fcc) and body-centered cubic (bcc) structures, and the stability of these 
structures was investigated using the distinct element method. The interac-
tion between the particles was simplified by considering repulsive, adhesive, 
and damping forces, and the stability against the gravitational force was si-
mulated. The results under a certain set of parameters showed characteristic 
deformation when the particles were arranged in an fcc array. Focusing on 
the local structure, the resulting model was divided into several domains: The 
bottom base, four top corners, and intermediate domains. The bottom base 
notably became a body-centered tetragonal (bct) structure, which corres-
ponds to a uniaxially compressed bcc structure. Conversely, the models based 
on the bcc arrangement were structurally stable, as no specific deformation 
was observed, and a monotonously compressed bct structure was obtained. 
Consequently, the bcc arrangement is concluded to be more stable against 
uniaxial compression, such as the gravitational force, in a particle-packing 
system. 
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1. Introduction 

Particle packing is an interesting problem both in engineering and in science [1] 
[2] [3]. For instance, as spherical balls are going to be packed in a box as many as 
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possible, the best solution for this problem is found at the atomic scale; i.e. 
face-centered cubic (fcc) or hexagonal close-packed (hcp) structures, which pro-
vide the highest density of spheres (74% volume fraction) as well as secondary 
candidate of body-centered cubic (bcc) structure (68% volume fraction). The 
planar closest packing is brought by a hexagonal array, similar to (111) fcc plane. 
However, the aspect ratio of the basal plane cannot be expressed by small integer 
ratio, which renders the preparation of a container box difficult. Particle packing 
is also utilized for a variety of purposes, one of which is material processing. For 
instance, some sort of intermetallic or ceramic materials are manufactured by 
aggregating small particles in a cast and sintering them at a high temperature [4] 
[5]. In addition, various types of porous materials can be fabricated by setting 
many particles in a certain structure, filling the vacant spaces by liquid or slurry, 
and removing the particles afterward [6] [7] [8] [9]. In these processes, the par-
ticle-packing structure, as well as the shape and size of particles, dominantly af-
fects the quality of the materials, and hence, the control of the structure is criti-
cal [10] [11]. However, as arranging each particle individually is unrealistic in a 
multi-particle system, utilizing a self-organizing ordered structure is practically 
effective. In that sense, naturally-obtained structures, such as those in metallic or 
mineral crystals, are potential candidate for forming optimal structures. 

In this study, the stability of particle-packing structures is investigated. As the 
experimental setup induces complexities and difficulties in general, computer 
simulation is quite effective. The distinct element method (DEM) [12] [13] [14] 
[15], or synonymously termed the discrete element method depending on the 
application field, is one of the most suitable methods for the present purpose, in 
which an equation of motion for every particle in the system is solved numeri-
cally. Various interactions between the particles can be included depending on 
physical, chemical, and actually practical conditions, while simple two-body in-
teractions are considered in this study [16] [17]. The particles are arranged at 
lattice points of fcc and bcc structures, and their stability under the force of 
gravity is investigated. 

2. Distinct Element Method 

In DEM, each particle is considered an individual element, whereas occasionally 
a continuum medium is assumed to be divided into the particular element. The 
latter case is often applied in the soil dynamics in civil engineering and fluid dy-
namics in mechanical engineering fields. In this study, the former situation is 
applied to treat particles directly. Various types of physical or chemical interac-
tions between the constituent particles are formulated, and the equations of mo-
tion are solved numerically. The fundamental equation for this method is as fol-
lows: 

i i i i i i i
r a d f gm = + + + +a F F F F F                   (1) 

Here, m is the mass of a particle, a is the acceleration, and Fr, Fa, Fd, Ff, and Fg 
are the repulsive, adhesive, damping, frictional, and gravitational forces, respec-
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tively. Superscript i represents the variable for the i-th particle, and i denotes any 
value between 1 to N, where N is the total number of particles in the system. In 
general DEM, the momentum equation for rotation is also considered, but in 
this study, only the equation for translation is considered for simplicity. The re-
pulsive force is a result of the contact between the particles, and a linear elastic force 
is assumed. The adhesive force is introduced to prevent the separation of the par-
ticles, and another linear force is assumed. The following equations are utilized: 

( )0i ij
r r r

j
K r r= − −∑F n  (for 0ij

rr r< )               (2) 

( )0i ij
a a a

j
K r r= − −∑F n  (for 0 ij c

a ar r r< < )             (3) 

Here, Kr and Ka are the spring constants, rij is the distance between the i-th and 
j-th particles, and 0

rr  and 0
ar  are the contact distances at which the repulsive 

and adhesive interactions begin to act, respectively. The c
ar  is the cut-off dis-

tance for adhesive force, and n is the unit vector connecting the center of the i-th 
and j-th particles. 

