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Abstract 
An agent-based simulation model hierarchy emulating disease states and behaviors critical to 
progression of diabetes type 2 was designed and implemented in the DEVS framework. This model 
was built to approximately reproduce some essential findings that were previously reported for a 
rather complex model of diabetes progression. Our models are translations of basicelements of 
this previously reported system dynamics model of diabetes. The system dynamics model, which 
mimics diabetes progression over an aggregated US population, was disaggregated and recon-
structed bottom-up at the individual (agent) level. Four levels of model complexity were defined 
in order to systematically evaluate which parameters are needed to mimic outputs of the system 
dynamics model. The four estimated models attempted to replicate stock counts representing 
disease states in the system dynamics model while estimating impacts of an elderliness factor, 
obesity factor and health-related behavioral parameters. Health-related behavior was modeled as 
a simple realization of the Theory of Planned Behavior, a joint function of individual attitude and 
diffusion of social norms that spread over each agent’s social network. Although the most complex 
agent-based simulation model contained 31 adjustable parameters, all models were considerably 
less complex than the system dynamics model which required numerous time series inputs to 
make its predictions. All three elaborations of the baseline model provided significantly improved 
fits to the output of the system dynamics model, although behavioral factors appeared to contri-
bute more than the elderliness factor. The results illustrate a promising approach to translate 
complex system dynamics models into agent-based model alternatives that are both conceptually 
simpler and capable of capturing main effects of complex local agent-agent interactions. 
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1. Introduction 
Systems science methodologies have received increased attention in recent years in response to elevated pres-
sures to more accurately represent complexity and actual behaviors of large-scale systems such as healthcare de-
livery markets. However, in the current state-of-practice of system science modeling, there exist few examples 
of methodologies to translate models from one type to another. Moreover, there is little guidance regarding the 
amount of complexity required to emulate the actual system being modeled. This situation limits the ability to 
approach systems science models of complex systems simultaneously from the perspectives of multiple metho-
dologies. Our objectives here are two-fold. First, we focus on the translational barrier separating system dynam-
ics and agent-based simulation (ABS) models. We demonstrate by example a methodology to develop a parsi-
monious ABS model of diabetes mellitus type 2 disease progression (ABSDM2). We show how basic ele-
ments of a validated system dynamics (SD) model of diabetes type 2 (SDDM2) can be transferred into the 
ABS domain in order to mimic the elementary dynamics of a health system in multi-agent space. Our baseline 
ABSDM2 model is referred to here as the uncoupled model because stocks and flows are assigned levels and 
rates according to static parameters unrelated to age, obesity and health behavior dynamics. The second objec-
tive is to formulate a principled approach to systematically enlarge model complexity to better account for 
available health system data, while at the same time constraining the growth of complexity of the models 
beyond their ability to adequately explain more data. We accomplish this objective by carefully defining a sim-
ple hierarchy of parameterized models of increasing depth or detail. The entire model system consists of three 
child model types, each of which have a different nesting relationship to a parent uncoupled model, as illustrated 
in Figure 4. Each child model inherits the basic structure of the uncoupled model, but adds model detail in dif-
ferent ways by focusing on different factors. Estimating parameter values for the four models was accomplished 
with the assistance of a global search procedure (simulated annealing). 

In evaluating parameterized ABSDM2 models, we not only measure the extent to which they reproduce target 
behaviors as stocks and flows, but also examine the time histories of specific state variables in terms of their in-
terpretability in light of observed trends in health status and health behavior in the SDDM2 model. These state 
variables (i.e., elderliness, obesity prevalence, healthy behaviors) are not quantitatively fitted to data measuring 
similar quantities; however, they do play a role in determining diabetes mellitus type 2 (DM2) progression. We 
pursue these objectives in the healthcare domain by examining the progression of DM2 in the general US adult 
population from 1980 to 2000. The next sections describe SD and ABS methodologies in some detail followed 
by a detailed description of the ABSDM2 model. After describing the methodology used to fit model hierarchy 
parameters to the outputs of the SDDM2 model, results are presented and explained with an emphasis on deter-
mining which factors are required to adequately reproduce the outputs of the SDDM2 model. The methodology 
is further illustrated with a counterfactual example. We conclude with a few general observations. 

2. Systems Science Methodologies 
The US adult healthcare system is an example of a large-scale complex system that is amenable to systems 
science approaches to analytics. Systems science methods “are designed to address complexity, that is, change 
over time, nonlinear relationships, bidirectional relationships (feedback loops), time-delayed effects, and emer-
gent properties of the system—phenomena that are observed at the system level but cannot usually be causally 
linked to a single individual component of the system.” [1]. Two important members of this family of metho-
dologies are agent-based simulation and system dynamics modeling.  

A fundamental dynamic in healthcare delivery systems is the behavioral interaction between patient and phy-
sician (provider). This basic interaction can itself be further analyzed for various dynamic behaviors, predisposi-
tions, intervention choices, etc. A generalization beyond the patient-provider interaction has diverse additional 
components as described in Figure 1. The figure, itself a more detailed elaboration of the workflow defined in 
[2], shows behaviors, influences, and other elements of a healthcare “knowledge core” which can be called out 
as modules and parameters in an individual simulation model. Each interaction between agents has its own cha-
racteristics, and modeled actions to be taken. Because many aspects of the healthcare system are not known in 
detail, the ABS must be constructed modularly in order to allow testing many different component models. This 
is done quite naturally by defining a family of embedded models that proceeds from the conceptually simple to 
more complex models. 

A SD model is an aggregated description of a complex dynamic system consisting of a causal structure un- 
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Figure 1. High-level modeling flow of healthcare delivery. 

 
dergirded by “an interlocking set of differential and algebraic equations” [3]. Causal factors, other influences 
and inputs are integrated and refined by the analyst in the form of stock and flow diagrams in order to capture 
the essential causal structure of the system. The flows between stocks not only denote direction of causality, but 
outline complex feedback loops of the system. There are many software packages available to implement SD 
models. 

