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ABSTRACT 

Impact and adaptation assessments of climate change often require more detailed information of future extreme rainfall 
events at higher resolution in space and/or time, which is usually, projected using the Global Climate Model (GCM) for 
different emissions of greenhouse concentration. In this paper, future rainfall in the North West region of England has 
been generated from the outputs of the HadCM3 Global Climate Model through downscaling , employing a hybrid 
Generalised Linear Model (GLM) together with an Artificial Neural Network (ANN). Using two emission scenarios 
(A1FI and B1), the hybrid downscaling model was proven to have the capability to successfully simulate future rainfall. 
A combined peaks-over-threshold (POT)-Generalised Pareto Distribution approach was then used to model the extreme 
rainfall and then assess changes to seasonal trends over the region at a daily scale until the end of the 21st century. In 
general, extreme rainfall is predicted to be more frequent in winter seasons for both high (A1FI) and low (B1) scenarios, 
however for summer seasons, the region is predicted to experience some increase in extreme rainfall under the high 
scenario and a drop under the low scenario. The variation in intensity of extreme rainfall was found to be based on loca-
tion, season, future period, return period as well as the emission scenario used. 
 
Keywords: Artificial Neural Network; Climate Change; Downscaling; Extremes Frequency Analysis Generalised  
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1. Introduction 

Extreme events have greater impacts on the lives of 
communities and hence investigation of extreme events 
is crucial for impact assessment and adaptation studies. 
These studies require data of fine temporal-spatial re- 
solutions to capture wide ranges of climate regime. 

Most existing systems of water management and other 
infrastructure have been designed under the assumption 
that climate is stationary. This basic concept on which 
engineers work, assumes that climate is variable, but 
with properties of this variability being constant with 
time and occur around an unchanging mean state. This 
assumption of stationary conditions is still common prac- 
tice for design criteria for (the safety of) new infrastruc- 
ture, even though the notion that climate change may 
alter the mean, variability and extremes of relevant 
weather variables is now widely accepted [1]. It is possi- 
ble to account for non-stationary conditions (climate 
change) in extreme value analysis, but scientists are still 
debating the best way to do this. Nevertheless, adaptation 
strategies to climate change should now begin to account 
for the decadal scale changes (or low-frequency variabil- 
ity) in extremes observed in the past decades, as well as 

projections of future changes in extremes such as those 
which are obtained from climate models. 

Confidence has increased that some extremes will be- 
come more frequent, more widespread, and/or more in- 
tense during the 21st century [2]. As a result, the demand 
for information services on weather and climate extremes 
is growing. The sustainability of economic development 
and living conditions depends on our ability to manage 
the risks associated with extreme events. Therefore, there 
is a need for climate change scenarios to obtain data for 
impact and vulnerability assessment, for awareness de-
velopment, for decision making in setting polices and for 
adaptation strategies [3]. For many studies, information 
derived directly from global climate model outputs may 
not be of sufficient spatial or temporal resolution to rep-
resent changes within a specific region, hence down-
scaling is required. 

A recent study in the UK, which employed cli- 
mateprediction.net (CPDN) model simulations from the 
BBC Climate Change Experiment for the A1B emission 
scenario [4], was conducted to shed light on the behaviour 
of future climate. It was found that the time of detectable 
change depends on the season, with most model runs in- 
dicating that a change to winter extremes in precipitation 
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may be detectable by 2080, and that a change to summer 
extreme precipitation will not be detectable by 2080 [4]. 
Another study in the UK by Osborn et al. [5] who used 
gamma distribution to fit daily precipitation amount, re- 
ported that extreme precipitations have increased in fre- 
quency in winter and decreased during summer. Al- 
though these findings are consistent with those from UK 
Climate Prediction 2009 (UKCP09) study (for the same 
emission scenario) in winter, however for summer, the 
changes are less clear. The central estimate (50th percen-
tile) suggests that the summer extremes may become 
slightly more frequent in the future for most locations, 
but there is a large level of uncertainty. The 10th percent- 
tile change for summer suggests that the rainfall events 
will become much less frequent [6]. 

This paper is an extension for the above studies in or- 
der to develop quantifiable insights on the impacts of 
global climate change on extremes daily rainfall at ap- 
propriate scales during the winter and summer for SRES 
scenarios A1FI (high emission of greenhouse gases) and 
B1 (low emission). It is focused on North West of Eng- 
land and uses data from two urban catchments. 

2. Data Used 

Daily rainfall data from two stations in the region of 
North-western England was used for the purposes of this 
study. The first is Tower Wood station in Windermere 
Catchment (in the upper part of the region) and the 
second is Worleston station in the Crewe Catchment (in 
the lower part of the region) (see Figure 1). The two 
catchments represent relatively two different climates, 
with Windermere in the North having more annual rainfall 
 

 

Figure1. Rainfall gauges used in the case study. 

data sets are obtained from the Environment Agency for 
England and Wales for the period 1961-2001.The large- 
scale observed climatic predictors data set is derived 
from the National Centre for Environment Predictions 
(NCEP/NCAR) for the same period of 1961-2001. Cli-
mate variables corresponding to the future climate 
change scenarios, which are on the same resolution as the 
NCEP predictors, are extracted from the Hadley Centre 
3rd generation (HadCM3) Global Climate Model for fu- 
ture period 2010-2099.The selection of the future time 
slices up to 2080s allows assessment of the climate 
change impact on rainfall extremes in near and distant 
future. 

