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Abstract 
Purpose: To detect small diagnostic signals such as lung nodules in chest ra-
diographs, radiologists magnify a region-of-interest using linear interpolation 
methods. However, such methods tend to generate over-smoothed images 
with artifacts that can make interpretation difficult. The purpose of this study 
was to investigate the effectiveness of super-resolution methods for improving 
the image quality of magnified chest radiographs. Materials and Methods: A 
total of 247 chest X-rays were sampled from the JSRT database, then divided 
into 93 training cases with non-nodules and 154 test cases with lung nodules. 
We first trained two types of super-resolution methods, sparse-coding su-
per-resolution (ScSR) and super-resolution convolutional neural network 
(SRCNN). With the trained super-resolution methods, the high-resolution 
image was then reconstructed using the super-resolution methods from a 
low-resolution image that was down-sampled from the original test image. We 
compared the image quality of the super-resolution methods and the linear 
interpolations (nearest neighbor and bilinear interpolations). For quantitative 
evaluation, we measured two image quality metrics: peak signal-to-noise ratio 
(PSNR) and structural similarity (SSIM). For comparative evaluation of the 
super-resolution methods, we measured the computation time per image. 
Results: The PSNRs and SSIMs for the ScSR and the SRCNN schemes were 
significantly higher than those of the linear interpolation methods (p < 0.001 
or p < 0.05). The image quality differences between the super-resolution me-
thods were not statistically significant. However, the SRCNN computation 
time was significantly faster than that of ScSR (p < 0.001). Conclusion: Su-
per-resolution methods provide significantly better image quality than linear 
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interpolation methods for magnified chest radiograph images. Of the two 
tested schemes, the SRCNN scheme processed the images fastest; thus, SRCNN 
could be clinically superior for processing radiographs in terms of both image 
quality and processing speed. 
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1. Introduction 

Chest radiography is the most commonly performed diagnostic imaging tech-
nique for identifying various pulmonary diseases, including lung nodules, 
pneumonia, and pneumoconiosis. When radiologists need to verify small diagnos-
tic signals such as lung nodules on an image, they enlarge the region-of-interest 
(ROI) using well-established linear interpolation methods. Such methods are 
commonly used for improving image resolution of a low-resolution image to 
generate a high-resolution image. However, the linear interpolation methods 
tend to generate over-smoothed images with aliasing, blur, and halo around the 
edges [1]. 

The single image super-resolution method is the post-processing approach for 
reconstructing a high-resolution image from a low-resolution image, and can 
greatly reduce artifacts resulting from linear interpolation methods. Recent su-
per-resolution methods are example-based methods that learn the relationship 
between low-resolution and high-resolution image pairs. The sparse-coding 
super-resolution (ScSR) scheme [2] [3] is the archetypal example-based su-
per-resolution method. Previous studies demonstrated the superiority of the 
ScSR method over conventional linear interpolation methods in the image qual-
ity of medical images [4] [5]. 

Deep-learning, also known as the deep convolutional neural network (DCNN), 
has recently attracted much attention in computer vision by demonstrating 
state-of-the-art performance in many image-based classification tasks [6] [7]. 
Moreover, DCNNs have been applied to image restorations such as denoising 
[8], inpainting [8], and deblurring [9]. The super-resolution convolutional neur-
al network (SRCNN) [10] [11], which is an emerging deep-learning-based su-
per-resolution method, has been proposed in computer vision. We previously 
demonstrated that the use of the SRCNN scheme has the potential to provide an 
effective approach for improving image resolution in chest radiographs [12]. 
However, few studies have investigated which super-resolution method is more 
suitable for clinical imaging applications, which require both fast processing 
speeds and high image quality. 

In this paper, we applied and evaluated two types of super-resolution me-
thods, i.e., ScSR and SRCNN schemes for their ability to improve image quality 
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of magnified images in chest radiographs over that of linear interpolation. We 
then compared the two super-resolution methods in terms of processing speed 
by calculating the computation time per image. 

