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ABSTRACT 

Continuous wavelet transform is employed to detect singularities in 2-D signals by tracking modulus maxima along 
maxima lines and particularly applied to microcalcification detection in mammograms. The microcalcifications are 
modeled as smoothed positive impulse functions. Other target property detection can be performed by adjusting its 
mathematical model. In this application, the general modulus maximum and its scale of each singular point are detected 
and statistically analyzed locally in its neighborhood. The diagnosed microcalcification cluster results are compared 
with health tissue results, showing that general modulus maxima can serve as a suspicious spot detection tool with the 
detection performance no significantly sensitive to the breast tissue background properties. Performed fractal analysis of 
selected singularities supports the statistical findings. It is important to select the suitable computation parameters- 
thresholds of magnitude, argument and frequency range-in accordance to mathematical description of the target prop- 
erty as well as spatial and numerical resolution of the analyzed signal. The tests are performed on a set of images with 
empirically selected parameters for 200 μm/pixel spatial and 8 bits/pixel numerical resolution, appropriate for detection 
of the suspicious spots in a mammogram. The results show that the magnitude of a singularity general maximum can 
play a significant role in the detection of microcalcification, while zooming into a cluster in image finer spatial resolu- 
tion both magnitude of general maximum and the spatial distribution of the selected set of singularities may lead to the 
breast abnormality characterization. 
 
Keywords: Continuous Wavelet Transform; Fractal Dimension; General Modulus Maximum; Microcalcification;  
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1. Introduction 

Wavelet transform modulus maxima method was devel- 
oped for detection and characterization of signal singu- 
larities by Mallat and his collaborators [1-3]. Their me- 
thod detects signal singularities by tracking the wavelet 
coefficients magnitude maximum over scale. They proved 
that, if a wavelet function is derivative of a Gaussian, 
wavelet transform modulus maxima must propagate to- 
wards finer scales. Although the representation by dis- 
crete wavelet maxima is not complete since several sig- 
nals may exhibit the same wavelet maxima [4], Mallat’s 
numerical experiments have shown that it is possible to 
reconstruct signals with a relatively small mean square 
error (smaller than 1%) [3]. 

Arneodo and his team focused on how to recognize a 
sharp signal transition by tracking its behavior over scale. 
Specifically algorithms based on continuous wavelet 
transform modulus maxima method are able to detect 
singular points in a discrete 2-D and 3-D signals and 
supported by fractal analysis to give the metrics for the  

local signal regularity [5-9]. Arneodo’s team developed 
fractal based algorithm [8] supported by modulus maxi- 
ma method to analyze turbulent 2-D and 3-D signals. 

Microcalcifications in breast are residual calcium de- 
posits that originate not only from completely normal 
processes, but also abnormal ones. Shape, morphology, 
and spatial distribution of individual microcalcifications 
are some of the features detectable in X-ray mammo- 
grams that suggest benign or malignant breast abnormal- 
ity. Researchers have made few breast tissue classifica- 
tions and have recognized more than twenty of those 
conventional features [10-12]. One acceptable simplifi- 
cation is to describe microcalcifications as ellipsoids of 
diameters between 0.05 mm and 1 mm. For early cancer 
detection, calcifications with spatial extent less than 0.5 
mm are most important for clinical diagnosis. Particu- 
larly, this corresponds to calcifications roughly in the 
order of 0.1 mm in diameter. Also, microcalcifications 
appearing in clusters may suggest malignancy while in- 
dividual occurrences are of low clinical significance [13]. 
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Wavelets as mathematical microscope have been used 
by many researchers in mammogram analysis. Wang and 
Karayiannis [14] proposed searching for microcalcifica- 
tions by using high frequency energy blobs in wavelet 
decomposed mammograms. But normal signal fluctua- 
tion in mammograms may have dominant energy blobs 
in some scales making a mask over significant abnormal- 
ity related information. Indeed, an energy blob is just a 
location where further analysis should follow. We use 
modulus maxima method to eliminate the singularities 
with positive Hölder exponent, because those singulari- 
ties are present everywhere in mammograms (this is com- 
mented by fractal dimension of singularity spatial distri- 
bution in Section 4.4). In this work we show that the 
general modulus maximum, the largest magnitude value 
along a maxima line, and the scale in which it is detected 
are the most significant information to be used in further 
detection procedure. The argument of the detected gen- 
eral modulus maxima (the tangential directions of an 
edge around pixel) is another significant piece of infor- 
mation that is very useful in the target segmentation pro- 
cedure (not discussed in this work). 

Zhang and coworkers [15] studied the size of micro- 
calcifications and developed an optimally weighted wa- 
velet transform method by which, before image recon- 
struction, they multiplied dyadic wavelet coefficients by 
optimized coefficients 0.4, 1.6, 1.0, and 0.05 for the 
scales corresponding to 100 μm, 200 μm, 400 μm, and 
800 μm respectively. They achieved Az = 0.92 under 
ROC curve, outperforming Az = 0.86 for difference-im- 
age technique.  

Microcalcifications in mammogram analysis may be 
modeled as impulse functions smoothed by Gaussian fil- 
ters. Strickland and Hahn [16] recognized Gaussian na- 
ture of microcalcifications spatial intensity and applied 
2-D Gaussian filters for microcalcification detection. They 
inserted inter-scales to increase detection sensitivity for 
wide range of possible microcalcifications.  

Since the Food and Drug Administration approved the 
technology in 1998, several Computer-Aided Detection 
(CAD) systems that support microcalcification detection 
have been deployed for clinical use. Literature reports 
show mixed results of current CAD systems in practice 
[17,18]. Results of some of the studies performed by us- 
ing retrospective analyses or computer modeling sug- 
gested that CAD can achieve the main task increasing 
cancer detection. 