A damping force proportional to the velocity is included to avoid long-term 
oscillation. The normal component of the relative velocity ij

nv  between the i-th 
and j-th particles within a cut-off distance c

dr  is utilized for the calculation with 
the parameter Cd, as follows: 

i ij
d d n

j
C v= −∑F n                        (4) 

The summation operators in Equations (2)-(4) are applied for the particles 
around the target particle i within a certain cut-off distance. 

The frictional force i
fF  is neglected in this study for simplicity. It may occa-

sionally have a certain influence on the stable structure and rotation of the par-
ticles, but there are many unclear properties such as the values of static and dy-
namic coefficients of friction, influence of the surface conditions, and the shape 
of each particle. These effects will be further investigated in our future work. Fi-
nally, the force of gravity i i

g m=F g  is applied, where g is the acceleration vec-
tor of gravity. 

3. Simulation Model and Conditions 
3.1. Model Preparation 

Figure 1 represents an example of the simulation models, as a snapshot after 
sufficient relaxation steps from the initial arrangement. All particles are com-
plete spheres and identical in diameter. The particles are set on lattice points of 
an fcc structure so that the (001) plane is on the base (x-y) plane, and 10.5 × 10.5 
× 10.5 unit cells are arranged. Here, “0.5 cells” are counted in order for symme-
try of the opposing surfaces. The direction of the gravity is set along the z-axis. 
The colors in Figure 1 indicate the coordinate number, which is the number of 
particles in contact with the target particle. In the bulk region, the value is 12 for 
the complete fcc structure, while the surface, edge, and corner particles have 
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Figure 1. Illustration of the simulation model. The color indicates the coodinate number 
of each particle; red and blue represent the highest and lowest numbers, respectively, with 
a corresponding gradient between them. 

 
values of 8, 5, and 3, respectively. The particles are assumed to be surrounded by 
a square box to prevent collapse of the structure before settling in a stable state. 
The particles sank in the z-direction as a result of gravity preserving the 
face-centered tetragonal unit, as shown in Figure 1(b), where the square, drawn 
by a thin line, represents the original outline. 

The outer box is then removed. The particles on the base are permitted to 
move on the x-y plane. The friction between the base and particles is not consi-
dered, but the outer particles are permitted to be in a certain distance away due 
to the adhesive force from the inner particles. The stability of the structure is in-
vestigated by observing the change in overall deformation and in local structure 
under this condition. 

3.2. Simulation Models and Conditions 

In addition to the fcc model, a bcc model is also prepared. The (001) plane is set 
on the base (x-y) plane, and unit cells are arranged along the three axes. The 
number of cells is varied, and every model is termed, such as fcc-10-10-10 model 
or bcc-15-10-10 model. Note that the number of particles in the unit cell of fcc 
and bcc is 4 and 2, respectively, and the total number of particles is twice many 
in fcc despite the same number in cell ID. The radii of the particles are set to be 
identical for all particles. 

Equation (1) was solved numerically from i = 1 to N through the forward dif-
ference operation with a time increment of Δt. The initial 3000 time steps al-
lowed the model to relax out of its initial configuration under the force of gravi-
ty. After these time steps, the outer box was removed, and the calculations were 
continued until the model reaches a new stable state. The values of the model 
parameters are listed in Table 1. It has to be noted that all values are dimension-
less and are determined by trial and error. Their influence on the results is dis-
cussed later. 

4. Simulation Results and Discussion 
4.1. Fcc-10-10-10 Model 

Figure 2 represents the simulation results for fcc-10-10-10 model. Configuration  
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Table 1. Simulation parameters. All variables are non-dimensionalized values. 

m 0.1 Kr 200.0 Ka 100.0 Cd 10.0 

R 0.5 0
rr  1.0 0

ar  1.0 c
dr  1.2 

Δt 0.01   c
ar  1.2 g  9.8 

 

 
Figure 2. Simulation results for fcc-10-10-10 model: (a) Configuration of particles after 
relaxation. The color indicates the coordination number, and the thin line represents the 
original outer box. (b) Temporal variation of the model height, Lz, and the position of the 
center of mass, Gz, in the z direction. 

 
of particles is shown in Figure 2(a), where the color indicates the coordination 
number. The overall deformation is shown in Figure 2(a-i). The outer box, 
which was drawn by the thin line in Figure 1, was removed, and consequently 
the particles on the base moved outwards, which led to a slightly larger width on 
the bottom edge, as shown in the lateral view in Figure 2(a-ii). The lower half of 
the model sank downwards in the z-direction, and the unit cell, which was orig-
inally cubic, became tetragonal with a shorter edge in the z-direction. In the up-
per half of the model, the center of the top surface sank, and the top surface be-
came concave. Accordingly, the side surfaces were folded, and the vertical side 
edges declined in the middle, as shown in Figure 2(a-ii). The top view, in Fig-
ure 2(a-iii), exhibits clear symmetry in deformation. 

