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Abstract 
Floods have caused significant human and economic losses in the Cazones River Basin, located on 
the Gulf of Mexico. Despite this knowledge, steps towards the design and implementation of an 
early warning system for the Cazones are still a pending task. In this study we contributed by es-
tablishing a hydrological scheme for forecasting mean daily discharges in the Cazones Basin. For 
these purposes, we calibrated, validated and compared the HyMod model (HM) which is phys-
ics-based, and an autoregressive-based model coupled with the Discrete Kalman Filter (ARX-DKF). 
The ability of both models to accurately predict discharges proved satisfactory results during the 
validation period with RMSEHYMOD = 2.77 [mm/day]; and RMSEARX-DKF = [2.38 mm/day]. Further 
analysis based on a Streamflow Assimilation Ratio (SAR) revealed that both models underestimate 
the discharges in a similar proportion. This evaluation also showed that, under the most common 
conditions, the simpler stochastic model (ARX-DKF) performs better; however, under extreme 
hydrological conditions the deterministic HM model reveals a better performance. These results 
are discussed under the context of future applications and additional requirements needed to im-
plement an early warning hydrologic system for the Cazones Basin. 
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1. Introduction 
The interaction between global warming and natural variability affects the magnitude and frequency of extreme 
hydrological events, i.e. droughts and floods [1]-[3]. Future hydroclimatic scenarios associated with these im-
pacts are influenced by numerous sources of uncertainty, motivating the scientific community to work on better 
forecasting of hydrological events [4]. Hydrological modeling techniques are an essential tool for the develop-
ment of efficient water governance schemes of various types i.e., hydraulic works management, mitigation of 
natural disasters, and risk management, among others [4]-[11]. 

In Mexico, communities around river basins within humid-subtropical climates could especially benefit from 
accurate hydrological modeling. These humid-subtropical climates result from the interaction between several 
ocean-atmosphere teleconnections, i.e., the El Niño Southern Oscillation (ENSO), the Pacific Decadal Oscilla-
tion (PDO), the Arctic Oscillation (AO), the North Atlantic Oscillation (NAO), and the Atlantic Multidecadal 
Oscillation (NAO). These ocean-atmosphere interactions generate flooding and landslides that can result in im-
portant socio-economic losses, particularly in the floodplains of the basins.  

To mitigate the impacts associated to these extreme events, during 2002 the Mexican government established 
an Early Warning System for Tropical Cyclones (EWSTC), which is the main tool used to monitor the intensity, 
trajectory and distance of the cyclones. The information generated by EWSTC is then used by federal and state 
agencies who take supportive measures. Despite this centralized system has demonstrated to be effective for 
early warning of meteorological disasters, the role of local agencies is still pending in terms of expanding the 
“hydrological knowledge” about it e.g. calibration and validation of hydrologic models that deal with specific 
physical characteristics of the basins or those sustained in new algorithms of data assimilation. 

In order to advance towards the development of an early warning hydrological system for the Cazones Basin, 
in this study we have established a first approximation for forecasting mean daily discharges in the basin. For 
these purposes, we calibrated, validated, and compared two lumped hydrological models The first model is 
HyMod (HM), a physics-based model that accounts for all components of the water balance [12]-[16]. The 
second is an autoregressive-based model coupled with the Discrete Kalman Filter (ARX-DKF); the latter is con-
sidered as the optimal sequential data assimilation method for linear dynamics and measurement processes with 
Gaussian error statistics [17]-[21]. In the following sections of this paper we describe the study area and dataset, 
the calibration and validation steps for both models, and the discussion and conclusions concerning the results of 
our study. 