The SD approach to modeling healthcare for chronic conditions is already fairly mature (e.g., see [4]-[6]). 
Behaviorally significant states of diseases such as DM2 have previously been represented at a resolution appro-
priate for a SD model; here we build upon this work, focusing our efforts on behavioral and cognitive issues, 
albeit rudimentary, which have received scant attention in previous attempts to model DM2 and other chronic 
conditions. To demonstrate some of the advantages of policy simulation using agent-based simulation, we trans-
lated a well-known SD model of DM2 [7] into an agent-based model, and augmented the basic model with be-
havioral and cognitive components.  

An ABS model is a “collection of autonomous decision-making entities called agents. Each agent individually 
assesses its situation and makes decisions on the basis of a set of rules” [8]. Instead of presenting an aggregated 
view of a complex system, it disaggregates the system, populating it with individual entities from the bottom-up, 
thereby allowing the system-level behavior to emerge from interactions among individual agents. The ABS ap-
proach benefits greatly from adopting principles of object (agent)-oriented design. 

The ABS paradigm can provide a general framework to simulate healthcare systems by adhering to a more 
disciplined approach to ABS design methodology. Our ABS model for healthcare delivery systems relies on in-
creasingly recognized ABS strengths [9] [10] including: 1) ability to capture and measure emergent behavior of 
complex systems (bottom-up instead of top-down); 2) fewer required distributional assumptions regarding times 
to transition between states; 3) allowance for local interactions between individual agents—non-homogeneous 
effects of diffusions; and 4) ability to handle health disparities and geographic variation at unprecedented reso-
lution. It also incorporates most features on the recently formulated SIMULATE checklist, including systems, 
interactions, understanding, loops, agents, time and emergence [11]. 

It is increasingly being recognized that SD and ABS approaches are complementary methodologies sharing a 
great deal of mutual ground in the kinds of systems for which they provide suitable modeling architectures [12]. 
SDM and ABS modeling domains converge if systems being modeled contain large numbers of active objects 
with at least limited agency, internal or private states, and discrete external behavior. In examining correspon-
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dences between SD and ABS approaches, one set of investigators concluded that ABS “is more general and po-
werful because it enables to capture more complex structures and dynamics,” and that it “provides for construc-
tion of models in the absence of the knowledge about the global interdependencies.” [13]. This is consistent with 
our position because we use a smaller number of structures to capture mean and covariance structures in time 
series health data. For example, it has been recently demonstrated how the often-used Bass diffusion model in 
aggregate SD models can be mimicked by a simple disaggregated ABS model where the locus of diffusion is at 
the individual level, and that can easily be generalized to more complex types of diffusion in order to capture 
multiple social influence states, heterogeneity and social structure [14]. 

3. Agent-Based Simulation Implementation Approach 
We elected to adopt modern software engineering best practices and methodologies that are grounded in ma-
thematical systems theory to develop an ABS model that is robust, scalable and modular. Accordingly, we se-
lected the Discrete Event System Specification (DEVS) formalism, itself a simulation framework derived from 
systems theory that defines a system as a mathematical object and provides strong guarantees for reproducibility 
and model verification [15]-[17]. Although DEVS has been implemented primarily as a discrete event simula-
tion engine, it is general enough to be cast as an agent-based orientation. We used a Java implementation of the 
“adevs” framework to develop the models introduced in this paper1.  

Many existing agent-based simulation environments are founded on an underlying discrete time model as an 
approximation of continuous time, e.g., events and agent updates occur at equal-step discrete time intervals (e.g., 
the positive integers). The risk in adopting the discrete time approach is that it can trigger systematically inac-
curate behaviors, diverging from the “correct” solution as the resolution of an ABS model is decreased [18]. 
Furthermore, there is little formal guidance concerning appropriate fixed time steps for a discrete time model in 
a given problem space. In order to avoid the possibility of divergent behavior we designed our ABS models such 
that events are scheduled in a continuous time frame, often resorting to random draws from continuous distribu-
tions such as the exponential distribution to define a time advance for scheduling a change of state. We expect 
that discrete event scheduling in continuous time may be particularly critical for handling diffusion of innova-
tions or beliefs through social networks, which may diverge considerably if the fixed time step is too long. Ad-
ditionally, true discrete event updating allows for asymmetric updating of agent profiles to be implemented na-
turally, thus avoiding scheduling issues arising from simultaneous updates of multiple (or all) agents. Although 
it is perfectly legal for agents to update simultaneously in discrete simulation time, logically they must update 
according to a strict sequence. Determining a proper update sequence is an open problem in discrete simulation. 
Random update orders are sometimes used to avoid systematic bias, but they are still vulnerable to introduction 
of additional uncertainty into simulation execution. 

4. ABS Model of Diabetes Mellitus Type 2 
We investigate systems science methods in order to illuminate the fine-grained dynamics of public healthcare 
systems. Two leading methodologies in this space are SD and ABS [19]. We build upon our research in trans-
lating a simple workforce model from an SD formalism to an ABS model [18]. First, in order to study similari-
ties and differences between ABS and SD in the healthcare domain, we developed a basic ABS model of di-
abetes using an agent-oriented DEVS framework in order to reproduce the outputs of the SDDM2 model de-
scribed in [7]. We selected this particular diabetes SD model because its acceptance within the healthcare simu-
lation community and extensive validation with historical time series data. In our initial ABSDM2 there is only 
one agent class—the individual or diabetes patient. The model is designed in such a manner as to allow addi-
tional agent classes, e.g., primary providers, secondary providers, hospitals and payers, to be added at a later 
time. However, in order to address current objectives, a single agent class is sufficient. 

