

Study of Bacterial Diversity of Mangroves Rhizosphere

Nidhi Sakhia¹, Sunil Prajapati², Vikram Shetty¹, Shreyas Bhatt², Anasuya Bhadalkar¹

¹Marine Bio Resource Centre (MBRC), Jamnagar, Gujarat, India ²Department of Life sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India Email: lahiryanasuya@gmail.com

Received 1 October 2015; accepted 26 December 2015; published 29 December 2015

Copyright © 2016 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). <u>http://creativecommons.org/licenses/by/4.0/</u> Open Access

Abstract

Microbial diversity has been an important facet of scientific research, since microbes promise a plethora of biomolecules which are otherwise not found in nature. Microbes are subjected to high level of competition for survival in the environment, and hence develop mechanisms of defense. The biomolecules produced by these microbes as part of their defense or survival mechanism, are of importance for human and animal drugs and many other industrial and environmental applications. The marine counterparts of these terrestrial microbes have yet higher potential, since the marine environment has higher biotic and abiotic stresses, leading to new molecule discovery. In the current study, a bacterial diversity study of the culturable bacteria of the mangrove rhizosphere of Avicennia marina has been undertaken, to understand the flora diversity. Mangroves are unique ecosystems which are under a combination of marine and terrestrial influence. Mangroves are seaward, inland and also found in creek areas. This diversity in their habitat, leads them to produce variable root exudates, which support the growth of different types of organisms. This study has revealed that certain species are dominant in these ecosystems irrespective of the biotic and abiotic stresses, whereas certain species appear only at neutral pH. The study will help select organisms for further biomolecule discovery programs, based on their environment of isolation and other growth parameters.

Keywords

Rhizosphere, Mangroves, Bacteria, Microbial Diversity, 16S rRNA Sequencing

1. Introduction

Mangroves are unique coastal plants which have originated due to the tectonic land shifts because of which ter-

restrial plants got bared to the open sea with ecological and economic importance. They not only provide socio-economic benefits to local tribes, but also provide protection to coastal areas against natural disasters and facilitate the formation of land by trapping sediments [1] [2]. Around 34 major and 20 minor mangrove species belonging to about 20 genera in over 11 families have been recorded globally [3]. Mangroves constitute a significant part of tropical coastal biodiversity which occupy less than 1% of the world's surface [4] and are mainly found between the Tropic of Cancer and the Tropic of Capricorn on all continents covering an estimated 75% of the tropical coastline worldwide. Mangroves of South and Southeast Asia form the most extensive and diverse mangrove system comprising 41.4% of global mangroves in the world [5]. Among them Indian mangroves make up 3.1% of the total global cover and are distributed along all the maritime states except the union territory of Lakshwadeep covering an area of about 4461 km² along the 7500 km long Indian coastline [6]. Gujarat state, with a coastline of about 1650 km, harbors approximately 960 km² of mangroves [6]. Gujarat mangrove forest covers 1103 km²; 175 km² are moderately dense and 928 km² are open mangrove forests (FSI, 2013). Mangroves in Gujarat are mostly confined to three regions a) Indus deltaic region *i.e.* Kori creek and Sir Creek area, b) The Gulf of Kachchh and c) The Gulf of Khambhat.

Bacterial diversity from these ecosystems has been studied worldwide for their unique biochemical processes. The present study includes isolation, morphological characterization and identification of rhizospheric bacteria using biochemical and molecular biology techniques [7] [8]. Molecular biology techniques like 16S rRNA techniques are an important tool in final identification of bacteria sequencing this gene, and provide genus and species identification for isolates that do not fit any recognized biochemical profiles. It gives acceptable identification which otherwise according to conventional system of taxonomy is not possible [9].

2. Materials and Methods

2.1. Study Area and Sample Collection

The study was conducted at three different sites of southern part of Gulf of Kachchh, Gujarat. The geographical location of collection sites are: Station 1—Sikka (Latitude 22°26.406'N Longitude 069°50.029'E) (coastal wetland, port activity), Station 2—Valsura (Latitude 22°33.578'N Longitude 070°02.502'E) (coastal wetland, ship breaking activity) and Station 3—Khijadiya (Latitude 22°31.375'N Longitude 070°08.099'E) (inland wetland, bird sanctuary) (see **Figure 1**). It contains about 30 - 35 ppt (parts per trillion) soil salinity and has a temperature around 26°C - 30°C. The pH of the three location varied from 6.0 - 8.0. *Avicennia marina* (true mangrove plant) rhizosphere soil samples were collected carefully by sterile spatula in sterile polypropylene tubes, properly labeled. These were transported in an ice box to the laboratory and processed within 2 - 4 h of collection.