2. Methods 
2.1. Study Area 
The Cazones River Basin is located between the coordinates 20˚18' and 21˚15'N and 97˚17' and 98˚32'W, in the 
Hydrological Region N˚27 North, called Veracruz Tuxpan-Nautla [22] [23]. The mean annual flow of the Ca-
zones River is 54 m3/s, but for a single day this value can reach a maximum of about 1250 m3/s [24]. The river 
has a total drainage area of approximately 2688 km2 distributed in three states of Mexico (Figure 1(a)): Puebla 
(56%), Hidalgo (13.5%), and Veracruz (30.5%) [25]. For this study we considered the Poza Rica stream gauge 
as the outlet of the basin (Figure 1(b)), accounting for a total area of 1,605 km2. Grasslands and agricultural 
fields represent more than 70% of the total land area of the basin (Figure 1(c)). The average slope of the basin is 
about 27% (Figure 1(d)), and the highest elevation is about 2880 m.a.s.l. (Figure 1(e)). The maximum height of 
the main channel is about 2,100 m.a.s.l. These geomorphological characteristics translate into an estimated time 
of concentration of about 16 hours [25] [26]. 

2.2. Hydroclimatology of the Cazones Basin 
Much of Mexico has a monsoon climate, with a rainy season during the summer months (JJA) and a relatively 
dry winter season (DJF) [27]. Climate anomalies in Mexico depend mostly on the interaction between ENSO, 
PDO, AO, NAO, and AMO [28]-[33]. In the positive phase of the El Niño phenomenon (i.e., a warmer Equa-
torial Pacific Ocean), the winter is humid throughout Mexico, whereas during the summer, conditions are dry in 
the north and humid in the south [31]. A humid-subtropical climate dominates the Cazones River Basin, with an 
average annual temperature of 24˚C and an average annual rainfall of ~1500 mm [34]. This precipitation accu-
mulation is associated with frontal systems during winter, and extreme meteorological events such as tropical 
storms or hurricanes that form in the Atlantic over the Gulf of Mexico during the summer [29] [30] [35] [36].  
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Figure 1. (a) Cazones River Basin; (b) rain gauges and Poza Rica stream gauge; (c) land use in the basin; (d) slope map of 
the basin; (e) digital elevation map (30 meters) of the basin.                                                      

2.3. Socio-Economic Issues in the Cazones Basin 
The Cazones Basin drains over its west-facing slopes. The drainage enters the lowlands around the town of Poza 
Rica in the state of Veracruz, an important petroleum production area. Extreme meteorological events affecting 
the area cause high runoff over the saturated soils of the basin, resulting in significant damage [25] [26] [34] 
[37]. A review of the history of the state of Veracruz reveals extensive human losses due to flooding and 
landslides. For instance, in October 1999 a tropical depression associated with a polar front produced a 50-year 
flooding event that affected more than 200,000 inhabitants and caused more than $150 million (US) in economic 
losses [38]. In 2005, four tropical storms affected about 1.5 million people, and 130,000 houses were damaged 
by flooding [33]. During 2010, two hurricanes in the same month, Karl (September 17-18) and Mathew (Sep-
tember 26-27,) caused flooding in different parts of the State and economic losses of over $5 billion (US) 
[33]-[39]. During the last 41 years, flooding in Veracruz has demonstrated a significant positive exponential 
trend (r = 0.81) (see Figure 2), which can be attributed to climate change (due to global warming), other anth-
ropogenic factors, and natural variability [39] [40]. 

2.4. Hydrologic Modeling Using HM and ARX-DKF 
Daily streamflow forecasting in the Cazones Basin was conducted using two lumped models (one physics-based 
and one systems-based). In the definition of HM model we considered the formal steps of model building as 
stated by [41] i.e., the general model formulation (conceptual model) was performed defining the state variables; 
the model fluxes; and the adjustable and derived parameters. For the ARX model, we defined the exogenous in-
puts and the rainfall-runoff transfer function component (see i.e. [42]-[44]). This model was then coupled with a 
Discrete Kalman Filter, following the steps outlined by [17] [45]-[48]. 