4.1. Model Structure 
The SDDM2 model incorporates seven stocks or diabetes states: normoglycemic, undiagnosed prediabetes, di-
agnosed prediabetes, undiagnosed uncomplicated diabetes, diagnosed uncomplicated diabetes, undiagnosed 
complicated diabetes, and diagnosed complicated diabetes. The distinction between undiagnosed and diagnosed 
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states is important because health behavior presumably can be affected by diagnosis. A total of eighteen flow 
rates govern the dynamics of the model, including the possibility of transiting to death from any stock. Most 
state transitions are progressive, but there is the possibility of recovery from prediabetes. Stocks and flow rates 
are depicted in Figure 2 from [7]. An unpublished report by the same authors [20] contains a more detailed de-
scription of the input data to the SDDM2 model; this data was used to calibrate our ABSDM2 models. 

In order to ingest stock and flow information into our ABSDM2 model, we abandoned the “tanks with liquid” 
metaphor from SD theory, disaggregating each stock into a population of discrete individuals, agents or patients, 
each with an internal state indicating their degree of DM2 [13]. The idea here is to substitute agent states for 
stocks. Instead of estimating continuous flow rates at global levels of abstraction, time delays for individual 
agents are drawn from probability distributions in order to determine when agents transition from one state 
(stock) to another. Mean delay time in ABS models is analogous to flow rate in SD modeling. Although any 
continuous distribution could be used to model delay time, for simplicity we selected the exponential distribu-
tion. 

Three other important state variables were introduced into our ABSDM2 model hierarchy: obesity (true or 
false), healthy behaviors (true or false) and elderly (true or false). Taking all combinations of these variables, 
every patient agent was initialized into one of eight possible obese/behavior/elderly states. We defined several 
transitions between the four compositional obesity/health-behavior states as shown in Figure 3. The obesi-
ty/health-behavior state transition model is unique to the ABSDM2 modeling system and is not represented in 
the original SDDM2 model. The state names from left to right are healthy/not-obese, not-healthy/not-obese, 
not-healthy/obese, and healthy/obese. Since only a single transition may be scheduled for future enactment, if 
more than one is possible, the transition time associated with the lowest random draw is selected. For example, 
the next transition from not healthy/not obese (~H~O) is min (t2, t3). Since asynchronous updating was imple- 

 

 
Figure 2. Stock and flow diagram for diabetes mellitus type 2 model (modified from [7]). 

 

 
Figure 3. Obesity-health behavior state transition model with formulas for expected transition times. 
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mented in the ABSDM2 model, random state transition times are used instead of state transition probabilities 
executed at constant time intervals. Furthermore, state variables can dynamically influence state transition times, 
i.e., disease state and behavior are coupled. Most significantly, these states are allowed to affect the disease con-
dition trajectory; for example, sudden onset of obesity or crossing the elderly threshold can retroactively speed 
up the transition time for disease progression, just as adoption of healthy behaviors can slow disease progression 
midstream. An HO state change leads to a call of the disease state method where a revised transition time is 
computed. If the re-calculated transition time has already been exceeded, then disease state change will occur at 
the current time tick. 

Figure 3 confirms that expected times to transition between H and ~H depend critically on the individual 
agent intent to perform healthy behaviors. Obesity transitions are merely lag functions. Actual time transitions 
are random draws from exponential distributions that utilize fitted model parameters β1, β2, δ1 and δ2. In addition, 
the state transition model requires two conditional probabilities for initialization: the probability that an individ-
ual engages in healthy behaviors given they are obese, and the probability that an individual engages in healthy 
behaviors given they are not obese. The initial obesity fraction of the adult population is given in [20]. Conse-
quently, the obesity-health behavior state transition model possesses six adjustable parameters. 

There exists little guidance with respect to nominal computational models for intent formation and change in 
the agent-based simulation literature. Accordingly, we selected a parsimonious approach in keeping with our 
model development effort as a whole by defaulting to a linear model. The intent to engage in healthy behaviors 
in our model hierarchy is derived from a simplified implementation of the Theory of Planned Behavior, a popu-
lar qualitative account of intent formation. Intentis calculated using a linear weighted combination of the 
strength of a randomly selected inherent individual attitude with respect to healthy behaviors (0 ≤ A ≤ 1), a ran-
domly selected individual social influence parameter (0 ≤ α ≤ 1) and the perceived normative behavior of one’s 
peer group. This latter factor gauges the consistency of social influence on the individual. Every agent is em-
bedded in a random social network where each agent begins a simulation run with a constant number of contacts. 
The contact list grows and shrinks randomly as agents die and new agents are added to the network. Contacts for 
new agents are determined by random draw. Social influence develops from the strength of belief that a prepon-
derance of contacts in an agent’s social network is engaging in healthy lifestyle behaviors. The number of con-
tacts for each agent is a user-selected variable in the model; the default number is set at five. Agents notify their 
contacts immediately whenever they experience a change of healthy behavior status, but agents only assess be-
havior norms in their contact list periodically—an exponentially distributed variable with a mean of 0.25 years. 
In the current version of the model, social influence due to perceived norms (0 ≤ S ≤ 1) is simply the proportion 
of contacts engaging in healthy behaviors. Behavioral intent (0 ≤ I ≤ 1) is then equal to 

( )1I A Sα α= ∗ + − ∗ ,                                  (1) 

where (1 − α) is positive individual susceptibility to social influence. Independent influences on diabetes state 
are simply combined multiplicatively to calculate the mean value of the actual transition time μijk from state i to 
state j in transition mode k as 

ijk ij k kb E Bµ = ⋅ ⋅ ,                                   (2) 

where the bij are eighteen (minus one degree of freedom)baseline mean transition times as depicted in the stock 
and flow diagram in Figure 2. Multiplicative factors for elderliness (Ek) and obesity (Bk) are given by 

if age 65 if obese
;