2.2. Isolation of Bacteria

About 1g of rhizosphere soil of *Avicennia marina* was transferred to 50 mL test tube containing 10 mL sterile distilled water and vortexed vigorously for 10 min. The resulting solution containing the rhizosphere bacteria was serially diluted up to 10^{-4} using sterile distilled water. 100 µl aliquot was taken from each dilution and plated in triplicate onto Zobell's marine agar 2216 (ZB agar) (Himedia, India), MPM (Synthetic sea water media) agar medium [10] and incubated at 28°C for 24 - 96 h. After incubation, colony counts were recorded and colonies with distinctive morphologies were selected for further studies. The isolated bacteria were purified by streak plate technique [11]. The 35 isolates obtained through this process of isolation were subjected to various biochemical tests according to "Bergey's Manual of Determinative Bacteriology" (Volume-4) and molecular techniques of identification.

2.3. Identification of Bacterial Isolates

2.3.1. Morphological Characterization

The morphological characterization of the bacterial colonies were carried out on the basis of their shape, size, colour, margin, elevation on the media and Gram staining were performed to decide the further determinative protocol.

2.3.2. Biochemical Analysis

The pure culture were subjected to identification by Bergey's Manual of Determinative Bacteriology (Volume-4)

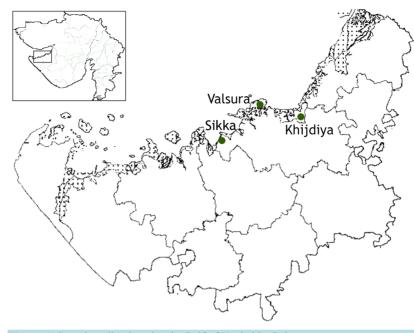


Figure 1. Sample collection sites in Gulf of Kachchh, Gujarat.

using catalase test with 3% hydrogen peroxide, Anaerobic Test, Oxidative Fermentative (O/F test), methyl red test, Voges Proskaeur test, glucose test, sorbitol test and mannitol test.

2.3.3. Molecular Analysis

Genomic DNA Isolation

Culture was centrifuged at 10,000 rpm for 5 min. Pellet was collected and resuspended by adding 9 ml of STE buffer (0.1 mM NaCl, 10 mM Tris, 10 mM EDTA) 1 ml of SDS (10% Stock Solution). The suspension was incubated at 70°C for 1 hr. and centrifuged at 6000 rpm for 10 min at room temperature. The supernatant was collected in fresh tube and add equal volume of Phenol:Chloroform:Isoamyl alcohol (PCI mix) (25:24:1) was added and mixed slowly. The suspension was centrifuged at 6000 rpm for 10 min. The aqueous phase in fresh tube. Equal vol. of Chloroform: Isoamyl alcohol (24:1) and mix slowly and centrifuged at 6000 rpm for 10 min. The aqueous phase was collected and added double the vol. of absolute alcohol was added. The tube was subjected to overnight incubation in -20° C. The solution was centrifuged at 6000 rpm 4°C for 10 min and the pellet was resuspended in $1/10^{\text{th}}$ ml of 3M sodium acetate and 10 ml of absolute alcohol and centrifuged at 6000 rpm 4°C for 10 min. The supernatant was discarded and the pellet was air dried. The pellet was dissolved in 1 ml sterile TE buffer. The DNA quality was checked using Agarose gel electrophoresis and quantified using Nanodrop.

PCR Amplification and Phylogenetic Analysis

The 16S rRNA gene from the genomic DNA was amplified using primers F 5'-AGAGTTTGATCCTGG CTAG-3', R 5'-CGGTTACCTTGTTACGACTT-3' and F5'-TGGAGAGTTTGATCCTGGCTCAG-3', R 5'-GGTTACCTTGTTACGACTT-3' (at Xcelris Genomics Pvt. Ltd., Ahmedabad and Junagadh Agricultural University, Junagadh). The PCR reaction mixture (25 μ l) comprised of bacterial DNA (50 ng), 10 pmol each of the two oligonucleotide primers, 2.5 mM of each deoxynucleoside triphosphate, 1.5 U of Taq polymerase and 2.5 μ l of 10× buffer. The amplification was performed using following PCR cycle: the initial denaturation at 94°C for 5 min, followed by 35 cycles of 94°C for 30 s, 60°C for 30 s and 72°C for 90 s and a final extension of 72°C for 10 min. PCR product was electrophoresed on 1.5% agarose gel. PCR products varied from 1200 bp to 1500 bp. Sequencing was performed by ABI 3730xl Genetic Analyzer 96 well capillary system.FASTA files were subjected to BLAST for further analysis [12]. A phylogenetic tree was constructed using MEGA 5.1 software. The top ten alignment matches were presented according to percent similarity and the nearest distances.