Some studies show no practical improvements con- 
cluding that the CAD effect on the accuracy of interpre- 
tation is unclear [19] mostly because of radiologist’s 
false sense of confidence in CAD although in testing a 
CAD system applied to mammograms with known can- 
cers might have excellent performance, known as “labo- 
ratory effect” [20]. 

This leads to a conclusion that different conditions of 
mammographic characteristics associated with X-ray ex- 
posure and breast tissue density should be studied across 
different institutions [21]. 

In this work, we consider microcalcifications as sharp 
signal transitions modeled as impulse functions smoothed 
by a Gaussian and characterized by negative Hölder ex- 
ponent. We detect smoothed impulse functions and iden- 
tify general modulus maxima and the scales in which 
they appear. Essentially detected general maxima show 
the scale in which the singularities are visible as the step 
functions with Hölder exponent approaching to zero. If in 
the higher scales the magnitude of the wavelet coeffi- 
cients starts decreasing the singularity shows its impulse 
nature. Figure 1 illustrates the modulus maxima behav- 
ior over scale for the singularities with and without im- 
pulse nature, i.e. microcalcification and normal breast tis- 
sue signal fluctuation. The magnitude of modulus max- 
ima of normal breast tissue signal fluctuation can become 
dominant (higher energy in higher scales) and affect the 
detection of the singularity with impulse nature (lower 
energy in higher scales) which represents a microcalcifi- 
cation in this case. 

We detect the wavelet coefficient magnitude in the 
scale in which a singularity behaves as a step function 
and in higher scales becomes negative showing impulse 
nature of the singularity. Notice that normal breast tissue 
exhibits local signal fluctuation with many smoothed im- 
pulse functions in mammograms. This requires that in the 
next step detected smoothed impulse functions should be 
classified as significant for further analysis if they have 
locally dominant magnitudes of general maxima. In short, 
we take advantage of the capabilities of continuous 
wavelet transform modulus maxima method to detect sig- 
nal singularities and differentiate between microcalcifi- 
cations and normal signal fluctuation keeping track how 
Hölder exponent is developing over scale. 

 

 

Figure 1. Typical log-log characteristics Modulus Maxima 
vs scale for a normal signal fluctuation () and a microcal- 
cification (Δ) in the mammogram mdb226 [22]. 
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After detection in coarser spatial resolution, based on 
the fact that this method can detect step function, a clus- 
ter of singularities could be segmented in finer resolu- 
tions with appropriately adjusted settings. This method 
could be used for singularity border transition analysis i.e. 
its shape analysis for diagnostic purposes and therefore 
microcalcification estimation malignant vs benign [12]. 

In this work we demonstrate use of general maxima 
metric in mammograms with 200 μm/pixel spatial and 8 
bits/pixel numerical resolution to speed up detection not 
of microcalcification border, but microcalcification itself. 
The scale of the general maxima detection depends on 
the size of the singularity and since singularity size in 
mammograms differs from one to another there is no ty- 
pical scale but scale distribution that could be identified. 

The magnitudes and their spatial distribution are ana- 
lyzed in 25 regions containing microcalcification clusters 
from diagnosed 20 mammograms and the results com- 
pared to the results of 20 regions with healthy tissue from 
the same mammograms [22]. Additionally, we recognize 
and select smoothed impulse function by its negative 
Hölder exponent. Detection of a magnitude of a general 
maximum doesn’t depend on the negative slope value 
within the detection procedure. This makes general mo- 
dulus maximum stronger and more independent feature 
i.e. that is an excellent candidate to integrate with other 
features. 

Background on the continuous wavelet transform, mo- 
dulus maxima method, and fractal dimensions are pre- 
sented in Section 2. In Section 3 we present the details of 
the framework and its implementation. The results from 
both statistical and fractal implementations, including the 
samples of tested mammograms, are presented in Section 
4 while Conclusions are presented in Section 5. 

2. Background 

The presence of strong local singularities is characterized 
by negative Hölder exponent while normal fluctuation is 
mostly characterized by positive Hölder exponent. This 
makes an isolated singularity detectable by analyzing the 
behavior of a modulus maximum along its maxima line.  

Mallat and Hwang [1] proved that the magnitudes of 
the wavelet coefficients are bounded as shown in (1): 

 ,aW f x y A a             (1) 

where  ,aW f x y  is magnitude of the wavelet coeffi- 
cient at point (x, y) in scale a,  is Hölder exponent at (x, 
y) and A > 0 is a constant. 

When Hölder exponent at (x, y) is positive the magni- 
tude of wavelet coefficient will increase with scale while 
when it is negative, as in case of impulse function, the 
magnitude of the wavelet coefficient will decrease. 
Mathematically local microcalcification of the mammo-  

gram signal may be modeled as an impulse function con- 
volved by a Gaussian smoothing function.  

For further analysis of behavior of magnitude of wa- 
velet coefficients in scale, we use a wavelet coefficient 
magnitude approximation [3] 
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where a targeted microcalcification is modeled as an im- 
pulse function smoothed by Gaussian of variance σ2 and 
convolved by a Gaussian wavelet with variance β2.  

If  tends to −1, then the magnitude of a wavelet coef- 
ficient increases up to the scale corresponding to the 
variance 2 reaching wavelet transform general modulus 
maximum followed by a decrease as in the case of mi- 
crocalcification shown in Figure 1. An example of nor- 
mal signal fluctuation generally characterized by positive 
Hölder exponent in the scales having increasing magni- 
tude of wavelet coefficients is also shown in Figure 1.  