1 otherwise 1 otherwise
k k

k k
k k

E B
ε θ
ε θ

> 
= = 
 

                     (3) 

and εk, θk > 0 are model parameters that must be estimated from data. They proportionally increment or decre-
ment by a constant factor adjustments to exponentially-distributed mean transition times in order to accommo-
date obesity and elderliness. Equivalently, these parameters arithmetically add or subtract adjustments to log 
mean transition times. Our motivation for proportional adjustment was to first try the simplest available method 
to implement the model. Elderliness and obesity factors are subscripted by k which denotes an element belong-
ing to the set of transition modes M = {onset, progression, recovery, death}. Following the convention in [20], 
the threshold for transition to elderly was set at age 65. Actual transition times are stochastic variables, the val-
ues of which are determined by random draws from an exponential distribution where the mean value is equal to 
the mean baseline transition time. For example, the actual time to transition from undiagnosed prediabetes to 
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normoglycemia is an exponential random draw where the mean value is baseline recovery time X elderly recov-
ery factor X obesity recovery factor. Adjustment factors Ek, Bk in excess of unity increase time to transition, 
whereas a value less than unity decreases time to transition. In the full agent-based model a total of 17 adjustable 
parameters are baselines for actual transition times, eight parameters specify adjustments for elderliness and ob-
esity, and another six parameters are required to calculate the six obese/behavior state transition times and 
probabilities in Figure 3. 

The SDDM2 model is actually quite detailed, containing multiple exogenous influences to the model in the 
form of 40 constant inputs and eleven complete time series inputs obtained from real data. These counts omit 
costs and unhealthy day calculations which were not replicated in our models. Some of these inputs represent 
details of diabetes care not included in our models, such as healthcare access, diabetes testing fractions, ma-
naged care fractions, and ability to adopt healthy lifestyles or self-monitor. Note that some of these quantities are 
difficult to estimate from external data sources because they measure internal cognitive states, e.g., ability to 
adopt healthy lifestyles. The constant and time series inputs account for 40 + 11 × 20 = 260 fixed parameters in 
the SDDM2 model. By way of contrast, the only time series inputs in our models were new adult rate and transi-
tion time for diagnosed pre-diabetes switching on at the 15th year. The new adult rate was represented as a 
piecewise linearized time series from 1980 to 2000. Constant inputs to our models included initial stock levels, 
and initial obese, healthy behavior and elderly proportions. Instead of using a large number of inputs to capture 
model dynamics, we sought to reproduce outputs of the SDDM2 model by adjusting a smaller number (31 in the 
full agent-based model) of adjustable parameters to minimize the discrepancy between our model outputs and 
the SDDM2 outputs. 

4.2. Initial Age Distributions 
Elderliness (age > 65) of agents is an important determinant of diabetes state transition rates in the SDDM2 
model. In order to determine when an agent crosses the elderly threshold, the agent class needs to keep track of 
its age from the beginning of a simulation run. We sought to fix the initial ages of agents in the seven stocks by 
random draws from a continuous distribution. We first attempted to fit the data to a lognormal age distribution, 
but a two-parameter Weibull provided much better fit to the grouped age data from the US census. Table 1 
summarizes intermediate calculations and final values for the Weibull parameters for each stock. Age group 
proportions were first estimated for each stock using data from the online-only appendix Table A1 in [21]. 
These estimates are for 1988 to 1994; more precisely, they represent the probability of each stock given an age 
group. After retrieving base rates for the age groups from 1980 US census data and the initial probabilities for 
each stock from [22], Bayes theorem was used to compute conditional probabilities for each age group. A nor-
malization step was required to ensure that all probabilities summed to unity. Finally, grouped age data was fit 
to the Weibull distribution in order to obtain smooth distributions for initial age. The scale and shape parameters 
are shown here in the far-right column of Table 1. 

4.3. Implementation in DEVS Framework 
The agent model comprises five classes to separate clusters of agent characteristics and behaviors. The model 
diagram in Figure 4 shows inputs, outputs and wiring of the basic objects in the base model. Diabetes state 
management (movement between stocks) occurs in the Diabetes object, and the current obesity health behavior 
state (Figure 3) is managed from ObeseBehav. Other classes were developed to maintain specific functions: 1) 
the Observer collects critical time series output data and writes these data to a file; 2) Age notifies agents when 
they become elderly and when they are eligible to diagnose for pre-diabetes in 1995; and 3) the Poll object re-
quests at exponentially-determined intervals (mean = 0.25 year) a new assessment of social norms prevalent in 
its social network from the agent. The assessment is performed by the ObeseBehav object. No communication 
occurs between Diabetes and ObeseBehav objects in the uncoupled (baseline) model, but behavioral models re-
quire the ObeseBehav object to transmit its state to the Diabetes object because state transition times depend on 
obesity state. Both these objects communicate their states to the Observer at annual intervals. The dark lines 
breaking the Agent borders (defined by the green dashed lines in Figure 4) communicate state information 
between agents in the same network in order to obtain updates on changing social norms about healthy beha-
viors. The agent network superstructure is denoted in the orange box, where agents share information with 
each other. 
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Table 1. Best weibull distribution fits to age groups by stock from US census data. 

Stock Age 
group 

1988-94 
P {Stck|Age 

Group} sex-std 

1980 
P {Age 
Group} 

1980  
P {Stck} 

P {Age 
Group| 

Stck} sex-std 

Norm. P {Age 
Group|Stck} 

sex-std 
Weibull fits 

Normal 

20 - 39 0.91 0.47 0.712 0.6007 0.6316 scale = 1.143; shape = 20.103; X2(3) = 406.3 
40 - 59 0.553 0.299 0.712 0.2322 0.2442 (20, 40) (40, 60) (60, 75) (75, *) 
60 - 74 0.353 0.166 0.712 0.0823 0.0865 62,923 25,823 6997 4257 (pred.) 

≥75 0.392 0.065 0.712 0.0358 0.0376 63,164 24,419 8654 3763 (act.) 