Identification utilizing GenBank database was carried out by internet-based 16S rRNA gene sequence comparison software utilizing the basic local alignment search tool with default settings. The closest species level match (% identity) was considered the identification.

3. Results

3.1. Isolation and Enumeration of Bacteria

The average number of culturable heterotrophic bacteria in soil samples from the three different stations was 2.41×10^8 CFU/g. Among the collection station, soil sample from the Khijadiya mangroves recorded the highest bacterial counts 2.81×10^8 CFU/g and Sikka recorded the lowest bacterial count of 1.97×10^8 CFU/g.

3.2. Identification & Phylogeny

The morphological and biochemical studies of the 35 isolates were performed according to (see **Table 1**). Molecular characterization was done using 16S rRNA gene sequencing. Nineteen (19) out of thirty five (35) isolates had >99% similarity with known species. The isolates belongs to the phyla Firmicutes (62.86%), followed by Proteobacteria (22.86%) and Actinobacteria (14.29%). The phylogenetic tree of the three different locations is as in (see **Figure 2**).

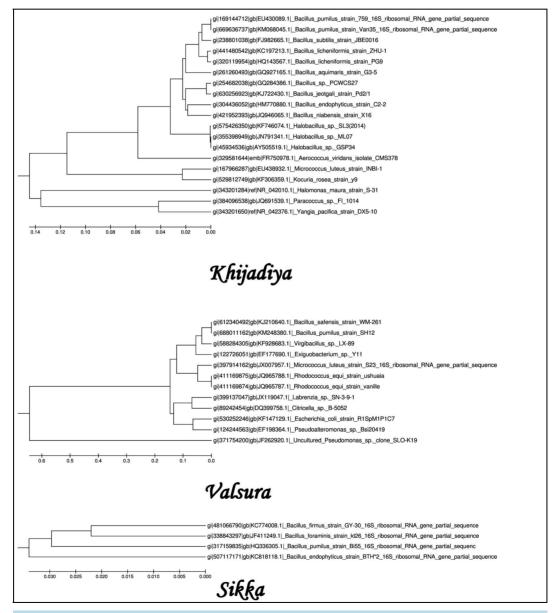


Figure 2. The phylogenetic tree indicates the phylogenetic relationship of the 35 isolates.

