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Abstract 
Purpose: To improve the image resolution of magnetic resonance imaging 
(MRI), conventional interpolation methods are commonly used to magnify 
images via various image processing approaches; however, these methods tend 
to produce artifacts. While super-resolution (SR) schemes have been intro-
duced as an alternative approach to apply medical imaging, previous studies 
applied SR only to medical images in 8-bit image format. This study aimed to 
evaluate the effectiveness of sparse-coding super-resolution (ScSR) for im-
proving the image quality of reconstructed high-resolution MR images in 
16-bit digital imaging and communications in medicine (DICOM) image 
format. Materials and Methods: Fifty-nine T1-weighted images (T1), 84 
T2-weighted images (T2), 85 fluid attenuated inversion recovery (FLAIR) 
images, and 30 diffusion-weighted images (DWI) were sampled from The 
Repository of Molecular Brain Neoplasia Data as testing datasets, and 1307 
non-medical images were sampled from the McGill Calibrated Color Image 
Database as a training dataset. We first trained the ScSR to prepare dictiona-
ries, in which the relationship between low- and high-resolution images was 
learned. Using these dictionaries, a high-resolution image was reconstructed 
from a 16-bit DICOM low-resolution image downscaled from the original test 
image. We compared the image quality of ScSR and 4 interpolation methods 
(nearest neighbor, bilinear, bicubic, and Lanczos interpolations). For quantit-
ative evaluation, we measured the peak signal-to-noise ratio (PSNR) and 
structural similarity (SSIM). Results: The PSNRs and SSIMs for the ScSR were 
significantly higher than those of the interpolation methods for all 4 MRI se-
quences (PSNR: p < 0.001, SSIM: p < 0.05, respectively). Conclusion: ScSR 
provides significantly higher image quality in terms of enhancing the resolu-
tion of MR images (T1, T2, FLAIR, and DWI) in 16-bit DICOM format com-
pared to the interpolation methods. 
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1. Introduction 

The spatial resolution of magnetic resonance imaging (MRI) is a crucial factor 
related to image quality, and affects the identification of anatomical features in 
medical imaging. However, as the image resolution is proportional to the scan-
ning time, it is often difficult to obtain high-resolution images, especially in 
terms of MRI. 

In order to improve the image resolution by image processing, conventional 
linear interpolation methods such as nearest neighbor, bilinear, and bicubic in-
terpolations [1] can be used to magnify low-resolution images, although these 
interpolation methods can also cause artifacts (i.e., jagging, blurring, and ring-
ing). As an alternative image processing, the super-resolution (SR) method was 
first proposed by Huang and Tsai [2] [3], and, to date, many studies have dem-
onstrated the usefulness of SR schemes in medical imaging [4] [5]. Our previous 
studies revealed the utility of sparse coding-based super-resolution (ScSR), a 
representative example-based SR scheme, when applied to CT imaging [4] and 
chest X-rays [6]. 

Existing SR schemes operate only on 8-bit images, because the SR schemes 
were originally proposed in computer vision with RGB color images. Accor-
dingly, most previous SR studies have applied to use 8-bit medical images [3] 
[7]. However, according to the international digital imaging and communica-
tions in medicine (DICOM) standard, which was published by the medical im-
aging and technology alliance [8], MR images should be in 16-bit DICOM image 
format. Therefore, since the existing 8-bit-based SR methods are not suitable for 
MR images, the development of an SR scheme using 16-bit DICOM format is 
required. 

In this study, we applied ScSR to four types of MR images, i.e., T1-weighted 
imaging (T1), T2-weighted imaging (T2), fluid attenuated inversion recovery 
(FLAIR) imaging, and diffusion-weighted imaging (DWI) in 16-bit DICOM 
format and evaluated its performance on improving image quality while magni-
fying the images. 

2. Methods 
2.1. Sparse-Coding-Based Super-Resolution [9] [10] 

In Equation (1), X is a high-resolution image and Y is a low-resolution image 
based on the known degradation model. 

Y SHX=                             (1) 
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Further, S is a downscaling function and H is the blurring factor. To restore 
high-resolution images remains an ill-posed problem because of the above re-
construction constraints. 