2.1. Modulus Maxima Representation 

A Gaussian smoothing function at scale a 
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has been used as a kernel for wavelet transform discrete 
filters. The horizontal and vertical wavelet coefficients at 
scale a are defined as  

  *hor hor
aW f f a            (4) 

and 

  *ver ver
aW f f a            (5) 

respectively, where the horizontal and vertical wavelets 
hor
a  and ver

a  in scale a are derivatives of smoothing 
function a in the same scale a 
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respectively.  
Wavelet coefficient at a scale a is represented by its 

magnitude and argument as follows, 

      ,a a aW f M f A f          (8) 

       2 2hor ver
a a aM f W f W f where  and  
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A modulus maximum at (x0,y0) at cale a re- 
sented by its magnitude if it is equal or

avelet coefficient magnitude in its neighborhood. There 
is no detected modulus maximum at (x0,y0) in scale a if 
any surrounding wavelet coefficient magnitude is grater 
than magnitude at (x0,y0), i.e.  

 0 0,aMM x y

 
   

 
0 0

0 0
, ,

, max

0 otherwise
a

a a a
x y x y

M M x y M x y


  


    (9) 

where  0 0,a x y  
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is 8-neighborhood of (x0,y0) in the 
scale a

e a maxim
 maxima corresponding to the same local feature 

bu

Whil a line consists of the wavelet transform 
modulus

t in different scales, the general modulus maximum is 
a point on the maxima line characterized by its maximal 
magnitude  0 0,gM x y  and the scale  0 0,gMa x y  in 
which it is detected. Wavelet transform general modulus 
maximum w with a magnitude cale 
that depends on the initial variance of the smoothing 
Gaussian in the initial scale a0 = 1.  

In the higher scales of  0 0,gMa x y  corresponding 
maxima line will exist as long as th

ill appear and in a s

oothed impulse 
fu

e sm
ularity in itsnction is the dominant sing  neighborhood. 

In that range the slope of the log-log diagram modulus 
maxima vs scale will tend to −1 if the maxima line is 
long enough, i.e. until it is overlapped by a modulus 
maximum of another dominant singularity. If in higher 
scales the singularity stops being dominant in its neigh- 
borhood, the maxima line tracking process should be in- 
terrupted to prevent misleading singularity detection. The 
magnitude  0 0,gM x y  and the scale  0 0,gMa x y  in 
which the general modulus maximum is detected as well 
as the leng a line afterward are significant 
starting points for evaluating the isolated singularities. 

2.2. Fractals, Partition Function and Dimension

th of maxim

 

 
 

A fractal is an object or quantity that displays self-simi-
larity in all scales. A plot of the quantity on a log-log
graph versus scale then gives a straight line, which slope 
is said to be the fractal dimension. The prototypical ex- 
ample for a fractal is the length of a coastline measured 
with different length ruler. The shorter the ruler, the lar- 
ger the length measured, a paradox known as the coast- 
line paradox or “the Richardson effect” (L. F. Richardson, 
1881-1953) [23].  

Fractal dimension or capacity dimension of a fractal is 
the exponent D in   Dn    , where  n  is the mini-  

m
cale. Wavelets provide a 

al number of balls of diameter  needed to cover the 
fractal set in each s natural gen- 
eralization of the classical box-counting techniques to 
fractal signals, i.e. the wavelets are playing the role of 
generalized boxes. The wavelet transform as a mathe- 
matical microscope can be used to extract microscopic 
information about scaling properties of fractal objects [6]. 
Partition function can be derived from maxima line ske- 
leton as 
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The analogy related to multifractal formalism 
modynamics allows the following definition of the ex- 
po

where q and (q) represent inverse tem
energy in statistical mechanics. For hom

 determined as the negative value of the 
sl

the targets are the microcalcifications 
to 1 mm in diameters. Accordingly to 

avelet transform coefficients of mammographic 
im

in ther- 

nent (q) for the behavior of partition function along 
the scale: 

   , , 0qZ q a a              (11) 

perature and free 
ogenous fractal 

functions-monofractals and q = 0, the value of −(q) is 
associated to fractal dimension of the set of all selected 
singularities [7]. 

According to (11), fractal dimension of a selected set 
of singularities is

ope of log-log characteristics of partition function Z(q,a) 
vs scale a with q = 0 as shown in Section 4.  

3. Framework 

In our experiments 
sized from 0.2 mm 
the mammogram spatial resolution, the scale is changing 
in three octaves. Notice that algorithm parameters, such 
as initial smoothing function variance and length of max- 
ima lines necessary for the target detection, depend on 
the mammogram spatial resolution and the size of ex- 
pected targets. Also, the general modulus maxima analy- 
sis can be used in 1-D and 3-D signals in a similar fash- 
ion.  

Changing the scale, Gaussian filters are used to com- 
pute w

ages in vertical and horizontal direction in three oc- 
taves. The framework is based on using wavelet trans- 
form modulus maxima to identify the maxima lines in a 
mammogram and then extract the general modulus maxi- 
mum on each maxima line. Also in each maxima line a 
corresponding minimum is detected in higher scales than 
general maximum and before maxima line fades out. Sin- 
gularities pointed by maxima lines with no identified cor- 
responding minimums are considered as normal signal 
fluctuation and rejected from further analysis. Singulari- 
ties with detected corresponding minimums have nega- 
tive Hölder exponents. The fact that described general 
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void empty (blank) space or they would do it? 

e- 
te

ves are used to en- 
ab

maximum and corresponding minimum are clearly de- 
tected means the log-log characteristic modulus maxima 
vs scale has negative slope and isolated smoothed im- 
pulse function is localized at the point where maxima 
line propagates to scale a = 1. A maxima line might not 
propagate to a single point at scale a = 1 because of fast 
oscillations in the cone of influence around terminal 
point of the maxima line in the lowest detected scale [3]. 
This location will be classified as an eligible singularity 
if the general maximum and corresponding minimum is 
detected.  

An illustration of applied framework is shown in Fig- 
ure 2. 