Undx PreD 

20 - 39 0.069 0.47 0.22 0.1474 0.1379 scale = 2.751; shape = 41.483; X2(3) = 604.8 
40 - 59 0.343 0.299 0.22 0.4662 0.4361 (20, 40) (40, 60) (60, 75) (75, *) 
60 - 74 0.457 0.166 0.22 0.3448 0.3226 12,552 46,869 29,264 11,315 (pred.) 

≥75 0.374 0.065 0.22 0.1105 0.1034 13,791 43,612 32,260 10,338 (act.) 

Undx  
Uncomp 
Diabetes 

20 - 39 0.008 0.47 0.02 0.188 0.1055 scale = 3.224; shape = 46.036; X2(3) = 5243 
40 - 59 0.038 0.299 0.02 0.5681 0.3189 (20, 40) (40, 60) (60, 75) (75, *) 
60 - 74 0.093 0.166 0.02 0.7719 0.4333 6702 40,222 36,071 17,005 (pred.) 

≥75 0.078 0.065 0.02 0.2535 0.1423 10,553 31,889 43,328 14,230 (act.) 

Dx Uncomp 
Diabetes 

20 - 39 0.005 0.47 0.019 0.1237 0.1013 scale = 3.055; shape = 46.503; X2(3) = 3328 
40 - 59 0.025 0.299 0.019 0.3934 0.3224 (20, 40) (40, 60) (60, 75) (75, *) 
60 - 74 0.057 0.166 0.019 0.498 0.408 7220 39,547 34,338 18,895 (pred.) 

≥75 0.06 0.065 0.019 0.2053 0.1682 10,135 32,238 40,807 16,820 (act.) 

Undx Comp 
Diabetes 

20 - 39 0.002 0.47 0.006 0.1567 0.0906 scale = 3.494; shape = 46.348; X2(3) = 4487 
40 - 59 0.011 0.299 0.006 0.5482 0.3171 (20, 40) (40, 60) (60, 75) (75, *) 
60 - 74 0.028 0.166 0.006 0.7747 0.4481 5107 39,538 39,186 16,169 (pred.) 

≥75 0.023 0.065 0.006 0.2492 0.1441 9063 31,710 44,813 14,414 (act.) 

Dx Comp 
Diabetes 

20 - 39 0.006 0.47 0.023 0.1226 0.1008 scale = 3.189; shape = 47.112; X2(3) = 3346 
40 - 59 0.03 0.299 0.023 0.39 0.3205 (20, 40) (40, 60) (60, 75) (75, *) 
60 - 74 0.069 0.166 0.023 0.498 0.4093 6255 38,647 35,734 19,364 (pred.) 

≥75 0.073 0.065 0.023 0.2063 0.1696 10,075 32,048 40,923 16,953 (act.) 

 

 
Figure 4. Base model diagram for agent-based simulation diabetes type 2 (ABSDM2). 
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4.4. Optimization of ABSDM2 Parameters 
We optimized the values of (up to) 31 adjustable parameters for each agent-based model through application of 
a global optimization algorithm, simulated annealing [22] [23] while taking goodness of fit of simulation stock 
counts to SDDM2 model outputs at yearly intervals as the objective function. Annual stock counts were repli-
cated as closely as possible by optimizing the adjustable parameter values over two phases of a simulated an-
nealing procedure. During the initial optimization phase, a population of one-tenth the size of the test population 
was used to search for a neighborhood likely to contain a near-global minimum in the 31 adjustable parameter 
space. Since a single run of the model required on average approximately six seconds for the reduced population 
size, we completed 12,000 iterations for each model type from random initial values. Then, we used the para-
meter values from the best-fitting model from the restricted population to fine-tune the parameter values during 
the second optimization phase. The second phase used a full initial population size (0.1 percent of the US popu-
lation) of 1628 agents (distributed among the seven stocks). 

During both optimization phases simulation performance was based on the output of a single run. Since the 
model is stochastic, it would be most desirable to use a score based on the mean of a random sample of simula-
tion runs. This procedure should reduce search time by achieving noise reduction in the model output. However, 
it was concluded that the amount of noise generated over a single 20 year simulation run did not justify increas-
ing the wall clock time to complete the optimization runs by an order of magnitude or more. 

The new adult entry rate was linearized into three segments using US census data from 1980 to 2000. New 
agents were generated at a constant rate of one agent per 0.046 days from 1980 to 1990 (2241 agents per year), 
0.0412 from 1990 to 1995 (2428 agents per year), and 0.0403 (2479 agents per year) from 1995 to 2000. 

4.5. ABSDM2 Model Hierarchy 
The SDDM2 model is a large model that closely replicates historical DM2 outcomes data. However, the sheer 
magnitude of the number of inputs makes it difficult to determine which inputs are really necessary to produce a 
good fit to DM2 outcomes. It could be argued that large sections of the model are not really required to obtain a 
reasonably good fit. In developing an agent-based model system for DM2, we intended to systematically test the 
importance of various parameter types. With this goal in mind, a model hierarchy was created with the baseline 
(uncoupled) model at the root (Figure 5). The modeling system implemented the 31 adjustable parameters listed 
in the Appendix. The uncoupled model had seventeen adjustable parameters to replicate the stock and flow dy-
namics in Figure 2, but it was not connected to calculations for obesity and healthy behaviors. The three child 
models inherited the seventeen flow parameters from the uncoupled model. The elderly model required four ad-
justable parameters to modify flow dynamics factors for onset, recovery, progression and death due to aging. 
The behavior model also required estimates for four diabetes factors, and six parameters associated with the ob-
esity-health behavior state transition model including four transition time parameters and two conditional proba-
bilities. It would be possible to create a behavior + elderly model simply combining estimated parameters from the 
other three models, using polymorphic inheritance to fill in the values of the adjustable parameters. However, 

 

 
Figure 5. Model hierarchy with three offspring from the uncoupled model. Solid arrows indicate parent/child relationship. 
Dashed arrows denote a conceptual hierarchical relationship but the absence of a parent/child relationship with formal 
inheritance properties. 
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this method would not permit elderly, obesity and healthy factors to interact with each other. Therefore, the be-
havior + elderly model required re-estimation of all fourteen new parameters introduced in the elderly and be-
havior models. 