		Biochemical identified	Lactobacillus sp.	Arthrobacter sp.	Bacillus sp.	Bacillus sp.	Bacillus sp.	Clostridium sp.	Bacillus sp.	Staphylococcus sp.	Corynebacterium sp.	Corynebacterium sp.	Lactobacillus sp.	Lactobacillus sp.	Bacillus sp.	Bacillus sp.	Bacillus sp.	Enterococcus sp.	Bacillus sp.	Streptococccus sp.	Bacillus sp.	Bacillus sp.	Clostridium sp.	Bacillus sp.	Staphylococcus	uureus Staphylococcus	aureus	pactutes sp.	Corynebacterium sp.	Lactobacillus sp.	Lactobacillus sp.	Corynebacterium sp.	Corynebacterium sp.	Staphylococcus sp.	Lactobacillus sp.	Arthrobacter sp.	Lactobacillus sp.	t
		Methyl Red test	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	i.	NR	NR	NR	NR	NR	NR	NR	NR	NR	NP			NK	NK	XX	NR	NR	NR	NR	NR	NR	
		Voges Proskauer's test	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	,	NR	NR	NR	NR	NR	NR	NR	NR	NR	an			NK	NK	NK	NR	NR	NR	NR	NR	NR	
		Sorbitol Fermentation	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	a.		NR	NR	NR	NR	NR	AN		NN NN	NK .	NK	NK	NR	XK :	NR	NR	NR	NR	
		Starch hydrolysis	NR	NR	ī	NR	NR	NR	NR	NR	ĩ	ĩ	NR	NR	i.	+	i.	ï	NR	NR	r	ï	NR	r.	NR	an		ï		NK	NK	,	1	NR	NR	NR	NR	
		Hemolysis	NR	NR	NR	ı.	ī.	NR	£	NR	NR	NR	NR	NR	NR	NR	NR	NR	т	ī	NR	NR	NR	NR	NR	an			NK	NK	NK	NR	NR	NR	NR	NR	NR	
		Acid Fast staining	2	NR	NR	NR	NR	NR	NR	NR	,	,	,	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	an		YN	ŗ	,	,	,	•	NR	NR	NR	,	
	Test	Anaerobic (Hugh-Leifso n's O-F)	NR	NR	ī	NR	NR	+	ĩ	NR	NR	NR	NR	NR	ï	ī	ŝ	Ŧ	NR	NR	ï	î	+	a.	NR	NB		. 9	YN !	NK	NK .	NR	NR	NR	NR	NR	NR	
	Biochemical Test	Glucose	+	NR	NR	з	х	NR	NR	NR	NR	NR	ŗ	+	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	an			NK	ı.	1	NR	NR	NR	NR	NR	,	
	Bioche	Manitol	NR	NR	NR	NR	NR	NR	NR	ı.	NR	NR	ı	ı	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	+	+			NK	,	.)	NR	NR	,)	NR	NR	,	
		Catalase	+	+	r	+	x.	NR	+	+	+	+	ī	ĩ	3	+	+	+	ī	a.	+	+	+	+	+	+			÷	ī	1	+	+	+	NR	+	ĩ	
		Motility	Motile	Non-motile	Motile	Motile	Motile	Motile	Motile	Non-motile	Non-motile	Non-motile	Motile	Motile	Motile	Motile	Motile	Motile	Motile	Non-motile	Motile	Motile	Motile	Motile	Non-motile	Non-motile	Madla		Non-moule	Motile	Motile	Non-motile	Non-motile	Non-motile	Motile	Non-motile	Motile	
		Spore Staining	Negative		Negative	Positive	Positive	Positive	Negative				Negative	Negative	Positive	Positive	Positive	Negative	Positive	Negative 1	Positive	Positive	Positive	Positive	Negative 1					Negative					Negative	Negative 1	Negative	č.