On the other hand, sparse coding contributes to finding a concise expression 
of the signal. For a given unlabeled image, the input image is represented by a 
weighted linear combination of a small number of bases with more meaningful 
features.  

The ScSR method is an algorithm used for solving the ill-posed problem of 
recovering a high-resolution image from a low-resolution image using the above 
sparse coding algorithm. Figure 1 shows an overview of the ScSR scheme. 

In the ScSR method, Dl (low-resolution dictionary) and Dh (high-resolution 
dictionary), selected bases with highly meaningful features from training images 
learned to efficiently represent input images, are prepared before reconstruction 
of a high-resolution image (output image) from a low-resolution image (input 
image). The problem of finding the sparsest representation of a patch y (a 
low-resolution image patch) can be formulated as follows: 

2

0 2
min s.t. lFD Fyα α ε− ≤                   (2) 

where F is four 1-D high-pass filters used to find representation more efficiently, 
as summarized below: 
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and α  is a vector of coefficients of a sparse linear combination (w1-n in Figure 
1). However, Equation (2) is non-deterministic polynomial-hard; when coeffi-
cients α  are adequately sparse, they can be effectively restored by minimizing 
the l1-norm: 

2

1 2
min s.t. lFD Fyα α ε− ≤                   (4) 

After the training, each patch of the input image (low-resolution) is searched 
for a sparse representation of Dl, represented as downscaled image patches of the  
 

 
Figure 1. Overview of the sparse-coding super-resolution (ScSR) scheme. Abbreviations: 
Dl, low-resolution dictionary; Dh, high-resolution dictionary; w1/2/3∙∙∙, coefficients of the 
sparse representation. 
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high-resolution image patches. Subsequently, *α , which is the corresponding 
vector of α , is used to reconstruct the high-resolution output image. 

*
hx D α=                              (5) 

2.2. Experiments 
2.2.1. Dataset 
In this study, we used the brain MRI dataset with brain cancers provided by The 
Repository of Molecular Brain Neoplasia Data [11]. This dataset is publicly 
available from the cancer imaging archive [12]. We arbitrarily sampled MR im-
ages from The Repository of Molecular Brain Neoplasia Data, only in cases 
which MRI sequences can be identified according to DICOM header informa-
tion. The sampled cases comprised 59 T1-weighted, 84 T2-weighted, 85 FLAIR, 
and 30 DWI images. For training, 1307 non-medical images were sampled from 
the McGill Calibrated Color Image Database [13].  

2.2.2. Applying 16-Bit DICOM to ScSR 
In our previous studies, we first transformed 8-bit bitmap images to a single pre-
cision floating point number to efficiently solve the optimization problem in 
ScSR, after which a single precision floating point number, as a result of the op-
timization problem, was transformed to 8-bit bitmap image format. In the 
present study, we inputted a 16-bit DICOM image instead of an 8-bit bitmap 
image and outputted a 16-bit DICOM image after the optimization problem us-
ing a single precision floating point number (Figure 2). 
 

 
Figure 2. How to apply 16-bit DICOM images to sparse-coding super-resolution (ScSR). 
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2.2.3. Comparison of the ScSR Scheme with Conventional  
Interpolation Methods 

First, we prepared low-resolution images by downscaling (128 × 128 pixels). Next, 
we reconstructed the high-resolution images from the prepared low-resolution 
images using ScSR to magnify by 2× to obtain the resulting image at the same 
matrix size as the original image (256 × 256 pixels). The same experiment was 
also performed using nearest neighbor, bilinear, bicubic, and Lanczos interpo-
lations to compare the ScSR and interpolation methods (Figure 3). The Lanc-
zos interpolation method is reported to be superior to other linear interpola-
tion methods because it outperforms them in detecting edge and linear fea-
tures [14]. Lanczos kernel 2 is used in the Lanczos interpolation method. Sub-
sequently, we measured the peak signal-to-noise ratio (PSNR) [15] and struc-
tural similarity (SSIM) [16], two metrics reflecting image quality. The PSNR 
measures the image quality based on the pixel difference between two images. 
The SSIM is used to evaluate the similarity between two images as a means to 
assess the perceptual image quality. As SSIM is generally calculated in a local 
region of the target image to assess structural similarity locally, we measured 5 
regions of interest in each test image and evaluated the mean SSIM of these 5 
regions of interest. 