Can we fix that now? Should we reformat the entire 
text to a

Variance of smoothed impulse function can be esti- 
mated by the scale in which general maximum is d

cted [24]. The selection of wavelet coefficients depends 
on the description of the singular point that we are de- 
tecting. In mammogram signals, we are adjusting the 

scale to the expected size of the microcalcification (50 
μm to 1 mm) and the input spatial resolution of the 
mammogram (usually 50 μm). If both the general maxi- 
mum and corresponding don’t exist on a maxima line its 
detected singularity is classified as normal signal fluctua- 
tion, i.e. the maxima line is not related to a microcalcifi- 
cation. A microcalcification boundary can be detected in 
the scales that correspond to 50 m to 100 m, i.e. the 
microcalcification segmentation needs additional infor-
mation from finer image spatial resolution and it was not 
part of these experiments. Notice that, for example, the 
shape [12] of the targeted singularity can be involved in 
further singularity sub-classification. 

Gaussian kernels and their derivati

 

le image processing with no particular bias in the space- 
scale analysis. Significant fractal properties can change 
very fast in scale. They often become invisible within 
less than a 1/2 of an octave and with coarse scale incre- 
ment the trend of modulus maxima behavior in scale 
could not be detected.  

N 
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(a)                                        (b) 

Figure 2. General Maximum detection am (a) and maxima line construction 
block diagram (b).   

 and microcalcification localization block diagr
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Each maxima line points to a singularity and each sin- 

u arity is analyze
With the parameter setup applied in this work we con- 

g l d based on the modulus maxima be- 
ha

ument  of their modulus 
m

th are the parts of the 
sa

scales. An example of desc

sider 1/4 of an octave a minimum scale distance between 
ge

 [22] are digitized at 50 
atial resolution 200 μm 

sented with significantly lower ge- 
ne

ected 
si

vior along its maxima line. 
Detected singularities gradually change in scale both 

the magnitude M and the arg
axima. Two maxima points in two consecutive scale 

layers belong to same maxima line if their spatial loca- 
tions and their arguments are similar. The level of simi- 
larity of spatial distance and argument difference are be- 
low empirically determined thresholds. The experiments 
show that the detection process converges if the scale 
increment between two consecutive scale layers is as low 
as inc = 21/16. Then the algorithm will properly form a 
maxima line with the argument threshold dA =  × 
log2(inc)/4 radians or  < dA = /64 radians in the si- 
mulations presented in Section 4. 

In some specific situations when maxima line switches 
from one point to another and bo

me feature, the argument difference can be signifi- 
cantly larger than the argument threshold and then mag- 
nitude threshold will be checked as an alternative to the 
argument threshold. The magnitude threshold applied in 
the simulations presented in this work was adaptive in 
both space and frequency domain, i.e. the threshold was 

 0 1 23a a adM abs M M   , where Ma1 and Ma2 are the 
modulus maxima detected in two higher consecutive 

ribed situation is presented in 
Figure 3.  

 

neral modulus maximum and corresponding minimum 
to classify a location as an eligible singularity.  

4. Results and Discussion 

The mammograms from database
μm pixel edge and reduced to sp
pixel edge and clipped/padded so that every image is 
1024 × 1024 pixels. The area of a pixel represents 0.04 
mm2 of breast tissue. Numerical resolution is 8 bits/pixel. 
In this work 12 malignant and 13 benign microcalcifica- 
tion clusters detected in 20 mammograms along with 
other 20 healthy regions selected from the same mam- 
mograms are used.  

We find that normal and noise related detected eligible 
singularities are repre

ral modulus maxima comparing to those related to 
diagnosed microcalcification. We have introduced spa- 
tially local adaptive threshold in magnitude, to suppress 
false positive findings. The magnitudes above the local 
threshold we name (locally) dominant magnitude.  

In this work we study magnitude and spatial distribu- 
tion of general maxima of three different sets of det

ngularities in the 64 × 64 pixel sub-images of the diag- 
nosed 25 microcalcification clusters:  

1) All detected singularities which show negative 

   
(a)                                            (b) 

Figure 3. Example of maxima line con me sharp transition ree singu- 
lar points around the pixel (55, 60), (a), that d and colored symbols in (b-up). 

   

: Thstruction from three singular points that belong to sa
 can compose a maxima line as shown in bol

Their arguments are significantly different representing the tangential directions of an edge around pixel (55, 60) but in 
higher scales they converge to the same limit as clearly illustrated in (b-down). Bolder symbols in the diagrams represent the 
values that belong to detected maxima line representing the same higher scale structure. 
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a in health areas. 
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n Normal vs Abnormal  
Singularities 

etected 
total  maxima lines. The histogram of eli- 

ral maxima magnitudes in 20 healthy areas 
 

Hölder exponent resembling smoothed impulse function, 
) The subsets of the set selected in 1, with dominant 2

magnitudes of computed general maxima resembling 
icrocalcifications, and 
3) The sets of singularities that correspond to the di- 

agnosed microcalcificatio
Assuming that the nature of malignant and benign mi- 

crocalcification clusters is different we addi
ch category described above separately as malignant 

and benign abnormality. 
In addition we study magnitude and spatial distribution 

of general maxima of thre
larities in 20 healthy areas of same mammograms: 
1) All detected singularities which show negative Höl- 

der exponent and resembling smoothed impulse func
 healthy areas, and 
2) The subsets of 1 that have dominant magnitudes of 

computed general maxim
Finally, we compare our results with respect to the 

background breast tissue type: dense (D), 
d fatty (F) tissue. 

4.1. Differentiatio

In 25 microcalcification clusters our method d
 of 3115 eligible

gible general maxima magnitudes is shown in Figure 4- 
blue line. The histogram of general maxima gM related 
to the diagnosed microcalcification findings is red line in 
Figure 4.  