2. Materials and Methods 
2.1. Materials 

A total of 247 chest radiographs were sampled from the JSRT Database, which is 
an open-access database created by the Japanese Society of Radiological Tech-
nology [13]. The database contained 154 cases with lung nodules and 93 cases 
with non-nodules. The 247 cases were divided into a training dataset comprised 
of the 93 cases without lung nodules, and a test dataset of the 154 cases with lung 
nodules. 

2.2. Sparse-Coding Super-Resolution (ScSR) 

Figure 1 shows an overview of the sparse-coding super-resolution (ScSR) [2] [3] 
scheme that we used in this study. The ScSR scheme can be divided into a train-
ing phase and a testing phase. In the training phase, two types of dictionaries, Dl 
and Dh, were learned from (and comprised of) the low- and high-resolution im-
age patches, respectively, to optimize the over-complete dictionaries. The spars-
est representation of a patch y of the low-resolution image can be defined as: 

2

0 2
min s.t. ,lFD Fyα α ε− ≤                    (1) 

where F is a feature extraction operator including four 1-D high-pass filters and 
α is a vector of coefficients of a sparse linear combination. However, Equation 
(1) is non-deterministic polynomial time-hard (NP-hard), so as long as the de-
sired vector of coefficients α is sufficiently sparse, they can be efficiently recov-
ered by instead minimizing the l1-norm, as follows: 

2

1 2
min s.t. .lFD Fyα α ε− ≤                    (2) 

 

 
Figure 1. Overview of the sparse-coding super-resolution (ScSR) scheme. 

https://doi.org/10.4236/ojmi.2017.73010


K. Umehara et al. 
 

 

DOI: 10.4236/ojmi.2017.73010 103 Open Journal of Medical Imaging 
 

In the testing phase, each patch of the low-resolution inputs was searched 
as a sparse representation of the low-resolution dictionary, represented as 
down-sampled image patches of high-resolution ones. The vector of coefficients 
of a representation of low-resolution patches α* which is the coefficient corres-
ponding with α, was used to generate the high-resolution output. Finally, the 
high-resolution output x can be reconstructed as follows: 

*.hx D α=                              (3) 

2.3. Super-Resolution Convolutional Neural Network (SRCNN) 

Figure 2 shows an overview of the super-resolution convolutional neural net-
work (SRCNN) [10] [11] scheme that we used in this study. The SRCNN scheme 
also has a training and testing phase; these used the same training and testing 
datasets, respectively, as described for the ScSR scheme. The testing phase con-
sisted of a high-resolution image reconstructed from a low-resolution input im-
age using the trained SRCNN model. 

The SRCNN method can be divided into three parts: patch extraction and re-
presentation, non-linear mapping, and reconstruction. Patch extraction and 
representation refers to the first layer, which extracts patches from the 
low-resolution input image. The operation of the first layer is as follows: 

( ) ( )1 1 1max 0, ,F W B= ∗ +Y Y                     (4) 

where F, Y, W1, and B1 represent the mapping function, the bicubic interpolated 
low-resolution image, the filters, and the biases, respectively.  

Non-linear mapping refers to the middle layer, which maps the feature vectors 
non-linearly to another set of feature vectors, the high-resolution features. The 
operation of the middle layer is as follows: 

( ) ( )( )2 2 1 2max 0, .F W F B∗= +Y Y                   (5) 

Reconstruction aggregates these high-resolution features to generate the final 
high-resolution image. The operation of the last layer is as follows: 
 

 
Figure 2. Overview of the super-resolution convolutional neural network (SRCNN) 
scheme. 
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( ) ( )3 2 3.F W F B∗= +Y Y                       (6) 

2.4. Experimental Procedures 

Figure 3 shows an overview of the evaluation scheme. The evaluation of su-
per-resolution imaging is difficult because super-resolution methods estimate a 
high-resolution image from a low-resolution image; thus, there is no “correct” 
high-resolution image. Therefore, we performed an image-restoration experi-
ment using the down-sampled original test image. Such an experiment provides 
a method for assessing whether the resulting high-resolution image was correctly 
restored or not relative to the original ROI image.  