		Gram's Staining	Gm+ve, rods	Gm+ve, rods	Gm+ve, rods	Gm+ve, rods	Gm+ve, rods	Gm+ve, rods	Gm+ve, rods					Gm+ve, rods	Gm+ve, rods	Gm+ve, rods	Gm+ve, rods	Gm+ve, cocci	Gm+ve, rods	Gm+ve, cocci	Gm+ve, rods	Gm+ve, rods	Gm+ve, rods	Gm+ve, rods	Gm+ve, cocci			Cilitve, rous			Gm+ve, rods			Gm+ve, rods	Gm+ve, rods	Gm+ve, rods	Gm+ve, rods	
		Transperency	Translucent	Opaque	Translucent	Translucent	Opaque	Translucent	Opaque	Transparent	Opaque	Translucent	Transparent	Opaque	Translucent	Translucent	Translucent	Transparent	Translucent	Transparent	Transparent	Transparent	Opaque	Translucent	Opaque	Tranchicent	Tanonicant	Tansucent	1 ransparent	I ransparent	I ransparent	Transparent	Translucent	Translucent	Transparent	Opaque	Transparent	p.
test.	cs	Texture	Mucoid	Waxy	Mucoid	Mucoid	Mucoid	Mucoid	Waxy	Mucoid	Mucoid	Mucoid	Mucoid	Waxy	Mucoid	Mucoid	Mucoid	Mucoid	Waxy	Mucoid	Mucoid	Mucoid	Waxy	Mucoid	Mucoid	Mincoid	Piccel V	Mucold	Mucold	Mucoid	Mucold	Mucoid	Mucoid	Mucoid	Mucoid	waxy	Mucoid	
Table 1. Colony characterization and biochemical test.	Colony Characteristics	Pigment	Buff	Yellow	Buff	Dew drop	Buff	Creamy	Red	Colorless	Creamy	Brown	Colourless	Creamy	Colourless	Colourless	Colourless	Colourless	Colourless	Colourless	Creamish	Buff	Creamy white	Dew drop	Creamy	Creamy huff	Dame.	DIUWII	Y ellow	Red	Brown	Yellowish	Creamy	Buff	Buff	Pinkish White	Buff	
n and bio	Colony (Margin	Entire	Entire	Entire	Entire	Undulate	Entire	Lobate	Entire	Undulate	Entire	Entire	Entire	Entire	Undulate	Lobate	Entire	Entire	Entire	Entire	Entire	Undulate	Entire	Entire	Entire			Enure	Entire	Entire	Entire	Entire	Entire	Entire	Undulate	Entire	
cterizatio		Elevation	Raised	Raised	Raised	Convex	Flat	Convex	Flat	Raised	Flat	Raised	Raised	Raised	Raised	Raised	Flat	Raised	Flat	Raised	Raised	Raised	Raised	Raised	Raised	Raised		D 1	Kalsed	Kalsed	Kaised	Raised	Convex	Raised	Convex	Convex	Convex	
ny charad		Form	Circular	Circular	Circular	Circular	Circular	Irregular	Irregular	Circular	Irregular	Circular	Circular	Irregular	Circular	Irregular	Rhizoid	Circular	Circular	Circular	Circular	Circular	Irregular	Circular	Circular	Circular		Circular	Circular	Circular	Circular	Circular	Circular	Circular	Circular	Irregular	Circular	
e 1. Coloi		Sample	Kh1MS17z	Kh1MS16z	Kh2MS3z	Kh1MS10z	Kh1MS5z	Kh1MS18z	Kh1MS3z	Kh2MS7z	Kh1MS9z	Kh3MS5z	Kh3MS6z	Kh1MS6m	Kh1MS3m	Kh3MS3m	Kh3MS4m	Kh1MS7m	Kh2MS1m	Kh2MS5m	Kh1MS2m	VI1MS6z	V13MS2z	VI1MS8z	VI1MS4z	29SWCI/A		ZICIMIIA	ZISIMIZIA	VIIMS3z	VI3MS3z	VI3MS5z	V13MS6z	VI2MS1m	Si1MS2z	Si1MS10z	Si1MS12z	
lable		Sr. No.		2	3		5		2	8	6	10	Ξ					16		18	19	20	21	22	23	74	30	5 5	07	17	87	29	30	31	32	33	34	