Figure 2(b) shows time variation of the model height, in which Lz represents 
the maximum value in the z-coordinate of particle positions, and Gz is the 
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z-coordinate of the center of mass of the whole model. Both of these metrics de-
creased due to gravity during the first stage of the simulation reaching equili-
brium values within the box. The snapshot in Figure 1 was captured at the 
3000th time step. The outer box was then removed after the 3000th time step, and 
the height metrics dropped sharply again, as the model deformed. A steady state 
was achieved by the 5000th time step following a slight oscillation. The snapshots 
in Figure 2 and hereafter were captured at the 20,000th time step, sufficiently 
long to allow for a complete equilibrium. 

4.2. Change in Local Structure 

Following the above-mentioned considerations, the deformed model was di-
vided into four regions, as shown in Figure 3(a), consisting of Region A: bottom 
base, Region B: side corners, Region C: middle center, and Region D: center in 
the top surface. Schematic illustrations of the unit cells in Regions A and B are 
shown in Figure 3(b). The cell in Region A is rectangular in the x-z plane with 
an aspect ratio represented by b/a, where a and b are the horizontal and vertical 
edges, respectively, and b is smaller than a. The relative positions of the particles 
in the unit cell are kept face-centered, and hence the structure is considered a 
face-centered tetragonal (fct) structure. Here, the relation between fct and bcc 
structures is known as Bain’s relation, which is illustrated in Figure 3(c). The 
unit cell of an fct structure is depicted in light blue, and the particles are set on 
the vertices and face-centered positions. The solid black line represents a half 
part of another unit cell found in the structure, in which the particles are on the  

 

 
Figure 3. Domain division on the basis of the local packing structure (a), a schematic il-
lustration of the local packing structure (b), and Bain’s relation between fct and bcc 
structures (c). 
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vertices and body-centered positions. When the aspect ratio of the fct cell (light 
blue) is 1 2  = 0.707, the other cell (black line) becomes cubic and the struc-
ture is bcc. Now, the aspect ratio measured in Figure 3(a) is approximately 
5.0/7.0 = 0.714, which almost matches the ideal value. Therefore, it indicates that 
the particle arrangement in the bottom base region is transformed from fcc to 
bcc because of the gravitational force.  

Such a drastic change in structure is not observed in Region B, in which the 
cell is leaning, as shown in Figure 3(b-ii). The gray line in the figure represents 
the [101] direction, which forms a 45˚ angle from the x-axis in the original fcc. 
When the structure in Region A became bcc, the angle θ shown in Figure 3(b-i) 
is represented as tan−1 b/a (<45˚). The lean angle α is expected to render the 
orientation of Region B consistent with that of Region A. The angle α measured 
in Figure 3(a) is approximately 9˚, and the [101] direction is 45 − α= 36˚. The 
measured edge-length ratio in Region A is approximately b/a = 5.0/7.0, and hence, 
the measured θ is approximately 36˚, showing good accordance with each other. 

4.3. Differently-Sized Models 

Subsequently, simulations were performed by varying the size of the model, and 
the influence on the structure obtained is discussed. Based on the results for the 
previous 10-10-10 model, 15-10-10 and 20-20-20 models were applied to inves-
tigate the effect of asymmetry in width and depth directions, and the effect of the 
total volume, respectively. 

Figure 4(a) and Figure 4(b) represent the results for fcc-15-10-10 and 
fcc-20-20-20 models, respectively. In both cases, the overall deformation is simi-
lar to that in 10-10-10 model. Concerning region division by local structure, the 
bottom base region A and the side corner region B are similarly determined. The 

 

 
Figure 4. Simulation results for variously-sized models. 
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top central region D is observed in 20-20-20 model, as shown in Figure 4(b), but 
does not appear in 15-10-10 model. This is apparently the influence of asymme-
try on the x and y edge lengths. Alternatively, a band-like zone is observed on 
the top surface in 15-10-10 model, as shown in Figure 4(a). In lateral views (x-z 
plane) for both cases, the top-center regions appear between the side corner re-
gions, where the top surface is flatter than the corner regions. The width of the 
corner region is determined as a few unit-cell widths from the vertex, and the tilt 
angle of the central region converges to zero as the edge length in the width di-
rection becomes longer. 

Additionally, in 20-20-20 model, a clear border in color appeared in the bot-
tom base region. The unit cell is rectangular due to vertical compression, as ex-
plained in the previous section. This effect is more severe as the model size is 
larger, owing to the weight of the upper particles. Therefore, the aspect ratio be-
comes smaller in the lower part, and the coordinate number increases. The change 
in the aspect ratio is continuous, but the coordinate number is discontinuous, as it 
is defined by integers. In addition, the border is along the [101] direction from 
the bottom corner, and the particle density becomes higher in the lower region. 
As a result, a regular hexagonal shape is observed, as shown in Figure 4(b). 