2.4.1. Forcing Data 
The input forcing data used in this study include daily, spatially aggregated rainfall amounts (2008-2011) ob-
tained from a total of nine raingauges, mean daily flows obtained from Poza Rica stream gauge (Table 1), and  
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Figure 2. Annual precipitation obtained from the Poza Rica rain gauge and the number of flood events per year in the Ca-
zones Basin for the period 1970-2011. Source: Flood occurrence data was obtained from DesInventar (2015).              

 
Table 1. Rain and stream gauges used in this study. The code in the first column indicates the gauges as numbered in Figure 
1(b). Source: Clicom database [50].                                                                            

Code Station/Location Type North Latitude West Longitude State 

13034 Tenango de Doria Rain gauge 20˚20'22" 98˚13'30" Hidalgo 

13099 Metepec Rain gauge 20˚14'14" 98˚19'18" Hidalgo 

13130 Santa Ma. Asunción Rain gauge 20˚90'16" 98˚16'29" Hidalgo 

21118 Huauchinango Rain gauge 20˚11'37" 98˚30'35" Puebla 

21127 Xicotepec Rain gauge 20˚20'18" 97˚50'41" Puebla 

21142 Venustiano Carranza Rain gauge 20˚30'34" 97˚40'60" Puebla 

21147 Apapantilla Rain gauge 20˚14'14" 98˚19'18" Puebla 

30125 Papantla Rain gauge 20˚26'44" 97˚19'30" Veracruz 

30132 Poza Rica Rain gauge 20˚32'30" 97˚28'20" Veracruz 

27002 Poza Rica Stream gauge 20˚32'48" 97˚28'30" Veracruz 

 
potential evapotranspiration (PET) calculated using Hargreaves Method [49]. These records were obtained from 
the database CLICOM (Climate Computerized) administered by the National Meteorological Service of Mexico 
[50]. Mean daily streamflows from the Cazones Basin were obtained from the BANDAS database [51] and then 
used in the calibration and validation schemes. 

2.4.2. Conceptual Representation (Process Model) 
The physical or mathematical principles governing the entire behavior of the hydrologic system were summa-
rized for each model through the use of simple conceptual Directed Graphs (DG), which are an explicit repre-
sentation of the major processes occurring within the hydrological system, their structural organization, and their 
results [41]. Because the HM is a physics-based model (see e.g., [12] [14] [16] [52], the major physical 
processes leading to the behavior of the hydrologic system were defined in order to clearly describe the dynam-
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ics by which the state variables change over time [41]. The HM conceptualizes the basin as a simple, nonlinear 
soil moisture reservoir connected with two series of linear reservoirs for channeling excess rainfall, two or three 
identical quick-flow tanks (depending on the calibration scheme applied) representing short-term surface deten-
tion, and one, slow-flow tank representing groundwater storage (Figure 3(a)).  

On the other hand, physical conditions are not considered in the formulation of the ARX-DKF model, which 
is intended to find the best mathematical or causal relation(s) between the input and the output of the hydrologi-
cal system [46] [53]-[55]. This coupled model is based on an autoregressive component (ARX) for the stream-
flow, in which rainfall is considered the exogenous input. This component is then merged with the Discrete 
Kalman Filter (DKF) algorithm, following the steps described by [17] [48] [56]-[58]. The resulting model is 
then used to forecast the mean daily stream flow records (Figure 3(b)). 

2.4.3. System Parametrization 
This stage consisted of developing a group of hypotheses regarding the mathematical forms of the process equa-
tions that are believed to describe the physical processes linking the subsystem components (see i.e. [41] [59]). 
We used the HM as a conceptual non-distributed (lumped) hydrological model with six parameters (see Table 2) 
accounting for all subcomponents of the water balance ([12] [16] [60]). The ARX-DKF model contains time- 
varying parameters (i.e., they evolve over time) obtained from the autoregressive component, which are then 
used in the Kalman implementation (Table 2). The autoregressive characteristics of the streamflow records al-
low for the development of a matrix of parameters that are used to forecast streamflow [55]. 