N. Sakhia *et al.*

3.3. Comparison of Classical and Conventional Identification Techniques

Comparison of biochemical identification and molecular identification shows the similarities and dissimilarities in final identification of the organism shown in (see Table 2).

Table 2	Table 2. Comparison of classical and conventional identification techniques.												
Sr. No.	Sample	Identified by 16S rRNA gene sequencing	% Similarity in alignment	Accession number	Identified by biochemical tests								
1	Kh1MS17z	Paracoccus sp. F1 1014	100	JQ691539.1	Lactobacillus sp.								
2	Kh1MS16z	Bacillus aquimaris strain G3-5	99	GQ927165.1	Arthrobacter sp.								
3	Kh2MS3z	Halobacillus sp. ML07	100	JN791341.1	Bacillus sp.								
4	Kh1MS10z	Bacillus endophyticus strain C2-2	99	HM770880.1	Bacillus sp.								
5	Kh1MS5z	Halomonas maura strain S-31	100	NR_042010.1	Bacillus sp.								
6	Kh1MS18z	Bacillus licheniformis strain PG9	99	HQ143567.1	Clostridium sp								
7	Kh1MS3z	Bacillus niabensis strain X16	99	JQ946065.1	Bacillus sp.								
8	Kh2MS7z	Bacillus licheniformis strain ZHU-1	99	KC197213.1	Staphylococcus sp.								
9	Kh1MS9z	Bacillus sp. PCWCS27	95	GQ284386.1	Corynebacterium sp.								
10	Kh3MS5z	Bacillus pumilus strain759	96	EU430089.1	Corynebacterium sp.								
11	Kh3MS6z	Bacillus pumilus strain Van35	97	KM068045.1	Lactobacillus sp.								
12	Kh1MS6m	Yangia pacifica strain: DX5-10	99	NR_042376.1	Lactobacillus sp.								
13	Kh1MS3m	Micrococcus luteus strain INBI-1	99	EU438932.1	Bacillus sp.								
14	Kh3MS3m	Bacillus subtilis strain JBE 0016	99	FJ982665.1	Bacillus sp.								
15	Kh3MS4m	Kocuria rosea strain Y9	99	KF306359.1	Bacillus sp.								
16	Kh1MS7m	Halobacillus sp. SL3(2014)	99	KF746074.1	Enterococcus sp.								
17	Kh2MS1m	Bacillus jeotgali strain pd2/1	98	KJ22430.1	Bacillus sp.								
18	Kh2MS5m	Halobacillus sp. GSP34	99	AY505519.1	Streptococccus sp.								
19	Kh1MS2m	Aerococcus viridians isolate CMS378	90	FR750978.1	Bacillus sp.								
20	Vl1MS6z	Labrenzia sp. SN-3-9-1	99	JX119047.1	Bacillus sp.								
21	Vl3MS2z	Citreicella sp. B-5052	99	DQ399758.1	Clostridium sp.								
22	Vl1MS8z	Rhodococcus equi strain ushuaia	99	JQ965788.1	Bacillus sp.								
23	Vl1MS4z	Escherichia coli strain R1SpM1	100	KF147128.1	Staphylococcus aureus								
24	Vl2MS6z	Rhodococcus equi strain vanille	99	JQ965787.1	Staphylococcus aureus								
25	Vl1MS1z	Virgibacillus sp. LX-89	96	KF928683.1	Bacillus sp.								
26	Vl2MS1z	Bacillus safensis strain WM-261	97	KJ210640.1	Corynebacterium sp.								
27	Vl1MS3z	Bacillus pumilus strain SH-12	98	KM248380.1	Lactobacillus sp.								
28	Vl3MS3z	Pseudoalteromonas sp. Bsi20419	98	EF198364.1	Lactobacillus sp.								
29	VI3MS5z	Uncultured Pseudomonas sp. Clone SLO-K19	97	JF262920.1	Corynebacterium sp.								
30	Vl3MS6z	Micrococcus luteus strain S23	96	JX007957.1	Corynebacterium sp.								
31	Vl2MS1m	Exiguobacterium sp.Y11	99	EF177690.1	Staphylococcus sp.								
32	Si1MS2z	Bacillus firmus strain GY-30	99	KC774008.1	Lactobacillus sp.								
33	Si1MS10z	Bacillus endophyticus strain BTH#2	100	KC818118.1	Arthrobacter sp.								
34	Si1MS12z	Bacillus pumilus strain Bi55	96	HQ336305.1	Lactobacillus sp.								
35	Si1MS7m	Bacillus foraminis strain kt26	99	JF411249.1	Streptococcus sp.								

4. Discussion

The 35 culturable bacteria from three different locations of *Avicennia marina* were collected and studied for the representative diversity. The bacterial diversity as seen in **Figure 2** shows that as the pH increases from 6.0 to 8.0 the diversity decreases. The family Bacillaceae (60%) is the predominant family along all the three pH values and the existence of this family is found to be exclusive at higher pH. The family Rhodobacteraceae constitutes 11.43%; Micrococcaceae constitutes 8.57%; and the families Nocardiaceae and Pseudoalteromonadaceae constitute 5.71% (see **Table 3**). At pH 6.0 the diversity includes families like, Bacillaceae, Rhodobacteraceae,