5. Simulation Results 
The four ABSDM2 models were optimized to minimize the Chi-Square statistic using GenSA, an R package for 
generalized simulated annealing [24]. The Chi-Square test was selected as a goodness-of-fit measure instead of 
ordinary least squares to assign greater weight to low population stocks while somewhat relaxing penalties for 
proportional errors in high population stocks. The four optimized models were then executed and statistics col-
lected for the 20-year simulated time intervals. 

Chi-square goodness-of-fit scores were assessed to ascertain whether adding model parameters significantly 
improved goodness-of-fit. Results are summarized in Table 2. A total of 160 stock counts were observed over 
the 20 year run, but only 140 counts can statistically be considered freely-adjustable cells in the data matrix. The 
uncoupled model had degrees of freedom = (140 − 17) = 123, and the value of the test statistic is χ2(123) = 516.4, 
p < 0.0001. Therefore we can reject the null hypothesis that the uncoupled model explains the stock count data. 
In fact, all the models can be rejected under the null hypothesis that the model adequately explains the data. 
However, we tested to see if the elderly model significantly improves goodness-of-fit by setting the degrees of 
freedom equal to the six additional parameters estimated from the obtained stock counts, and taking the differ-
ence between Chi-Square statistics, i.e., χ2(6) = 516.4 − 496.2 = 20.2, p = 0.003. Similarly, for the behavioral 
model we have χ2(8) = 516.4 − 328.0 = 188.4, p < 0.0001, and the test statistic for the behavioral + elderly 
model is χ2(14) = 516.4 − 361.5 = 154.9, p < 0.0001. We therefore conclude that the elderly, behavior and beha-
vior + elderly models each significantly improve the goodness-of-fit over the uncoupled model, thereby provid-
ing successively better approximations to the SDDM model. 

Another method of assessing model performance is to index the percent improvement in the Chi-Square sta-
tistic with respect to the parent model. Since the uncoupled model has no formal parent, we compare its 
Chi-Square statistic with a zeroth-order model that assumes constant stock levels set at mean values for each 
stock over the 20-year simulation run. The zeroth model has a Chi-Square statistic equal to 41,104.6; accor-
dingly, the percent improvement over the uncoupled model is 98.7%, a dramatic gain. The percent improvement 
of the elderly model is small (3.9%), but behavior and behavior + elderly models both register moderately 
strong percentage improvements, 36.5% and 30% respectively. Again, we confirm that behavior-specific para-
meters add substantially to model performance, but elderly-specific parameters alone do not. 

5.1. Predicted Stock Proportions and Counts 
Overall, ABSDM2 models tracked stock proportions in the SDDM2 models quite well. Stock proportions for 
20-year runs are plotted for all four models in Figures 6-13. Normoglycemic proportions declined steadily in the 
SDDM2 model as shown by the solid black line in Figure 6. For the first 15 years of simulation, all four models 
tracked that proportion reasonably well, although the behavior + elderly model tracked normal populations most 
closely. However, during the final five years of the run, all four models showed a reversal in the decline, posting 
real increases in normoglycemic proportions. 

The apparent explanation for the increase in predicted normoglycemics is seen in the diagnosed pre-dia- 
betes stocks shown in Figure 7. The SDDM2 rate increase in this population is quite large compared to the four  

 
Table 2. Optimization performance of four ABSDM2 models. 

 Uncoupled Elderly Behavior Behavior + Elderly 

Number of adjustable parameters 17 21 27 31 

First Phase 
Iterations 11,588 7412 5784 7505 

Chi-Square value 62.6 45.7 35.9 36.4 

Second Phase 

Iterations 54 36 76 32 

Chi-Square value 516.4 496.2 328.0 361.5 

% improvement over parent model 98.7 3.9 36.5 30.0 
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Figure 6. Normoglycemic stock proportions from 1980 to 2000. 

 

 
Figure 7. Diagnosed pre-diabetes stock proportions from 1980 to 2000. 

 
ABSDM2 models. In contrast, pre-diabetes populations escalated less abruptly in the ABSDM2 models imme-
diately following introduction of pre-diabetes diagnosis. A large proportion of the initial diagnosed pre-diabetes 
populations in the ABSDM2 models likely reverted back to the normoglycemic population after successfully 
mounting a recovery, although it is difficult to know for certain. 

The undiagnosed portion of the pre-diabetes population is shown in Figure 8. Again, the behavior + elderly 
model tracks this stock proportion better than the other ABSDM2 models. However, all models show a slight 
dip in this stock after the 15th year. It appears that both elevated diagnosis and recovery from pre-diabetes after 
1995 contributed to the predicted rise in the normoglycemic proportion in ABSDM2 models. 

Uncomplicated diabetes stock proportion predictions are presented in Figure 9 and Figure 10. Coupling of 
elderly and health behavior parameters in the behavior + elderly model somewhat elevated the undiagnosed un-
complicated diabetes stock proportion. The proportion of diagnosed uncomplicated diabetes cases steadily de-
clined for all ABSDM2 models, whereas the SDDM2 proportion slowly increased over the 20-year period.  

Diagnosis of uncomplicated diabetes in the ABSDM2 models lagged the SDDM2 model, possibly a down- 
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Figure 8. Undiagnosed pre-diabetes stock proportions from 1980 to 2000. 

 

 
Figure 9. Diagnosed uncomplicated diabetes stock proportions from 1980 to 2000. 