A total of 154 ROIs (matrix size: 320 × 320 pixels) centered on the nodules 
were cropped from each original test image. We first generated two types of 
low-resolution images by down-sampling. The matrix sizes of the resulting 
low-resolution images were 160 × 160 pixels and 80 × 80 pixels, respectively. 
Next, we reconstructed the high-resolution images from the down-sampled 
low-resolution image using the super-resolution methods to magnify by 2X or 
for 4X, respectively. Thus, the matrix size of the resulting high-resolution image 
was the same as that of the original ROI image (320 × 320 pixels). For compara-
tive evaluation of the super-resolution and linear interpolation methods, we 
performed the same experiment using nearest neighbor and bilinear interpola-
tions. Finally, we measured two image quality metrics, the peak signal-to-noise 
ratio (PSNR) [14] and structural similarity (SSIM) [15], using an original ROI 
image as the reference image. These metrics are widely used to measure image 
restoration quality objectively. PSNR measures image quality based on the pixel 
difference between two images. SSIM measures the similarity between two im-
ages to assess the perceptual image quality. 

For comparative evaluation of processing speed of the super-resolution methods, 
we measured the computation time per image using our standard-performance 
computer (CPU: Intel® Core i7-4770S 3.1 GHz, RAM: 8 GB). 

2.5. Statistical Analysis 

The statistical significance of the differences in the image quality metrics between  
 

 
Figure 3. Overview of the evaluation scheme. Abbreviations: ROI, region of interest; 
ScSR, sparse-coding super-resolution; SRCNN, super-resolution convolutional neural 
network. 
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linear interpolation and super-resolution methods was analyzed by one-way 
analysis of variance (ANOVA) and Tukey’s post-hoc test. The statistical signi-
ficance of the differences in computation times was tested by Student’s t-test. A 
p-value less than 0.05 was considered statistically significant. All statistical ana-
lyses were conducted using IBM SPSS Statistics version 22.0 (IBM Corp., Ar-
monk, NY). Data are presented as mean ± standard deviation (SD). 

3. Results 
3.1. Comparison of Image Quality 

Figure 4 shows the PSNRs and the SSIMs of the four schemes for 2X magnifica-
tion. The means ± SDs of the nearest neighbor, bilinear, ScSR, and SRCNN me-
thods were 39.87 ± 2.24 dB, 40.39 ± 2.32 dB, 41.56 ± 2.37 dB, and 41.79 ± 2.49 
dB, respectively, of the PSNRs (Figure 4(a)); and 0.924 ± 0.033, 0.928 ± 0.035, 
0.945 ± 0.028, and 0.947 ± 0.029, respectively, of the SSIMs (Figure 4(b)). Table 
1 and Table 2 show the statistical results of the PSNR and SSIM, respectively, for  
 

 
Figure 4. Comparison of the image quality of each method for 2X magnification: (a) peak 
signal-to-noise ratio (PSNR), (b) structural similarity (SSIM). Abbreviations: ScSR, 
sparse-coding super-resolution; SRCNN, super-resolution convolutional neural network. 
 
Table 1. Comparisons of the peak signal-to-noise ratio (PSNR) in each method for 2X 
magnification. 

(I) Method (J) Method 
Mean difference 

(I-J) 

95% CI 
p-value 

Lower limit Upper limit 

Bilinear Nearest neighbor 0.53 −0.17 1.22 0.204 

ScSR Nearest neighbor 1.69 1.00 2.39 <0.001 

ScSR Bilinear 1.17 0.47 1.86 <0.001 

SRCNN Nearest neighbor 1.92 1.23 2.62 <0.001 

SRCNN Bilinear 1.40 0.70 2.09 <0.001 

SRCNN ScSR 0.23 −0.46 0.92 0.826 

Abbreviations: ScSR, sparse-coding super-resolution; SRCNN, super-resolution convolutional neural net-
work; CI, confidence interval. 
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Table 2. Comparisons of the structural similarity (SSIM) between each method for 2X 
magnification. 

(I) Method (J) Method 
Mean difference 

(I-J) 

95% CI 
p-value 

Lower limit Upper limit 

Bilinear Nearest neighbor 0.004 −0.005 0.013 0.709 

ScSR Nearest neighbor 0.021 0.012 0.030 <0.001 

ScSR Bilinear 0.017 0.008 0.026 <0.001 

SRCNN Nearest neighbor 0.023 0.014 0.032 <0.001 

SRCNN Bilinear 0.019 0.010 0.029 <0.001 

SRCNN ScSR 0.002 −0.007 0.011 0.937 

Abbreviations: ScSR, sparse-coding super-resolution; SRCNN, super-resolution convolutional neural net-
work; CI, confidence interval. 