 

 
Figure 3. Simple conceptual directed graphs for the (a) HM and (b) ARX-DKF models.                                
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Table 2. Parametrization of HM and ARX-DKF models.                                                            

Model Reservoir/ 
Component 

Water Balance  
or State Equations Constitutive Relations State Variables Model Fluxes Model Parameters 

HyMod 
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d
d

mS
P Pe ET

t
= − −  
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( ) max

max

1 1
b

m

m

m

m
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S
F C

S
ET W PET

S
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= ×

 
⇔ = − −  

 
= ×

 
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 

 
 Sm is the soil  

moisture in the  
upper soil layer [mm]. 
 Sq1 is the total water  

content in tank 1 [mm]. 
 Sq2 is the total water  

content in tank 2 [mm]. 
 Sq3 is the total water  

content in tank 3 [mm]. 
 Ss is the total water  

content in the lower  
soil layer [mm]. 
 Sm = 0; at t = 0 is the  

initial basin storage 
[mm]. 
 Sq = 0; at t = 0 is the  

initial storage of 
quick-flow tanks [mm]. 
 Ss = 0; at t = 0 is  

the initial storage of 
slow  
= flow tanks [mm]. 

 P is the  
Precipitation  
[mm∙d−1]. 
 Pe is the  

effective  
Precipitation  
[mm∙d−1]. 
 ET is the  

Evapo-transpiration  
from the soil 
[mm∙d−1]. 
 PET is the Potential 

Evapotranspiration 
[mm∙d−1]. 
 Qqi is the quick  

surface runoff in  
Sqi [mm∙d−1]. 
 QS is the slow 

groundwater 
runoff in Ss  
[mm∙d−1]. 

 max
mS  is the  

maximum  
storage capacity  
in the basin  
[5 - 600 mm]. 
 b is the shape  

parameter of the 
distribution of  
storage capacities 
within the basin 
[0.05 - 1.95]. 
 α is the routing  

ratio quick to  
slow pathway  
[0.01 - 1]. 
 Kq is the  

conductivity  
of the quick-flow 
routing tanks  
[0.001 - 0.1 day−1]. 
 Ks is the  

conductivity of the 
slow-routing tanks 
[0.001-0.95 day−1] 
 Nq is the number  

of quick flow  
linear tanks  
[1]-[5]. In this  
description  
Nq = 3. 
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= −  3q qQ Kq S= ×  

Slow Routing 
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1
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S
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t
α= − × −  S SQ Ks S= ×  

ARX Autoregressive  
Component 1 1

0 0

na nb

t i t i j t j t
i j

y y r eα β+ − − +
= =

= + +∑ ∑  

 1ty +  is streamflow  
forecast in time t + 1  
[m3∙s−1]. 
 t iy −  is streamflow  

observed in time  
t − i [m3∙s−1]. 
 t jr −  is rainfall  

observed in time  
t − j [mm]. 
 1te +  is the error for  

the streamflow  
forecast 
in time t + 1 

 α is a parameter calculated from the  
autoregressive component applied to streamflow. 
 β is a parameter calculated from the  

autoregressive component applied to rainfall. 
 na is the lag number for streamflow. 
 nb is the lag number for rainfall. 

DKF 

Discrete  
Kalman  

Filter  
Component 

1k k k kx Ax Bu w+ = + +  
 

k k kz Hx v= +  

 1kx +  is a vector containing  
the present streamflow  
(not observed). 
 kx  is a vector containing 

 the streamflow  
in the time k. 
 ku  is a vector containing  

the rainfall in the time k. 
 kw  and kv  are vectors 

containing the Gaussian  
noise for the process 
and measurements. 

( )~ 0,kw N Q  and 

( )~ 0,kv N R  

 kz  is a vector  
containing  
the streamflow 
measurement. 