 

 
Figure 10. Undiagnosed uncomplicated diabetes stock proportions from 1980 to 2000. 
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stream effect of fewer predicted pre-diabetes cases in the ABSDM2 models. 
Due to low proportional representation in the general population, only counts for complicated diabetes stocks 

are shown in Figure 11 and Figure 12. ABSDM2 models displayed more variability over time compared to 
nearly flat counts observed in the undiagnosed complicated diabetes stocks from the SDDM2 model. In the di-
agnosed stock, the SDDM2 model registered slight increases in counts compared to the flat or slightly decreas-
ing counts in the ABSDM2 models. This observation continues the trend of lagging diagnosis rates in the 
ABSDM2 models compared to the SDDM2 model. 

Following the results given in Table 2, the time series plots reveal better qualitative fits for the coupled 
ABSDM2 models compared to the uncoupled ABSDM2 model. In addition, the behavior model provided better  
qualitative matches to the SDDM2 model than the elderly model. However, there was also a consistent pattern 
of superior qualitative fit to these seven stocks in the behavior + elderly model compared to the behavior model. 
This observation seemingly contradicts the fact that the behavior model achieved a slightly better quantitative fit 
compared to the behavior + elderly model in terms of Chi-square goodness-of-fit. We find a possible explana-
tion for this discrepancy in stock counts for the deceased portion of the agent population in Figure 13. Only the 
last five years of the simulation runs are displayed, but the figure shows the increasing separation among the 
stock counts for the four ABSDM2 models. Here we clearly see that death counts for the behavior + elderly  

 

 
Figure 11. Undiagnosed complicated diabetes stock proportions from 1980 to 2000. 

 

 
Figure 12. Diagnosed complicated diabetes stock proportions from 1980 to 2000. 
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Figure 13. Deceased stock proportions from 1980 to 2000. 

 

 
Figure 14. Predicted and actual elderly proportions from 1980 to 2000. 

 
model increasingly lag behind the other ABSDM2 model death counts. These deviations can easily account for 
the slightly poorer fit to the SDDM2 model. As observed in Figure 13, behavior + elderly populations aged 
more slowly than the other three ABSDM2 models and the SDDM2 model, providing a possible explanation for 
relative lack-of-fit compared to other ABSDM2 models. 

5.2. Population Proportions 
Time histories for elderly, obese and healthy behavior sub-populations are shown in Figures 14-16. The reader 
should bear in mind that our global optimization procedure did not attempt to fit model outputs to the propor-
tions of these outputs as they appeared in the SDDM2 model or in actual census data; nevertheless, the ability of 
these outputs to track SDDM2 model outputs provides a strong external validation test of the ability of the 
ABSDM2 models to accurately represent population characteristics for which they were not trained. Although 
the uncoupled model tracked the elderly population quite well, as expected, the elderly model performed best in 
terms of closely following actual population proportions for those years (Figure 14). Both quantitatively and 
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qualitatively, the behavior + elderly model tracked obesity according to the SDDM2 model and the census bet-
ter than the other three ABSDM2 models (Figure 15). Surprisingly, the behavior model posted the weakest 
performance in tracking actual obesity counts. Most importantly, it did not predict a rise in obesity prevalence. 
Finally, both behavior and behavior + elderly models distinguished themselves in terms of lower healthy beha-
vior proportions relative to the uncoupled and elderly models, which were not tethered to any meaningful 
healthy behavior calculations (Figure 16). The healthy behavior trend lines for the two ABSDM2 models with a 
behavior component were both decreasing and fairly close to each other, although the behavior + elderly model 
registered a steeper decline in health behaviors from 41.5% in 1981 to 27.7% in 2000. 

5.3. Counterfactual Example—The Effect of Increased Social Influence 
A counterfactual simulation was performed with the behavior + elderly model in which social influence weight 
(1 − α) was increased from a uniform distribution over (0, 1) to a uniform distribution over (0.85, 0.95) for all 
agents. This represents a substantial increase in social susceptibility for most agents in the population. The 
counterfactual example was executed as a set of twelve independent runs of the behavior + elderly model with 
high social influence. In Figure 17 we see that greater social influence shifted the healthy behavior trend line 

 

 
Figure 15. Predicted and actual obesity proportions from 1980 to 2000. 

 

 
Figure 16. Predicted and actual healthy behavior proportions from 1980 to 2000. 
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Figure 17. Effect of increasing social influence on elderly, obese and health behavior proportions. Confidence intervals were 
estimated from the twelve runs of the high social influence behavior + elderly model. 

 
about 6% above baseline for the entire 20-year simulation run. Furthermore, obesity prevalence remained at 
baseline levels until the eighth year, and then gradually slowed, ending at about 4% below the baseline in the fi-
nal year. Finally, elderly rates were mostly unaffected by changes in social influence, except for a slight increase 
during the last few years of the simulation. This result could be attributed to falling death rates among the elder-
ly as obesity incidence decreased. This counterfactual example clearly predicts (relative) elevated healthy beha-
viors with a lagged relative decrease in actual obesity in response to increased susceptibility to social influence. 
Although these trends were expected, the eight-year lag between the start of healthy behavior change and the 
beginning of the effect on obesity rate is somewhat more difficult to predict. 

6. Discussion 
In general, the simulation results demonstrate how systematic refinements in an agent-based model can be in-
corporated to incrementally translate elements of an aggregate population simulation model into a disaggregated 
individual-level agent-based model in order to increase understanding regarding specific biological, cognitive, 
behavioral and social mechanisms that are thought to underlie disease and healthcare progression. The simplest 
uncoupled ABSDM2 model, although not perfect, mimicked the major trends of the SDDM2 model and did a 
fair job of replicating absolute stock counts representing the seven disease states of DM2. The addition of both 
behavioral and elderliness factors alone significantly increased the fit of the model to the stock count data, al-
though their combined efficacy could not be demonstrated statistically. 