For the comparison, the histograms of the detection of 
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Figure 4. Histogram of total eligible findings in the areas of 
diagnosed clusters-blue line, and diagnosed microcalcifica- 

ck line in the same diagram is the 

tions in 25 clusters-red line. Histogram of total singularity 
findings in 20 healthy areas-black dashed line, and the eli-
gible findings with a local intensity maximum in their 
neighborhood in same 20 healthy areas-black line. 

histogram of detected eligible general modulus maxima 
magnitudes with associated local intensity maximums in 

is determined and presented as a dashed black line in 
Figure 4, while the bla

the neighborhood.  
For the purpose of further analysis of the diagrams in 

Figure 4 we introduce diagnosed rate function  
 diagnDRF x  for the diagnosed microcalcifications by  

   
 

diagn
diagn

total

DRF x
CDF x

        (12) 

neral maxima magnitude,  

CDF x

where x is ge

 is cumulative distribution 

for diagnosed microcalcifi- 

 is cu-  

mulative distribution functio

y be negative, a microca

   diagn diagn
0

x

CDF x hist x 
function of general maxima 

cations (red line) and  
x

CDF x hist   total total x
0

n of general maxima for 
total eligible general modulus maxima (blue line) both in 
[0, x]. 

While an impulse ma lcifica- 
tion is, in general, a spot brighter than its surroundings. 
Similarly to the function  diagnDRF x , here we institute 
the function   the ratio of detected im- 
pu

local _ maxDRF x , 
lses with the local intensity maximums in their neigh- 

borhood and total detected smoothed impulse functions. 
i.e.  

   
 

local _ max
local _ max

total

CDF x
DRF x

CDF x
      (13) 

where x is general maxima, magnitude,  

 is cumulati  

tribution function of general maxima for smoothed im- 
 each of their 

neighborhood (red line) and  

 is cumulative distribution  

In the same set of 20 mam
healthy areas and select a

   local_max
0 local_max

x

CDF x hist x  ve dis- 

pulses with detected local maximum in

   total hist
x

CDF x x 
0 total

function of general maxima for total eligible general 
modulus maxima (blue line). 

mograms we also choose 20 
ll singularities that could be 

modeled as smoothed impulse function. The histogram of 
the total number of selected singularities vs gM magni- 
tude is shown as dashed black line in Figure 4. Assum- 
ing that a microcalcification is presented in mammo- 
grams as a spot brighter than its neighborhood we select 
a sub-set of all singularities in which neighborhood a 
local intensity maximum is detected. The histogram of 
the singularities in the sub-set vs gM magnitude is shown 
as black line in Figure 4. 
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The diagram of the function  local_maxDRL x  in the 

set of analyzed sub-images with diagnosed microcalcifi- 
cation clusters is the black line in Figure 5, while the 
dashed black line in Figure 5 represents same function 

 DRL x  but in thlocal_max

ithout diagnosed microcalcificatio
For each line in Figure 5 we notice two segments: an 

increasing, say non-linear, part on the left-hand side and 
an approximately linear behavior of each line on the right 

erically, we notice that linearity of dashed 
black line (having negative slope) starts bet

e se ages 

w ns.  

hand side. Num
ween 3 × 10−5 

an

t of analyzed sub-im

d 4 × 10−5 in the case of healthy tissue samples, while 
in the case of diagnosed abnormalities for both lines the 
linearity (red and full black lines (having positive slope) 
starts above 4 × 10−5.  

To confirm this observation about positive and nega- 
tive slope we performed same experiment separating the 
results for dense (D), glandular (G), and fatty (F) tissue. 
In Figure 6 the diagnosed rate functions  diagnDRL x  
are presented as full colored lines: blue-gl
de

andular, red- 
nse, and green-fatty background tissue. All three back- 

ground tissue based full lines have increasing linear parts 
on the right hand side. The detection rate functions  

 local_maxDRF x  of smoothed impulse fun
local intensity maximums in the neighborhood is shown 
as dashed lines with same color schedule. All three dashed 
lines based on healthy tissue have decreasing linearity on 
the right hand side. 

riment we notice the difference in behav- 
ior of the function  local _ maxDRF x  in the normal sub- 
images (no microcalcifications-Figure 7(a) and in the sub- 
image with diagnosed microcalcification clusters-Figure 
7(b).  
 

ctions with 

In same expe

gM magnitude ×10-5
4     5     6     7      8     9     10

Normal ( d) and ab mal (full) area dashe nor

D
et

ec
tio

n 
ra

te
 

0.5 

0.4 

0.3 

0.2 

0.1 

0 

 

Figure 5. Diagnosed rate function  diagnDRF x
s assiciated
rhood in th

 and 

gM magnitude ×10-5
4      5      6      7     8      9     10

0.45

0.4

0.35

D
et

ec
tio

n 
ra

te
 

Healthy (dashed) and diagnosed area

0.3

0.25

0.2

0.15

cluster (full) 

 

Figure 6. Smoothed impulse function detection rate com- 
parison for diagnozed microcalcification clusters  

 diagnDRF x  

sue 

(full lines) and for corresponding healthy tis- 

 local_DRF
havior of

max x  

 detection rat

(dashed lines). Black lines show the be- 

e vs general maxima magnitude for 

ely. 
 

ude that positive 
r parts on the

e in 
0

icrocalcifications we found 
31

verage general modulus maxima 
sults of the calculation of general mo- 

To

 

all tested clusters, while blue, red, and green lines are re- 
lated to glandular, dense, and fatty tissue, respectiv

We concl vs. negative slope of the 
linea  right hand side leads to a good differ- 
entiation between abnormal and normal tissue sample. 
We notice that the average magnitude of the general 

odulus maxima in 25 clusters is 4.18 × 10−5, whilm
2  healthy background sample is 3.59 × 10−5. Both aver- 
ages are in the range of gM magnitude that could be con- 
sidered in either non-linear or linear part of correspond- 
ing lines. This leads to another conclusion that a success- 
ful differentiation normal vs. abnormal findings could be 
expected when an adaptive threshold is set to the local 
average of gM magnitudes. 