 A and B are matrices containing α and β  
parameters from the series of  
streamflow and rainfall data in the ARX model. 
 H is a transformed matrix that  

contains the states of the measurements. 
 Q and R are matrices containing the 

covariance for the noise in the  
process and the measurements. 
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2.4.4. Computational Model, Calibration, and Validation 
The computational implementation of both models was coded using a MatlabTM routine, which was packaged in 
a toolbox1 format to facilitate usage. From the historical records of mean daily streamflows, the year 2008 was 
selected to calibrate the initial parameters of both models, because it contained the largest number of flood 
events (see Figure 2). The Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Nash-Sutcliffe 
Efficiency (NSE) [61] [62] were used as error measures for both the calibration and validation schemes (Table 
3). The parameters of HM were calibrated from 2008 records using the Shuffle Complex Evolution Algorithm 
(SCE-UA) [63]-[65]. Since the parameters of the ARX-DKF model are time-varying, they were initially cali-
brated using 2008 records, and then updated using 2009-2010 records (see Figure 3(b)). For these purposes we 
used an autoregressive component (ARX) taking into account the principles of parsimony [66]-[68]. To ensure 
consistent analysis, both models were validated using the 2009-2011 period. During this validation, the perfor-
mance of each model was further evaluated by calculating a Streamflow Assimilation Ratio Index (SAR) which 
is proposed in this study. This index shows the relationship between modeled (QMod) and observed (QObs)  

streamflows for each day i under analysis ( )
( )

( )

SAR i

i

Mod

i
Obs

Q

Q

  
  =
    

. In this study, SAR was used for measuring the  

predictive capacity of each model; however, it can also be used to apply bias correction schemes in a similar 
way of that performed over Global or Regional Climate Models (GCMs or RCMs); that is, by calculating an av- 

eraged version of SAR (averaged Bias Correction Factor) over all n days under analysis: 

( )

( )1
SAR

i

i

n Mod

i Obs

Q

Q

n

=

 
 
  =

∑
, 

and then using this factor to correct raw data resulting from hydrological models. 

3. Results and Discussion 
3.1. Sensitivity Analysis and Calibration of Parameters 
For the HM model the selection of the final set of parameters from the 2008 calibration was used to define the 
physical processes associated with hydrological responses in the Cazones Basin. For instance, the MSEHM ob-
tained fell as low as 8.79 mm, and all the parameters converged after completing the optimization scheme 
(Figure 4). For example, the calibrated maximum storage capacity in the basin was found to be about 39.4 mm, 
which may be considered a small capacity given the humid-subtropical characteristics of the Basin and the wide 
range of capacity (5 - 600 mm) used to calibrate the max

mS  parameter. Additionally, as denoted by the α-para- 
meter, the surface runoff in the basin is partitioned in slightly dissimilar proportions between the surface (53%) 
and the subsurface component (47%) revealing a higher runoff component compared to infiltration rates. In fact,  

 
Table 3. Forecasting performance measures used in this study.                                                   

Test Equation Description 

(1) Mean Squared Error (MSE) ( )2

1

1  
n
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t t

t

Q Q
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−∑  
 n is the total number of days. 
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tQ  are the observed streamflows. 
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tQ  are the modeled streamflows. 
 
 mean

tQ  is the mean streamflow of the observed series. 

(2) Root Mean Squared Error (RMSE) ( )2

1
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t t
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(3) Nash-Sutcliffe Efficiency (NSE) 
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1
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1
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n
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t
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t

Q Q
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=

=

−
−

−

∑

∑
 

 

 

1The Matlab runs reported for the HyMod model were conducted using a modeling and optimization toolbox created by H. Gupta, Depart-
ment of Hydrology and Water Resources, The University of Arizona, USA. The Matlab runs reported for the ARX-DKF model were con-
ducted using an ARX-DKF Toolbox created by the authors. 
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Figure 4. Evolution of parameters and objective function (MSE) by applying the SCE-UA optimization scheme during 2008. 
The evolution scheme was applied using five complexes and 25 loops at each complex (for details see: [63] [64] [73].        

 
the land use in the basin which is dominated by grasslands and agricultural fields (>70%) must play a significant 
role in modulating the hydraulic properties and consequently the infiltration capacity of soils. For instance, some 
studies have found that grasslands have lower (higher) infiltration (runoff) rates than forests [69]. 