4.4. Differences in Packing Structure 

In the previous sections, the particle-packing structure transformed from fcc to bcc 
in the bottom-base region where the effect of the gravitational force was severe. 
This indicates that bcc is superior to fcc structure against a uniaxial load. In order to 
verify this, a model in which the particles were initially arranged on the bcc lattice 
was prepared, and simulations under the same conditions were demonstrated. 

Figure 5(a) and Figure 5(b) represent the results for bcc-15-15-15 and 25-15-15  
 

 
Figure 5. Simulation results for bcc models. 
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models, respectively. In both cases, the overall shape of the model did not 
change, while the side faces leaned inwards slightly. Focusing on the local struc-
ture, the edge length in the vertical direction is shortened, and consequently, the 
coordinate number becomes larger as the bottom approaches. However, the 
body-centered positions are preserved and the local structure is independent of 
the model size. Therefore, it is concluded that the bcc arrangement is more sta-
ble than the fcc against a uniaxial load such as the force of gravity. 

4.5. Effects of Calculation Parameters 

Critical parameters among those in Table 1 that affected the qualitative results 
of the simulations were repulsive coefficient Kr, adhesive coefficient Ka, and 
damping coefficient Cv. The effect of the mass of each particle, m, is qualitatively 
equivalent to that of the parameters in the right-hand side of Equation (1). 
Therefore, the values in Kr, Ka, and Cv were varied and the results are presented 
in Figure 6. 

Figure 6(a) represents the deformation results for the combinations of Kr = 
100, 200, and 400; Ka = 50, 100, and 200, in which Figure 6(a-v) is the reference 
result shown in Figure 2. When both parameters were doubled by keeping the 
ratio Kr/Ka = 2, the particle packing became rigid. Consequently, the initial con-
figuration of particles and the overall shape were maintained, as shown in Fig-
ure 6(a-ix). In contrast, when Kr and Ka were both halved, the depression in the 
z direction became far pronounced, and the density in the bottom-base region 
increased, as shown in Figure 6(a-i). These results reflect the effects of particle 
mass: Figure 6(a-i) and Figure 6(a-ix) correspond to the results for heavier and 
lighter particles, respectively, which is apparently coherent. Changes in the ratio 
of Kr/Ka resulted in different deformation mode: Irregular structures were ob-
tained when the adhesive force was relatively weak, as in Figure 6(a-ii) and 
Figure 6(a-iii), and rather homogeneous structures with expanded base region 
were obtained when the repulsive force was weak, as shown in Figure 6(a-vii). 

The effect of the damping-force parameter Cv is best depicted in terms of 
temporal evolution. Figure 6(b) shows the variation of the model height for Cv = 
10, 5, and 0. When the damping force is excluded entirely (i.e. Cv = 0), the oscil-
lation after the removal of the outer box is evident. Its influence is not only in 
the transient process but also to the final structure, as the convergent value is not 
identical. However, the difference between Cv = 5 and Cv = 10 is minimal, so a 
stable structure is consistently obtained if a proper value is applied to prevent 
highly dynamic oscillations. 

5. Conclusions 

In this study, a numerical method for simulating the stability of particle-packing 
structures was presented. The fcc and bcc structures were applied as the initial 
arrangements. The fcc arrangement resulted in apparent deformation under a 
certain set of parameters. The resulting model was divided into several domains  
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Figure 6. Effects of parameters Kr, Ka, and Cv. The base parameters other than the target parame-
ter are taken as listed in Table 1. In Figure (a), the color represents the coordination number with 
the same range as Figure 2, and Figure (v) is the reference result shown in Figure 2. 

 
based on the local deformation mode: the bottom base, each of the four corners, 
and the intermediate domains. Especially, it was notable that the local structure 
in the bottom base region transformed into body-centered tetragonal (bct) 
structure, which corresponds to a uniaxially compressed bcc structure. In con-
trast, the models based on a bcc arrangement did not display deformation, and a 
monotonously-compressed bct structure was obtained. Consequently, the bcc 
arrangement for particle-packing is concluded to be more stable against uniaxial 
compression. 
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For further exploration, other structures and orientations should be consi-
dered, since the fcc array might be more stable if the (111) plane is set on the 
base plane. We are also exploring the optimal packing on a curved surface [18]. 
As for the accuracy of the computational model, the contact conditions should 
be improved as well as quantitative estimation of the parameters. The influence 
of the variation in particle size and shape is also to be explored for application to 
more practical problems. 
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