2.2.4. Statistical Analysis 
The statistical differences in the PSNR and SSIM between the interpolation and 
ScSR methods were analyzed by one-way analysis of variance and Tukey’s 
post-hoc test. For all analyses, p-values < 0.05 were considered significant. All 
statistical analyses were performed using R version 3.2.2 (The R Foundation for 
Statistical Computing, Vienna, Austria).  

3. Results 
3.1. Comparison of Image Quality 
3.1.1. T1 
Figure 4 and Figure 5 show the PSNRs and SSIMs, respectively, of the five  
 

 
Figure 3. Overview of the experiments. 
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Figure 4. Comparisons of the peak signal-to-noise ratio (PSNR) of each magnification 
method for the 4 magnetic resonance imaging sequences: (a) T1; (b) T2; (c) fluid atte-
nuated inversion recovery (FLAIR); (d) diffusion-weighted imaging (DWI). ScSR, 
sparse-coding super-resolution. 
 

 
Figure 5. Comparisons of the structural similarity (SSIM) of each magnification method 
for the 4 magnetic resonance imaging sequences: (a) T1; (b) T2; (c) fluid attenuated in-
version recovery (FLAIR); (d) diffusion-weighted imaging (DWI). Abbreviation: ScSR, 
sparse-coding super-resolution. 
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magnification schemes for the 4 different MRI sequences. For T1-weighted im-
aging, the mean ± SD PSNRs of the nearest neighbor, bilinear, bicubic, Lanczos, 
and ScSR methods were 66.57 ± 2.26, 67.90 ± 2.46, 69.73 ± 2.59, 69.82 ± 2.60, 
and 72.66 ± 2.49 dB, respectively (Figure 4(a)); the corresponding mean ± SD 
SSIMs were 0.99958 ± 0.00020, 0.99970 ± 0.00016, 0.99979 ± 0.00012, 0.99979 ± 
0.00012, and 0.99989 ± 0.00006, respectively (Figure 5(a)). 

Table 1 and Table 2 show the statistical results of the PSNR and SSIM, re-
spectively. In brief, the PSNR was significantly higher for ScSR than for all in-
terpolation methods (p < 0.001 for all) (Table 1). Similarly, ScSR showed signif-
icantly better results than the linear interpolation methods in terms of the SSIM 
(p < 0.01 for all) (Table 2). 

3.1.2. T2 
The mean ± SD PSNRs for the nearest neighbor, bilinear, bicubic, Lanczos, and 
ScSR methods were 66.26 ± 2.22, 67.23 ± 2.35, 68.83 ± 2.40, 68.90 ± 2.40, and 
71.47 ± 2.37 dB, respectively, for T2-weighted imaging (Figure 4(b)). The cor-
responding SSIMs were 0.99946 ± 0.00027, 0.99957 ± 0.00022, 0.99969 ± 
0.00017, 0.99970 ± 0.00016, and 0.99983 ± 0.00010, respectively (Figure 5(b)).  
 
Table 1. Comparisons of the peak signal-to noise ratio (PSNR) of each magnification 
method for the 4 MRI sequences; T1-weighted imaging (T1), T2-weighted imaging (T2), 
fluid attenuated inversion recovery imaging (FLAIR), and diffusion-weighted imaging 
(DWI). 

Sequence Method 
Mean difference 
(ScSR-Method) 

95%CI 
p-value 

Lower limit Upper limit 

T1 

Nearest 6.09 4.82 7.35 <0.001 

Bilinear 4.75 3.49 6.02 <0.001 

Bicubic 2.92 1.66 4.19 <0.001 

Lanczos 2.84 1.57 4.10 <0.001 

T2 

Nearest 5.21 4.21 6.20 <0.001 

Bilinear 4.24 3.24 5.23 <0.001 

Bicubic 2.64 1.64 3.64 <0.001 

Lanczos 2.56 1.57 3.56 <0.001 

FLAIR 

Nearest 4.21 3.21 5.20 <0.001 

Bilinear 3.55 2.55 4.54 <0.001 

Bicubic 2.20 1.20 3.19 <0.001 

Lanczos 2.13 1.14 3.12 <0.001 

DWI 

Nearest 0.44 0.36 0.52 <0.001 

Bilinear 0.51 0.43 0.59 <0.001 

Bicubic 0.31 0.23 0.39 <0.001 

Lanczos 0.30 0.22 0.38 <0.001 

Abbreviations: ScSR, Sparse-coding Super-Resolution; CI, Confidence Interval. 