For the ARX-DKF model the best set of parameters α and β calculated during the calibration period and then 
used to predict daily streamflows was identified when we combined the streamflow of the previous day (Qt-1) 
and the rainfall that occurred in the prior two days (Pt-2). This means that the largest autocorrelation of the ob-
served streamflows is achieved at lag t − 1 (days), and the largest cross-correlation between rainfall and ob-
served streamflows is achieved at lag t − 2 (days). Similar findings have been reported by [70]-[72]. 

3.2. Classical Validation of Models 
During the validation period, the performance of the chosen parameters was tested, revealing that both models 
are able to satisfactorily reproduce the mean daily discharges in the Basin. In fact, the forecasting performance 
of both models was improved during the validation period as evaluated through error measures. The MSEHM was 
about 35% larger than MSEARX-DKF and these results were also consistent when looking at RMSE and NSE 
measures (Table 4). The relationship between modeled and observed discharges shows significant correlations: 
0.88 for HM and 0.90 for ARX-DKF (Figure 5); however, as indicated by the slight deviation of the least 
squares line (LSL) from the 1:1 line, the predicted discharges from both models tend to slightly underestimate 
the observed discharges. In general, all previous findings suggest, at least at this stage, that ARX-DKF time-  
variable parametrization performs better than HM parametrization. 

3.3. Streamflow Assimilation Ratio (SAR) 
A significant relationship between SARHM and SARARX-DKF (r = 0.68) revealed interesting additional details 
about the performance of the models (in a validation period of 982 days). For instance, the joint distribution of 
SAR revealed four different regions (Figure 6(a)) that allow further evaluation of their performance. The Over-
estimation (Underestimation) Region is the one in which both models overestimate (underestimate) the observed 
discharges. In the Mixed Region, one model overestimates while the other underestimates or vice versa. The 
analysis of the Overestimation Region denoted similar performance by both models (Figure 6(b)). However, 
when the Underestimation Region was analyzed, ARX-DKF performed better than HM (Figure 6(c)): in about 
76% of the days in the validation period, the latter model underestimated the observed discharges, with an aver-
age relationship represented by HM 0.42 ObsQ Q= × . In contrast, the ARX-DKF model underestimated the dis-
charges in only about 66% of the days in the validation period, with an average relationship represented by  



F. González-Leiva et al. 
   

 
176 

 
Figure 5. Linear relationships between predicted and observed streamflows in the Cazones Basin.                        

 

 
Figure 6. (a) Scatter plot between the SAR calculated for both HM and ARX-DKF models; (b) distribution of the Overesti-
mation Region of both models; (c) Distribution of the Underestimation Region of both models.                           

 
Table 4. Error measurement results obtained for the validation period (2009-2011).                                    

Model MSE [mm] RMSE [mm] NSE [-] 

HM 7.66 2.77 0.75 

ARX-DKF 5.68 2.38 0.81 
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ARX-DKF 0.72 ObsQ Q= × . Focusing on the ability of the models to predict extreme conditions, we found that HM 
performs slightly better than ARX-DKF when predicting large discharge values: the average relationship be-
tween predicted and observed discharges (>20 mm/day) for each model is represented by HM 0.88 ObsQ Q= ×  
versus ARX-DKF 0.82 ObsQ Q= × . The implementation and analysis of SAR seems to be a practical and more de-
tailed approach to evaluate and compare the performance of hydrological models; however, more data and new 
applications will be required to determine its real significance in a context of models comparisons. 