Table 5.	Taxononne gi	oups present in mangrove mizosphere.		
Sr. No.	Sample	Identified by 16 s Sq.	Phylum	Family
1	Kh1MS17z	Paracoccus sp. F1 1014	Proteobacteria	Rhodobacteraceae
2	Kh1MS16z	Bacillus aquimaris strain G3-5	Firmicutes	Bacillaceae
3	Kh2MS3z	Halobacillus sp. ML07	Firmicutes	Bacillaceae
4	Kh1MS10z	Bacillus endophyticus strain C2-2	Firmicutes	Bacillaceae
5	Kh1MS5z	Halomonas maura strain S-31	Proteobacteria	Halomonadaceae
6	Kh1MS18z	Bacillus licheniformis strain PG9	Firmicutes	Bacillaceae
7	Kh1MS3z	Bacillus niabensis strain X16	Firmicutes	Bacillaceae
8	Kh2MS7z	Bacillus licheniformis strain ZHU-1	Firmicutes	Bacillaceae
9	Kh1MS9z	Bacillus sp. PCWCS27	Firmicutes	Bacillaceae
10	Kh3MS5z	Bacillus pumilus strain759	Firmicutes	Bacillaceae
11	Kh3MS6z	Bacillus pumilus strain Van35	Firmicutes	Bacillaceae
12	Kh1MS6m	Yangia pacifica strain: DX5-10	Proteobacteria	Rhodobacteraceae
13	Kh1MS3m	Micrococcus luteus strain INBI-1	Actinobacteria	Micrococcaceae
14	Kh3MS3m	Bacillus subtilis strain JBE 0016	Firmicutes	Bacillaceae
15	Kh3MS4m	Kocuria rosea strain Y9	Actinobacteria	Micrococcaceae
16	Kh1MS7m	Halobacillus sp. SL3 (2014)	Firmicutes	Bacillaceae
17	Kh2MS1m	Bacillus jeotgali strain pd2/1	Firmicutes	Bacillaceae
18	Kh2MS5m	Halobacillus sp. GSP34	Firmicutes	Bacillaceae
19	Kh1MS2m	Aerococcus viridians isolate CMS378	Firmicutes	Aerococcaceae
20	Vl1MS6z	Labrenzia sp. SN-3-9-1	Proteobacteria	Rhodobacteraceae
21	Vl3MS2z	Citreicella sp. B-5052	Proteobacteria	Rhodobacteraceae
22	Vl1MS8z	Rhodococcus equi strain ushuaia	Actinobacteria	Nocardiaceae
23	Vl1MS4z	Escherichia coli strain R1SpM1	Proteobacteria	Enterobacteriaceae
24	Vl2MS6z	Rhodococcus equi strain vanille	Actinobacteria	Nocardiaceae
25	Vl1MS1z	Virgibacillus sp. LX-89	Firmicutes	Bacillaceae
26	Vl2MS1z	Bacillus safensis strain WM-261	Firmicutes	Bacillaceae
27	Vl1MS3z	Bacillus pumilus strain SH-12	Firmicutes	Bacillaceae
28	Vl3MS3z	Pseudoalteromonas sp. Bsi20419	Proteobacteria	Pseudoalteromonadaceae
29	Vl3MS5z	Uncultured Pseudomonas sp. Clone SLO-K19	Proteobacteria	Pseudomonadaceae
30	Vl3MS6z	Micrococcus luteus strain S23	Actinobacteria	Micrococcaceae
31	Vl2MS1m	Exiguobacterium sp. Y11	Firmicutes	Bacillales Family XII. Incertae Sedis
32	Si1MS2z	Bacillus firmus strain GY-30	Firmicutes	Bacillaceae
33	Si1MS10z	Bacillus endophyticus strain BTH#2	Firmicutes	Bacillaceae
34	Si1MS12z	Bacillus pumilus strain Bi55	Firmicutes	Bacillaceae
35	Si1MS7m	Bacillus foraminis strain kt26	Firmicutes	Bacillaceae

				-							
1	a h	e	3	- T	axonomic	orouns	nresent	ın	mangrove	h170sn	here

Halomonadaceae, Micrococcaceae, Aerococcaceae; at pH 7.0 the diversity includes Bacillaceae, Rhodobacteraceae, Micrococcaceae, Nocardiaceae, Enterobacteriaceae, Pseduoalteromonadaceae, families and at pH 8.0 the diversity is restricted to Bacillaceae family.

Bergy's Manual for determinative microbiology is an established key for identification of microbes. The key has successfully produced results which have shown 98% harmony with 16S rRNA sequencing when limited to a specific genus in case of marine microbes [13]. Also, in case of clinical samples like Mycobacteria and Vibrio, the biochemical identification shows a harmony in results making the score to 70% [14]. In another study working with 47 samples using biochemical tests and 16S rRNA gene PCR, in 33 cases (70.2%), biochemical tests were confirmed by PCR [15]. In case of environmental samples, the samples are subjected to 16S rRNA gene sequencing, and biochemical tests of the genus are then used to confirm the genus and species identification [13]. In the current study unknown environmental samples were subjected to biochemical testing for the first stage of elimination, isolation and preservation. The identification of the isolated samples using 16S rRNA gene sequencing revealed a 51.43% match up to the phylum level, 48.57% up to class, 20% up to order and 17.14% up to family level. The match at genus level is at a low of 3%. This shows that for environmental samples, where biochemical tests are an important tool for first stage identification, genus and species level identification can be confirmed by 16S rRNA gene sequencing. For 10 samples (28.57%), namely, Kh1MS17z, Kh2MS3z, Kh1MS9z, Kh1MS7m, Kh1MS5m, V11MS6z, V13MS2z, V11MS1z, V13MS3z and V12MS1m, 16S rDNA gene sequencing could give an identification up to genus. Further determinative biochemical tests and MALDI-TOFF are needed to be applied to these samples. Biochemical tests and molecular techniques are complementary tools, and both are important for conclusive identification of unknown environmental samples. This diversity study has been able to cultivate an uncultured *Pseudomonas* sp. *Clone SLO-K*19, reported through 16S rRNA sequencing, on minimal media.