https://doi.org/10.4236/ojmi.2017.74014


J. Ota et al. 
 

 

DOI: 10.4236/ojmi.2017.74014 151 Open Journal of Medical Imaging 
 

Table 2. Comparisons of the structural similarity (SSIM) of each magnification method 
for the 4 MRI sequences: T1-weighted imaging (T1), T2-weighted imaging (T2), fluid 
attenuated inversion recovery imaging (FLAIR) imaging, and diffusion-weighted imaging 
(DWI). 

Sequence Method 
Mean difference 
(ScSR-Method) 

95%CI 
p-value 

Lower limit Upper limit 

T1 

Nearest 3.05e−04 2.35e−04 3.75e−04 <0.001 

Bilinear 1.88e−04 1.18e−04 2.58e−04 <0.001 

Bicubic 9.92e−05 2.91e−05 1.69e−04 <0.01 

Lanczos 9.53e−05 2.52e−05 1.65e−04 <0.01 

T2 

Nearest 3.68e−04 2.86e−04 4.50e−04 <0.001 

Bilinear 2.53e−04 1.71e−04 3.35e−04 <0.001 

Bicubic 1.37e−04 5.46e−05 2.18e−04 <0.001 

Lanczos 1.31e−04 4.95e−05 2.13e−04 <0.001 

FLAIR 

Nearest 1.08e−04 7.76e−05 1.39e−04 <0.001 

Bilinear 8.14e−05 5.07e−05 1.12e−04 <0.001 

Bicubic 4.43e−05 1.35e−05 7.51e−05 <0.001 

Lanczos 4.27e−05 1.19e−05 7.35e−05 <0.01 

DWI 

Nearest 2.52e−05 1.78e−05 3.27e−05 <0.001 

Bilinear 2.43e−05 1.68e−05 3.17e−05 <0.001 

Bicubic 8.46e−06 1.01e−06 1.59e−05 <0.05 

Lanczos 8.09e−06 6.42e−07 1.55e−05 <0.05 

Abbreviations: ScSR, Sparse-coding Super-Resolution; CI, Confidence Interval. 
 
The results for T2-weighted imaging were similar to those for T1: for both the 
PSNR and SSIM, the ScSR method was significantly better than the interpolation 
methods (Table 1 and Table 2, respectively). 

3.1.3. FLAIR 
The mean ± SD PSNRs for the nearest neighbor, bilinear, bicubic, Lanczos, and 
ScSR methods were 70.52 ± 2.38, 71.17 ± 2.39, 72.53 ± 2.37, 72.59 ± 2.37, and 
74.72 ± 2.21 dB, respectively for FLAIR imaging (Figure 4(c)); the correspond-
ing SSIMs were 0.99982 ± 0.00010, 0.99985 ± 0.00009, 0.99988 ± 0.00006, 
0.99989 ± 0.00006, and 0.99993 ± 0.00003, respectively (Figure 5(c)). For both 
the PSNR and SSIM measures, the SR methods were significantly better than the 
interpolation methods (PSNR, p < 0.001; SSIM, p < 0.01) (Table 1 and Table 2, 
respectively). 

3.1.4. DWI 
For DWI, the mean ± SD PSNRs for the nearest neighbor, bilinear, bicubic, 
Lanczos, and ScSR methods were 63.81 ± 0.14, 63.73 ± 0.10, 63.94 ± 0.10, 63.95 ± 
0.10, and 64.25 ± 0.10 dB, respectively (Figure 4(d)); the mean ± SD SSIMs were 
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0.999965 ± 0.000016, 0.999966 ± 0.000014, 0.999981 ± 0.000006, 0.999982 ± 
0.000006, and 0.999990 ± 0.000003, respectively (Figure 5(d)). For both the 
PSNR and SSIM, ScSR was significantly better than the interpolation methods 
(PSNR, p < 0.001; SSIM, p < 0.05) (Table 1 and Table 2, respectively). 