For the abnormalities below the local averages the ad- 
ditional microcalcification features should be considered. 

4.2. Threshold 

In tested 25 clusters of m
15 eligible maxima lines that point to smoothed im- 

pulses. For each cluster centered in a 64 × 64 pixel sub- 
image we calculated a
magnitude. The re
dulus maxima averages are shown in Table 1.  

The local and total averages, presented in Table 1, are 
used to estimate capabilities of the applied method for 
the microcalcification detection. The average magnitude 
of general maxima of all detected eligible smoothed im- 
pulse functions in healthy areas was 3.59 × 10−5 (Table 1, 

 red line, 

detection rate of eligible singularitie  with a local 
intensity maximum in the neghbo e clusters 

 full black line, local_maxDRF x  ax xlocal_mDRF
tal-Column 6), while the average magnitude in areas 

with diagnosed microcalcification clusters was 4.18 × 
10−5 (Table 1, Total-Column 5), which is 16% increase 

 in 

 dashed black line. healthy tissue
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Table 1. Local and total gM magnitude averages in breast tissue with abnormal and normal findings. 

Abnormal Normal Rate 

Local Average Total Total Case 

min 10−5 aver. 10−5 aver. 5 max 10−5 10−

 
 

C 5

C 6
 

2 3 4 7 5 6 
1 

Total (all) 1.16 

Malignant 3.  5.  4  N/A N/A 
Abnormality 

Ba e 

3.49 5.47 4.18 3.59 

53 28 .12

Benign 3.49 5.47 4.23 N/A N/A 

Glandular 3.63 5.47 4.21 3.50 1.20 

Dense 3.49 5.33 4.19 3.56 1.18 ckground Tissu

Fatty 3.84 4.58 4.12 3.71 1.11 
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Figure 7. Smoothed impulse function with local intensity maximum in its neighborhood detection rate  local_maxDRF x  com- 

parison for healthy tissue dash  clusters full lines (b). Black 
lines show the behavior of det d, and green lines are related 

e case of glandular, dense and fatty tissue, respectively) 

), which was lower than corresponding average in 
no

Table 1 could be considered in both linear and non-linear 

ng the threshold would cause 

 maxima lines  

ed lines (a) and the regions con g diagnozed microcalcification
ection rate vs gM magnitude for all tested clusters, while blue, re

sistin

to glandular, dense, and fatty tissue, respectively. 
 
(Table 1, Total-Column 7). Similarly, the increase exists 
in each tested background tissue (20%, 18%, and 11% in 

rions for further research.  
As we said, the averages in Column 5 and Column 6 in 

th
showing that microcalcification detection based on this 
feature is not qualitatively sensitive on background tis- 
sue.  

The minimal computed average magnitude in an ab- 
normal dense area was 3.49 × 10−5 (Table 1, Dense-Co- 
lumn 3

rmal dense areas 3.56 × 10−5 (Table 1, Dense-Column 
6), showing that hard absolute thresholding (for example 
at 3.50 × 10−5) would not result in proper classification. 
Although the microcalcification related additional crite- 
rions would help the proper classification, in this analysis 
we evaluate the magnitude of general maxima in micro- 
calcification detection leaving the combination of crite- 

part of the diagrams presented in Figures 5-7. We con- 
clude that a threshold based on the local average of gM 
magnitude will yield an appropriate classification of sin- 
gular points. Further loweri
more false positive findings and therefore requires the 
additional classification criterions, while higher threshold 
would decrease classification sensitivity. 

4.3. Statistical Analysis of Singularities in Breast 
Tissue 

In following analysis, a magnitude threshold of the gen- 
eral modulus maxima was determined as the local aver- 
age of all gM magnitudes of all eligible
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with detected negative Hölder exponent in the area 64 × 
xels cen64 pi tered in a diagnosed cluster. This choice of 

ularities for 3 types of data-all 
detected singularities that resemble smoothed impulse 

ion statistics in 25 analyzed clusters. 

Column (3)/(2)% 
No. of accurate max. 

lines 
Column (5)/(2)% 

the adaptive threshold has reduced the number of domi- 
nant singularities down to 970 (31.1%) of all 3115 eligi- 
ble singularities (Table 2, Total, Column 4), while 1179 
(37.8%) were pointing either malignant or benign micro- 
calcifications. The true positive fraction (sensitivity) was 
65.2%, which results in ROC curve area index Az = 0.77.  

In the case of the malignant microcalcifications we 
find 33.3% as suspicious, while the malignant microcal-
cifications were 48.7%, meaning that the average thresh-
old is too high. In Table 3 we see that only 2% were 
false positive against 17.5% false negative findings. True 
positive fraction was 64.1%, while ROC curve area index 
was Az = 0.80.  

We find a different tendency in the case of benign mi-
crocalcification. The average threshold classified 29.1%, 
while benign microcalcifications were 27.3%, meaning 
that the average threshold was set a little lower than op-
timal. False positive and false negative findings were 
similar (10.7% and 9.0%, respectively). Surprisingly, the 
other statistical measures were not significantly different, 
i.e. true positive fraction was 67.1%, while ROC curve 
area index was Az = 0.76. The details are shown in Ta- 
bles 2 and 3. 