Acknowledgements

We acknowledge the initiation of this centre by Gujarat State biotechnology Mission [GSBTM], DST, GoG and the Department of Forest, Gujarat for providing the permission for sampling. The co author of the paper has no Conflict of Interest.

References

- [1] Bhatt, S., Shah, D.G. and Desai, N. (2009) The Mangrove Diversity of Purna Estuary, South Gujarat, India. *Tropical Ecology*, **50**, 287-293.
- [2] Kathiresan, K. (2003a) How Do Mangrove Forests Induce Sedimentation? Revista de Biologia Tropical, 51, 355-360.
- [3] Tomlinson, P.B. (1986) The Botany of Mangroves. Cambridge Tropical Biology Series. Cambridge University Press, Cambridge.
- Saenger, P. (2002) Mangrove Ecology, Silviculture and Conservation. Kluwer Academic Publishers, Dordrecht, 11-18. http://dx.doi.org/10.1007/978-94-015-9962-7
- [5] Kathiresan, K. (2003) Global Policies and Institution. Biodiversity in Mangrove Ecosystems. In: Kathiresan, K. and Subramanian, A.N., Eds., UNU-UNESCO International Training Course on Biodiversity in Mangrove Ecosystems, Course Manual, Annamalai University, India, 317-332.
- [6] Anonymous (2005) State of Forest Report 2003. *Forest Survey of India*, Ministry of Environment and Forests, Dehradun.
- [7] Brinda, V. and Mathew, A. (2012) Molecular Characterization and Identification of Unknown Bacteria from Waste Water. *Indian Journal of Innovations and Developments*, 1, 87-91.
- Pace, N.R. (1997) A Molecular View of Microbial Diversity and the Biosphere. Science, 272, 734-740. http://dx.doi.org/10.1126/science.276.5313.734
- [9] Malik, S., Beer, M., Megharaj, M. and Naidu, R. (2008) The Use of Molecular Techniques to Characterize the Microbial Communities in Contaminated Soil and Water. *Environment International*, 34, 265-276. http://dx.doi.org/10.1016/j.envint.2007.09.001
- [10] Schut, F., De-Vries, E.J., Gotitschal, J.C., Robertson, B.R., Harder, W., Prins, R.A. and Button, D.K. (1993) Isolation of Typical Marine Bacteria by Dilution Culture: Growth, Maintenance, and Characteristics of Isolates under Laboratory Conditions. *Applied and Environmental Microbiology*, **59**, 2150-2160.
- [11] Beisher, L. (1991) Microbiology in Practice, a Self Instructional Laboratory Course. Harper Collins Publishers, Inc.,

New York, 53-131.

- [12] Thompson, J.D., Higgins, D.G. and Gibson, T.J. (1994) CLUSTAL W: Improving the Sensitivity of Progressive Multiple Sequence Alignment through Sequence Weighting, Position-Specific Gap Penalties and Weight Matrix Choice. *Nucleic Acids Research*, 22, 4673-4680. <u>http://dx.doi.org/10.1093/nar/22.22.4673</u>
- [13] Nair, A.V., Vijayan, K.K. and Chakraborty, K. (2012) Diversity and Characterization of Antagonistic Bacteria from Tropical Estuarine Habitats of Cochin, India for Fish Health Management. World Journal for Microbiology and Biotechnology, 28, 2581-2592. <u>http://dx.doi.org/10.1007/s11274-012-1067-5</u>
- [14] Shafipour, M., Ghane, M., Rahimi, A.S., Livani, S. and Ghaemi, E. (2014) The Comparison of Biochemical and Sequencing 16SrDNA Gene Methods to Identify Nontuberculous Mycobacteria. Archives of Razi Institute, 69, 137-142.
- [15] Therese, K., Bartell, J., Deepa, P., Mangaiyarkarasi, S., Ward, D. and Dajcs, J. (2009) DNA Sequencing by Microseq Kit Targeting 16SrRNA Gene for Species Level Identification of *Mycobacteria*. *Indian Journal of Medical Research*, 129, 176-181.