3.2. Visual Examples 

Figures 6-9 show examples of the resulting high-resolution images by all five 
magnification methods for 2× magnifications of the 4 different MRI sequences. 
ScSR generated clearly higher quality images (i.e., more similar to the original 
image) compared with the interpolation methods for all 4 sequences. The ScSR 
method also produced clearer edges compared to the other methods, without 
any obvious artifacts. 
 

 
Figure 6. Representative reconstructed high-resolution T1-weighted images. (a) nearest 
neighbor, (b) bilinear, (c) bicubic, (d) Lanczos, (e) sparse-coding super-resolution, and 
(f) original region (ground-truth) image. 
 

 
Figure 7. Representative reconstructed high-resolution T2-weighted images. (a) nearest 
neighbor; (b) bilinear; (c) bicubic; (d) Lanczos; (e) sparse-coding super-resolution; and 
(f) original region (ground-truth) image. 
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Figure 8. Representative reconstructed high-resolution fluid attenuated inversion recov-
ery images. (a) nearest neighbor; (b) bilinear; (c) bicubic; (d) Lanczos; (e) sparse-coding 
super-resolution; and (f) original region (ground-truth) image. 
 

 
Figure 9. Representative reconstructed high-resolution diffusion-weighted images. (a) 
nearest neighbor, (b) bilinear, (c) bicubic, (d) Lanczos, (e) sparse-coding super-resolution, 
and (f) original region (ground-truth) image. 

4. Discussion 

In the present study, we used ScSR to improve the quality of 16-bit DICOM MR 
images when magnifying the images, and compared the resulting image quality 
to that of other common interpolation methods. As a result, the ScSR method 
yielded a significantly higher image quality than the interpolation methods using 
16-bit DICOM, for two different image quality metrics. 

Previous studies using 8-bit medical images have indicated the effectiveness of 
ScSR [3] [4] [7]; however, the performance of ScSR with 16-bit DICOM has not 
been evaluated to date, even though most medical images are digitized with a 
resolution of 16-bit. As not only ScSR but also other example-based SR tech-
niques often use 8-bit image format, loss of information is a concern when per-
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forming SR. 
Our experimental results showed that the ScSR scheme also yields a signifi-

cantly higher image quality than the interpolation methods using 16-bit DICOM 
in 4 kinds of MRI datasets (PSNR: p < 0.001, SSIM: p < 0.05, respectively), sug-
gesting that the ScSR does not need to convert images in 16-bit DICOM format 
to 8-bit image format. Whether the improved performance of ScSR with 16-bit 
DICOM images is due to using other medical images, or a different factor alto-
gether, will require further study. 

There are several limitations in this study that need to be acknowledged. In 
ScSR, to minimize the l1-norm to effectively seek optimal image bases, single or 
double precision floating point numbers need to be converted from the original 
image format. This conversion will cause a loss of information of 16-bit DICOM. 
Consequently, further improvement will be needed to obtain higher image qual-
ity as a means to sustain the information of the original image. Additionally, we 
used 8-bit non-medical images as the training images. Although this study re-
vealed the ability to use a 16-bit DICOM input in the testing phase of the ScSR, 
as compared to conventional interpolation methods, in the training phase, dic-
tionaries were generated after conversion of the training images to a single or 
double precision floating point number from 8-bit image format. Further, loss of 
information when converting the training image format is another concern, de-
spite using 16-bit DICOM images in the training phase as well. Further studies 
will be needed to identify whether 16-bit DICOM images would be effective for 
training the ScSR to enhance the resolution of 16-bit DICOM images. 

5. Conclusion 

Herein, we applied and evaluated the ScSR method for improvement of image 
quality of magnified MR images (T1-weighted, T2-weighted, FLAIR, and DWI 
images) in16-bit DICOM format. Our results suggest that the ScSR scheme using 
16-bit DICOM outperformed the current interpolation methods used to enhance 
the image resolution of MRI. 
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