Average gM magnitude of microcalcification was 4.58 
× 10-5, while the average of all eligible maxima lines was 
4.18 × 10-5, leaving additional room for selection im- 
provement based on the magnitude of general maxima. 
Similar conclusion holds for separately analyzed both 
malignant and benign clusters where average magnitudes 
corresponding to microcalcifications were 4.34 × 10−5 
and 5.02 × 10−5 respectively while threshold averages 
were 4.12 × 10−5 and 4.23 × 10−5 respectively. The dif- 
ference of average magnitudes 4.34 × 10−5 and 5.02 × 
10−5 for malignant and benign microcalcifications may 
lead to microcalcification malignancy probability estima- 
tion in further research. 

4.4. Fractal Analysis of Singularities in Breast 
Tissue 

In the following sub-sections, we determine fractal di- 
mension of selected sing

function, detected smoothed impulse functions with do- 
minant general modulus maxima, and the detected sin- 
gularities that correspond to singularities in diagnosed 
microcalcification clusters.  

Partition functions Z(q, a), q = 0 and 0.5  log2(a)  
1.5, of all detected singularities in 25 microcalcification 
clusters are presented in Figure 8. The rhombi represent 
all singularities in all 25 analyzed microcalcification clus- 
ters. The squares represent all singularities with diag- 
nosed malignant abnormalities in 12 clusters, while the 
triangles represent all singularities detected in remaining 
13 clusters. 

Specifically the slopes of log2(Z(0,a)) vs. log2(a), 0.5  
log2(a)  1.5, correspond to the fractal dimension of the 
sets of singularities for all detected singularities (rhombi), 
as well as for 12 malignant (squares) and 13 benign (tri- 
angles) clusters. The trend-lines show the slope is close 
to 2 in all three analyzed datasets. Notice that in 2-D 
space, fractal dimension can not be considered higher 
than 2. The results show that the eligible singularities are 
uniformly distributed everywhere in the analyzed mam- 
mogram sub-images. 

Similarly, the slopes of log2(Z(0,a)) vs log2(a), 0.5  
log2(a)  1.5, corresponding to selected dominant singu- 
larities, as well as diagnosed microcalcification clusters 
are determined and shown in Table 4. 

In the case of microcalcification clusters, dominant 
and diagnosed singularities have similar fractal dimen- 
sion values (between 1.4 and 1.5), which indirectly sup- 
ports the assumption that dominant eligible singularities 
point to microcalcifications. There is no difference be- 
tween malignant and benign cluster fractal dimensions in 
200 m/pixel spatial resolution. Notice that for microcal- 
cification cluster classification purpose spatial resolution 
200 μm/pixel doesn’t allow zooming at 70 μm/pixel where 
microcalcification edge becomes visible and malignancy 
analysis by fractal dimension possible. 

Dominant singularities in healthy areas have signifi- 
cantly lower fractal dimension, i.e. tending to 1 for the 
average of all 20 mammograms. Fractal dimension ap- 
proaching 1 is the sign of linear structures typical for de- 
tected edges. Fractal analysis shows that smoother signal 
transition is uniformly distributed everywhere producing 
fractal dimension tending to 2 and 1.73 in normal and 

 
Table 2. Abnormality detect

Abnormality 
No. of eligible 

max. lines 
No. of domin. 

max. lines 

1 2 3 4 5 6 

Total (all) 3115 970 31.1 1179 37.8 

Total (malignant) 48.7 1533 510 33.3 747 

Total (benign) 1582 460 29.1 432 27.3 
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Table 3. M ocalcification d ction performan in 25 analyzed clu rs. 

All c Malign. c  Benign cluster

icr ete ce ste

lusters lusters s 
 

 of eligible ma nes % . of eligible maxi es % No. of eligible maxima li % No. xima li No ma lin nes 

1 2 3 4 5 6 7 

Total eligible 1582 100

True classified 80.4 80.5 80.3

False cl ssified 1

True itive 769 24.7 479 31.2 290 18.3

3115 100 1533 100

2504 1234 1270 

a 611 9.6 299 19.5 312 19.7

pos

True negative 1735 55.7 755 49.2 980 61.9

False positive 201 6.5 31 2.0 170 10.7

False negative 410 13.2 268 17.5 142 9.0 

 
Table 4. Frac nsion of ities in micro ification clu  and healthy ue. 

To lignant Benign 

tal dimme singular calc sters tiss

Tissue  tal Ma

1 2 3 4 5 

Eligible 2.00 2.00 1.97 

Dominant 1.43 1.46 al 1.40 Abnorm

Diag sed 

Eligible 1.73 N/A N/A 
Normal 

no 1.47 1.47 1.47 

Dominant 1.04 N/A N/A 

 

 

Figure 8. The fractal dimension for all detected singularities 
in the 25 analyzed microcalcification clusters in all, malig- 
nant, and benign sets of data (the slope of the partition 
function, q = 0 and a0) is around 2, showing that the sin- 
gular points are distributed everywhere in the clusters. 
 

f all 

mension tending to 1. This difference approves the sig- 
cance of general lus maxima in the detection of 

dimension of 1 i ical for 
he tissue and can be used in 

mogram segmentation which we are pro o be 

ation clusters and it is 
w

erentiation be- 
tween sharp transition characterized as smoothed impulse 
function and normal high frequency signal fluctuation in  

abnormal breast tissue respectively. On another hand frac- 
tal dimension of detected dominant signal transition in 
normal tissue is tending to 1 implying that the dominant 
singularities belong to the curve structures.  

Healthy tissue fractal analysis shows that the set o
detected singularities has fractal dimension of 1.73 while 
the set of locally dominant singularities has fractal di- 

a future extension of this work.  
Healthy tissue statistical analysis confirms our expec- 

tation that general maxima of normal fluctuation with ne- 
gative Hölder exponent are lower than the g

nifi modu
microcalcification. Fractal s typ
the linear structures in t
mam posing t

eneral max- 
ima belonging to the maxima lines representing the ab- 
normalities suggesting that a combination of global and 
local thresholding need to be employed.  