Qualitatively speaking, all ABSDM2 models tracked the counts from most stocks quite well. In the last five 
years of the simulation, the normoglycemics population was somewhat overrepresented while both pre-diabetes 
populations were underrepresented. We suspect that this partially due to higher than expected recovery rates 
from the newly diagnosed pre-diabetes agents, starting in the 15th year. Diagnosed diabetes stocks slightly de-
creased according to the agent-based model outputs, whereas slight increases were registered in the SDDM2 
model.  

We should not conclude from the above discussion that system dynamics and agent-based modeling ap-
proaches are mutually exclusive. To the contrary, Ip [19] argues that the two approaches are complementary and 
can be used effectively together to study the same problem. System dynamics approaches to disease modeling are 
also converging on psychosocial and behavioral factors. For example, [25] introduced constructs representing the 
ability to socialize and engage in activities, patient participation in care, and cognitive reserve into their quality of 
life model for diabetes. Indeed, the present study can be situated in the overlap between system science metho-
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dology and statistical modeling, where the former is concerned with knowledge synthesis, and the latter with 
falsification of a null hypothesis [19]. We believe that an appropriate use of statistical modeling is to apply it 
during development of agent-based models of large-scale systems in order to right-size them for investigation of 
specific questions and counterfactuals. However, we did not develop an agent-based model from first principles, 
but instead endeavored to translate the major components from an established system dynamics model in order 
to foster direct comparison. The development of the SDDM2 model reflects a more data-centric approach in 
which data-rich inputs ensure a close match between the model and historical time series. In contrast, our more 
parsimonious approach limits data infusion into the model, thus allowing a minimum amount of model structure 
and data to approximate time series outputs of the SDDM2 model. The emphasis on systematic addition of da-
ta/structure places a premium value on model understanding at the expense of achieving greater predictive ac-
curacy. 

There exist substantial limitations to this simulation study. Perhaps the most obvious is the lack of a signifi-
cant sample size during both the optimization phase and execution of production runs for the purpose of obtain-
ing simulation results. Such a strategy is very desirable given the stochastic nature of the model, but real-time 
limitations restricted the employment of that strategy here. Future work should be devoted to shortening the 
clock time to complete a statistically meaningful set of simulation runs. Despite this limitation, the significance 
of this work as a demonstration of a systems science methodology in healthcare simulation is still evident. 

Further details may be appended to the model hierarchy in order to investigate the contributions of additional 
factors to understanding the dynamics of a diabetes care system. One possibility is to include a feedback loop 
that not only accounts for the effects of healthy behaviors and obesity on DM2 progression, but potential influ-
ences of disease state on intentions to engage in healthy behaviors. One possible mechanism for feedback within 
the Theory of Planned Behavior framework is the weakening of an agent’s intention to maintain healthy beha-
viors when advanced progression of the diabetes state erodes their perceived behavioral control and outcome 
expectancies. Although this model enhancement goes beyond the confines of the SDDM2 model, the strategy of 
increasing model complexity in the psychosocial domain to account for census data is still sound. Further simu-
lation modeling could also investigate direct effects of sex, race, socioeconomic status or geographic regions on 
intentions to engage in healthy behavior and their subsequent influences on obesity and DM2 progression. 
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Appendix 
Table A. Final optimized parameter values for the four models in the ABSDM2 modeling system.                       

No. Description Uncoupled Elderly Behavior Behavior + Elderly 

1 Onset from Normal Time 14.36341 14.36341 14.36341 14.36341 

2 Onset from UdxPreD Time 76.82116 76.82116 76.82116 76.82116 

3 Onset from DxPredD Time 67.77862 67.77862 67.77862 67.77862 

4 Diagnosed from PreD Time 76.22757 76.22757 76.22757 76.22757 

5 Diagnosed from UncompD Time 30.31864 30.31864 30.31864 30.31864 

6 Diagnosed from CompD Time 21.81187 21.81187 21.81187 21.81187 

7 Recovery from UdxPredD Time 77.05261 77.05261 77.05261 77.05261 

8 Recovery from DxPredD Time 28.32906 28.32906 28.32906 28.32906 

9 Progression from UdxUncompD Time 66.35531 66.35531 66.35531 66.35531 

10 Progression from DxUncompD Time 32.79122 32.79122 32.79122 32.79122 

11 Death from Normal Time 3.0311 3.0311 3.0311 3.0311 

12 Death from UdxPreD Time 78.72659 78.72659 78.72659 78.72659 

13 Death from DxPreD Time 55.34 55.34 55.34 55.34 

14 Death from UdxUncompD Time 38.56357 38.56357 38.56357 38.56357 

15 Death from DxUncompD Time 57.13332 57.13332 57.13332 57.13332 

16 Death from UdxCompD Time 32.62458 32.62458 32.62458 32.62458 

17 Death from DxCompD Time 36.58683 36.58683 36.58683 36.58683 

18 Elderly Onset Factor * 0.28674 * 0.7799114 

19 Obese Onset Factor * * 0.4551844 0.7812985 

20 Elderly Recovery Factor * 1.528185 * 3.07051 

21 Obese Recovery Factor * * 5.252144 3.768533 

22 Elderly Progression Factor * 0.633787 * 0.6923369 

23 Obese Progression Factor * * 0.9941453 0.5672643 

24 Elderly Death Factor * 0.459308 * 0.5189842 

25 Obese Death Factor * * 0.374355 0.75069 

26 Healthy to Not Healthy Time * * 21.93857 1.708673 

27 Not Healthy to Healthy Time * * 39.80782 74.6157 

28 Not Obese to Obese Time * * 26.71549 67.75353 

29 Obese to Not Obese Time * * 6.756933 38.6543 

30 Pr{Init. Healthy Beh.|Obese} * * 0.811046 0.217771 

31 Pr{Init. Healthy Beh.|Not Obese} * * 0.40697 0.530315 
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