 
2X magnification. Briefly, the PSNR was significantly higher for super-resolution 
methods than for linear interpolation methods (p < 0.001), whereas it was not 
significantly different between super-resolution methods (p = 0.826) (Table 1). 
The same pattern was found for the SSIM results: Super-resolution methods 
were significantly better than linear interpolation methods (p < 0.001), but not 
significantly different from each other (p = 0.937) (Table 2). 

Figure 5 shows the PSNRs and the SSIMs as above, but for 4X magnification. 
The PSNRs for the nearest neighbor, bilinear, ScSR, and SRCNN methods were 
36.49 ± 2.11 dB, 37.78 ± 2.25 dB, 38.59 ± 2.22 dB, and 38.66 ± 2.28 dB, respec-
tively (Figure 5(a)); the SSIMs were 0.850 ± 0.055, 0.880 ± 0.051, 0.894 ± 0.045, 
and 0.895 ± 0.046, respectively (Figure 5(b)). Table 3 and Table 4 present the 
statistical results of the image quality tests for 4X magnification. The results for 
4X magnification were similar to those for 2X magnification: For both PSNR 
and SSIM measures, super-resolution methods were significantly better than li-
near interpolation methods (PSNR, p < 0.01; SSIM, p < 0.05), but not signifi-
cantly different from each other (PSNR, p = 0.992; SSIM, p = 0.998).  

3.2. Comparison of Computation Time 

SRCNN required 1.87 ± 0.04 s and 1.85 ± 0.04 s to process 2X and 4X magnifica-
tion images, respectively; ScSR required 55.83 ± 0.84 s and 53.33 ± 0.79 s, re-
spectively. For both magnifications, SRCNN was significantly faster (p < 0.001). 

3.3. Visual Examples 

Figure 6 and Figure 7 present representative images of the resulting high- 
resolution images focused on the lung nodule generated by all four schemes 
for 2X and 4X magnifications, respectively. The super-resolution methods 
produced visibly sharper (higher quality) edges in comparison with the linear 
interpolation methods, especially for 4X magnification (Figure 7).  

4. Discussion 

In this study, we used two types of super-resolution schemes to improve the image  
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Figure 5. Comparison of the image quality of each method for 4X magnification: (a) 
peak signal-to-noise ratio (PSNR), (b) structural similarity (SSIM). Abbreviations: ScSR, 
sparse-coding super-resolution; SRCNN, super-resolution convolutional neural network. 
 
Table 3. Comparisons of the peak signal-to-noise ratio (PSNR) in each method for 4X 
magnification. 

(I) Method (J) Method 
Mean difference 

(I-J) 

95% CI 
p-value 

Lower limit Upper limit 

Bilinear Nearest neighbor 1.29 0.64 1.94 <0.001 

ScSR Nearest neighbor 2.10 1.45 2.75 <0.001 

ScSR Bilinear 0.81 0.16 1.46 0.007 

SRCNN Nearest neighbor 2.17 1.52 2.82 <0.001 

SRCNN Bilinear 0.88 0.23 1.53 0.003 

SRCNN ScSR 0.07 −0.58 0.72 0.992 

Abbreviations: ScSR, sparse-coding super-resolution; SRCNN, super-resolution convolutional neural net-
work; CI, confidence interval. 

 
Table 4. Comparisons of the structural similarity (SSIM) between each method for 4X 
magnification. 