4.5. A Microcalcification Detection Simulation 
Example  

Our proposed algorithm successfully localizes both ma- 
lignant and benign microcalcific

orth to notice that no other features but dominant gen- 
eral modulus maximum with local average threshold is 
employed in the detection of microcalcification clusters 
such as those shown in Figure 9.  

Wang and Karayiannis [14] suggested detection of 
high frequency energy blobs with no diff
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(a)                                                      (b) 

Figure 9. Mammogram mdb223 [24] with two microcalcification clusters and a film damage (a), and detected significant en- 
ergy peaks are represented by yellow-orange-red iso-energy lines (b). 
 
mammograms. Based on that idea we performed detec- 
tion of energy blobs of detected dominant general mo- 
dulus maxima. We consider th
bright spot with a local intensity

tal properties to differentiate between normal 
  

re modeled by 

tion of the suspicious spots as local energy peaks of gen- 
eral modulus maxima. 

us maxima highly map into 

strated that smoothed impulse function, recognized 
alized wavelet transform 

t sensitive on background tissue 
an

g proce- 
du

mogram in the neighborhood of detected smoothed im- 

at a microcalcification is a 
 maximum in the neigh- 

Dominant general modul

borhood of a singular point related to the microcalcifica- 
ion and eliminate the singular point without a local in- 

diagnosed microcalcifications in terms of local average 
magnitude and spatial distribution. Simulation results de- 
mont

tensity maximum in its neighborhood. The mammogram 
mdb223 [22] with two benign microcalcification clusters 
and a film damage is shown in Figure 9(a). The yellow- 
orange-red iso-energy lines point to the suspicious spots 
with detected energy peaks as shown in Figure 9(b). 
Film damage was not disturbing the detection process, 
because of missing local maxima in the eligible neigh- 
borhood of the detected singularities in the border of film 
damage.  

5. Conclusions and Future Work 

Continuous wavelet transform was employed to detect 
singularities in mammograms by tracking modulus max- 
ima along maxima lines across the scale and integrating 
it with frac
signal fluctuation and irregular ones in breast tissue.

Microcalcifications in mammograms we
smoothed impulse function and detected by their nega- 
tive Hölder exponent. Proposed procedure for maxima 
line classification enables selected general maxima to be 
analyzed by their magnitudes.  

This method is capable to make difference between 
smooth signal transitions inevitable present in mammo- 
grams and microcalcification as sharper signal transition. 
Presented numerical results show that selecting maxima 
lines with negative Hölder exponent and local threshold- 
ing of general modulus maxima make possible the detec- 

by their fractal properties of loc
m

 

odulus maxima, can be considered a reliable feature for 
microcalcification detection in mammograms. Moreover, 
comparison of healthy and calcified breast tissue based 
on both statistical and fractal results show that selected 
general modulus maximum is a significant feature in 
microcalcification detection and classification.  

Our results show that proposed metric for microcalci- 
fication detection is no

d therefore particularly convenient for dense paren- 
chyma background in which microcalcification detection 
can be often a very challenging task.  

Although a part of information has been lost by spatial 
resolution resampling from 50 m to 200 m microcalci- 
fications preserve their smoothed impulse function nature, 
which has been detectable by proposed method. We 
showed that energy peaks in modulus maxima field cor- 
respond to microcalcification suspicious spots.  

Coarse resolution makes faster suspicious spots sear- 
ching procedure in real time during the screenin

re, which can be beneficiary by preventing an addi- 
tional screening and saving the patients from having to 
endure the uncomfortable feelings during the procedure 
and more importantly, emotionally surviving cancer while 
waiting for additional test results.  

Involving local intensity maximum of underlying mam- 
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pulse function significantly reduces false positive find- 
ings. Then the algorithm allows smaller threshold value 
of the general modulus maxima and therefore becomes 
more sensitive by detecting eligible smoothed impulse 
function with lower magnitude necessary for early detec- 
tion of breast cancer. 

The number of detected microcalcifications per area 
unit could be another feature that could reduce false po- 
sitive findings.  

Our findings in the difference of average general max- 
ima magnitudes for malignant and benign microcalcifica- 
tions leave a space for microcalcification malignancy 
probability estimation in further research. Namely, the 
numerical results show that general modulus maxima 
average of cancerous microcalcifications is lower than 
the average of benign ones. Lower modulus maximum 
magnitudes of cancerous findings make the detection 
more difficult, but open a space for improved classifica- 
tion in terms malignant vs. benign microcalcifications. 
Additional analysis might show that general maximum 
magnitude could serve as a parameter for malignancy 
probability estimation in real time. 

The areas with microcalcification clusters tend to have 
higher fractal dimension than the healthy areas. Practical 
implementation of how to use fractal dimension in mi- 
crocalcification detection and/or classification can be an- 
other interesting future work. 

We showed that initial microcalcification segmenta- 
tion could be performed based on wavelet transform mo- 
dulus magnitude and phase and underlying mammogram 
in coarse resolution not significantly disturbed by noise. 
If necessary the microcalcification segmentation could be 
then refined in the finer resolution in which image acqui- 
sition was performed. 

We found that our implementation of this proposed 
work including all parameter values is appropriate for the 
200 μm/pixel spatial resolution and 8 bits/pixel numeri- 
cal resolution. This approach could be easily applicable 
to other mammogram databases with different spatial and 
numerical resolution if proper adjustment to the estimates 
of the parameters values were taken into consideration. 

Finally, involving additional microcalcification fea- 
tures could decrease false positive findings by enabling 
lowering modulus maximum threshold, which improves 
detection sensitivity of applied algorithm and therefore 
the general modulus maximum of smoothed impulse 
function can be used not only independently but also 
integrated with other microcalcification detection algo- 
rithms. 
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