3.4. Hydrological Uncertainty 
Judging from the hydrographs of both models (Figure 7), the predicted discharges can realistically forecast the 
mean daily discharges. The uncertainty bands calculated through a Monte Carlo approach (i.e., bootstrapping of 
errors) can be satisfactorily used to minimize both models’ risk of inaccuracy. However, during extreme flood-
ing events—i.e. an event in 2011 that resulted in an historic peak of ~1250 m3/s (~67.2 mm/day) on July 17th 

(Figure 7)—the uncertainty bands can be not able to explain the observed discharge; this can be partially attri-
buted to the fact that point-based rainfall cannot account for the spatial distribution of rainfall in the entire basin. 
Therefore, as a way of improving the confidence of the predictions and reduce the hydrological uncertainty, the 
design of an early warning hydrological system will additionally require the validation of combined new satel-
lite-based precipitation products (gridded datasets) and lumped or distributed models. 

3.5. Discussion 
The use of predictions from the centralized EWSTC allows for the generation of pre-alert scenarios with larger 
lead time; however, this scheme does not contain information about the states of the hydrological system i.e. it 
cannot be used to determine possible damages of hydraulic infrastructure. This is the most important pending 
task of local agencies as a way to expand the hydrological knowledge of EWSTC. This knowledge will have to 
develop new early warning hydrological systems dedicated to represent hydrological response based on the in-
trinsic characteristics of the Basins or dependent on new algorithms of data assimilation. In this study we con-
tributed to establish a hydrological scheme for forecasting mean daily discharges in the Cazones Basin. For in- 
stance, based on classical validation schemes and the application of SAR, we determined that under normal con- 

 

 
Figure 7. Observed and simulated mean daily river discharge [mm] for the 2009-2011 validation period at the Poza Rica 
stream gauge in the Cazones River Basin. The shaded areas represent 95% uncertainty levels (confidence intervals) obtained 
from Monte Carlo resampling (1000 samples) of the absolute errors of prediction under the assumption that they are normal-
ly distributed. When the lower boundaries reached negative values, they were adjusted to be 20% of the modeled discharge.   
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ditions ARX-DKF model performs slightly better than HM; however, this latter model performs better under ex-
treme conditions. These hydrological statements and the information generated from both models can be used to 
warn the emergency coordinators in a different way than that currently offered by EWSTC, and thus are of great 
value to pre-manage a probable hydraulic emergency. An additional and important component of this validation 
process will be based on the coordination between public agencies, decision-makers, and stakeholders, and how 
these members make use of these tools and the information generated by the models to define appropriate poli-
cies towards the development of early warning hydrological systems at catchment scale i.e. temporal resolution 
of interest, selection of models, and ranges of applicability. 

4. Conclusion 
This study evaluated two lumped hydrological models to contribute in advancing towards the development of an 
early warning hydrologic system in the Cazones River Basin. HM and ARX-DKF were calibrated, validated, 
and compared to determine the best modeling system for forecasting mean daily discharges in the basin. The re-
sults from error measures and SAR revealed that the performance of the autoregressive-based ARX-DKF model 
(less underestimation) was slightly better than the performance of the physics-based HM model (greater unde-
restimation). Despite these differences, under extreme hydrological conditions HM performs slightly better than 
ARX-DKF. The implementation of SAR proposed for this study showed to be a practical alternative to evaluate 
and compare the performance of hydrological models, and it seems to be promising for applying bias correction 
schemes over raw predictions obtained from hydrological models. The application of these methods is aimed to 
improve the predictions and reduce the uncertainty of hydrological models of course future studies will have to 
deal with the validation RCMs for the basin i.e. precipitation estimates provided by real-time satellite-based 
products as CMORPH, PERSSIANN or TMPA, combined with different lumped and spatially distributed hy-
drological models i.e. SACRAMENTO, HYMOD, HBV, TOMODEL, among others. The success or failure of 
these tools and the use of the information they provide will continue being a challenge since hydrologists have 
to also deal with climate models outputs coming with an additional source of uncertainty; therefore, the level of 
coordination attained between national agencies, decision-makers and stakeholders, in developing policies 
aimed to adequately implement new early warning systems including maybe not all but several scenarios of un-
certainty, will play a central role for improving water governance schemes at catchment scale. 
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