(I) Method (J) Method 
Mean difference 

(I-J) 

95% CI 
p-value 

Lower limit Upper limit 

Bilinear Nearest neighbor 0.030 0.015 0.044 <0.001 

ScSR Nearest neighbor 0.044 0.030 0.059 <0.001 

ScSR Bilinear 0.015 0.0001 0.029 0.048 

SRCNN Nearest neighbor 0.045 0.031 0.060 <0.001 
SRCNN Bilinear 0.016 0.001 0.030 0.031 

SRCNN ScSR 0.0009 −0.014 0.015 0.998 

Abbreviations: ScSR, sparse-coding super-resolution; SRCNN, super-resolution convolutional neural net-
work; CI, confidence interval. 

 
quality of magnified images of chest radiographs, and compared them to the 
commonly-used linear interpolation methods. The super-resolution schemes  
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Figure 6. Representative reconstructed high-resolution images for 2X magnification: (a) 
down-sampled low-resolution image (matrix size: 160 × 160 pixels), (b) nearest neighbor, 
(c) bilinear, (d) sparse-coding super-resolution, (e) super-resolution convolutional neural 
network, and (f) original region of interest image (the ground-truth image, matrix size: 
320 × 320 pixels). 
 

 
Figure 7. Representative reconstructed high-resolution images for 4X magnification: (a) 
down-sampled low-resolution image (matrix size: 80 × 80 pixels), (b) nearest neighbor, 
(c) bilinear, (d) sparse-coding super-resolution, (e) super-resolution convolutional neural 
network, and (f) original region of interest image (the ground-truth image, matrix size: 
320 × 320 pixels). 
 
yielded substantially higher image quality than linear interpolation methods for 
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both 2X and 4X magnifications for two different test metrics. However, processing 
(computation) speed is also important in a clinical setting, so we compared the 
computation times of both super-resolution schemes. We found that SRCNN, at 
less than 2 seconds per image, required much less computation time than ScSR.  

We did compare the ScSR and SRCNN schemes in terms of image quality of 
the magnified images. Our experimental results on chest radiographs suggested 
that the SRCNN scheme yields higher image quality than the ScSR scheme, 
however, we saw no significant differences. Previous studies using non-medical 
images showed that the same pattern was found, however, statistical analysis was 
not performed because they used a small number of test images [10] [11]. Our 
experimental results herein indicate that there is little difference between the 
ScSR and SRCNN schemes in terms of the image quality metrics tested. It should 
be noted that we quantitatively evaluated image quality with our test metrics. 
Identifying whether the difference between these results is due to using objective 
instead of subjective tests, or to using chest radiographs instead of non-medical 
images, or a different factor altogether, will require further study. 

To identify the preferred super-resolution scheme in a clinical setting, we 
compared the computation time between the ScSR and SRCNN schemes. Our 
experimental results clearly indicated that the SRCNN scheme maintains the 
high image quality of the super-resolution schemes, but with significantly faster 
processing speeds than ScSR. Thus, the SRCNN scheme provides an effective 
approach for the clinical application of super-resolution processing, whereas the 
ScSR scheme could produce delays resulting from its longer processing time. In 
this study, though, we measured the CPU-based run-time using a standard per-
sonal computer. If parallel processing by a GPU (graphics processing unit) can 
be utilized to accelerate processing speed, SRCNN is effectively capable of real-time 
processing, and could thus be applied not only to radiographs, but to real-time 
X-ray imaging as well. Further study is needed to optimize the processing speed 
if the potential value of SRCNN in real-time X-ray fluoroscopy is to be realized. 

This study had a few limitations. In non-medical images, previous studies re-
vealed that changing the number of layers does not result in high image quality 
[11]. Therefore, we used the basic and typical SRCNN settings in this study. 
However, to explore the optimal structure of the SRCNN scheme for use in ra-
diographs, further study will be needed to identify the optimal network setting 
when using the deeper structure. 

Additionally, the number of training images was relatively small. In general, 
deep-learning benefits from training on larger datasets. The SRCNN scheme can 
also deal relatively well with a larger training dataset. Therefore, the results of 
this study need to be confirmed in a larger dataset. 

5. Conclusion 

In this study, we applied and evaluated the ScSR and the SRCNN super-resolution 
schemes for the improvement of the image quality of magnified images in chest 
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radiographs. Our experimental results indicated that the super-resolution me-
thods significantly outperformed the linear interpolation methods currently 
used for enhancing image resolution in chest radiographs. Our results also re-
vealed that the SRCNN scheme provides an effective approach for clinical appli-
cation of super-resolution processing to medical images due to its combination 
of high image quality and near-real-time processing speed. 
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