3. Future Rainfall Prediction 

In this paper the statistical downscaling methodology 
adopted, broadly follows a two stage approach to model 
daily rainfall. The first stage is related to the rainfall 
occurrence and the second stage is related to the amount 
of rainfall associated with a wet day. For the first stage, 
the methodology employs a regression based method of 
the generalised linear model (GLM) to represent rainfall 
occurrence and an artificial neural network (ANN) for 
the second stage. As is the case with all statistical 
downscaling methods, the hybrid GLM-ANN methodo- 
logy used here assumes that the derived relationships 
between the observed predictors (climate variables) and 
predictand (i.e. rainfall) will remain constant under 
conditions of climate change and that the relationships 
are time-invariant [7,8]. 

The hybrid GLM-ANN downscaling methodology is 
started by first screening for predictors for the rainfall 
from all climate variables obtained from NCEP data at 
grid point level. The predictors are selected from a range 
of candidate predictors based on significance and streng- 
th of their correlation coefficients with the rainfall. Step- 
wise regression is applied during the selection process as 
it yields the most powerful and parsimonious model as 
has been shown by previous studies [9,10]. In order to 
remove any inconsistencies associated with the presence 
of small rainfall values, a threshold of 0.3 mm is applied 
to the data as rainfall values less than this threshold are 
considered to be dry days and represented with 0. Those 
equal to or greater than the threshold are considered wet 
days and represented with 1 to form a series of binary 
values for the rainfall occurrence model which has been 
screened with the predictors. All predictor variables are 
normalised to account for any biases that may occur in 
the modelled data. 

The logistic regression is one of a large class of GLM 
[11] which is often used to model the probability of rain- 
fall occurrence as a function of predictors (atmospheric 
variables) in statistical downscaling applications. In the 
present study, the logistic regression has been employed 
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to model wet and dry sequences of rainfall at each station. 
The description of logistic regression explained below is 
given by [12]. 

If Pi denotes the probability of rain for the ith case in 
the data set, conditional on the covariate vector '

iX  
(climate variables); then the model is given by, 

 '

1
iXi

i

P
e

P



                 (1) 

where, 
e = base of the natural logarithms 
β = coefficients estimated from the data 
As a general result of the properties of the exponential 
family distribution, the maximum likelihood estimator of 
GLM parameters can be found robustly using the New-
ton-Raphson algorithm [13]. 

To test the performance of the occurrence model, the 
Percent Correct (PC) and Heidke Skill Score (HSS) in- 
dices proposed by [14] are used as a check for the Bias 
(B). These indices can be obtained from a 2 × 2 contin- 
gency table as shown in Table 1 [14,15] as below: 

1) Number of events which are forecasted and actually 
occurred (a) 

2) Number of events which are forecasted but not oc- 
curred (b) 

3) Number of events which are not forecasted but oc- 
curred (c) 

4) Number of events which are not forecasted and not 
occurred (d) 

 a b
PC

n


                 (2) 

PC ranges from zero (0) for no correct forecasts to one (1) 
when all forecasts are correct. 

 
     

2 ad bc
HSS

a c c d a b b d




    
   (3) 

HSS = 1 for a perfect forecast; HSS = 0 shows no skill or 
poor model. If HSS < 0, the forecast is worse. 

 
 
a b

B
a c





                (4) 

If B = 1 (means forecast is unbiased), if B >1 (there is an 
over forecast), and if B < 1 (there is an under forecast). 
where a, b, c, and d are as defined in Table 1. 
 
Table 1. Contingency table for possible outcomes of the 
occurrence model. 

Observed 
 

Yes No 
 

Yes a b a + b 
Forecast 

No c d c + d 

  a + c b + d n = a + b + c + d

For the amount model, a multi-layer feed forward arti- 
ficial neural network (MLF-ANN) model was used to 
build a non-linear relationship between the observed 
rainfall amount series and the same selected set of cli- 
matic variables (predictors) used for the rainfall occur- 
rence model. 

The rainfall series used to calibrate this model was 
re-sampled with the derived occurrence model, some of 
which may return zero amounts despite the fact that the 
original series of rainfall indicates a wet day. 

Levenberg-Marquardt [16] optimization algorithm was 
used to train the network. The algorithm was designed to 
speed up the training process which would take longer if 
the usual back-propagation algorithm was used. In this 
study MATLAB 7.11 software has been used to model 
the two processes. 

The developed hybrid GLM-ANN seasonal rainfall 
downscaling models were then used to simulate seasonal 
future rainfall using a set of input variables generated by 
global circulation models (for A1FI and B1 scenarios for 
emissions) as predictors (this set corresponds to the 
NCEP predictors used in building the downscaling mo- 
del). The occurrence model was then used with inputs 
from the HadCM3 predictors to identify wet and dry days 
of the future rainfall based on the occurrence model. If 
the probability resulting from the occurrence model is 
equal to or greater than a specific threshold (specified 
during building of the occurrence model) then the 
amount estimated by the GLM-ANN model is taken as 
the rainfall amount for that particular day and if the 
probability of the occurrence is less than this threshold, 
the rainfall amount is taken as zero or a dry day. Predic- 
tion of future rainfall was produced for three future peri- 
ods of the 2020s, 2050s and 2080s. 

To avoid bias that may occur from use of GCM vari- 
ables to simulate future rainfall, the so called Scaling (or 
direct approch) Method [17] is used to correct the future 
rainfall values. The scaling method can be expressed in 
mathematical terms as: 

. .

ob
cf fut

sim control run

Mean
R Rsim

Mean

 
  

 
         (5) 

where, 
Meanob is mean observed rainfall for 1961-1990, and 
Meansim.control.run is mean simulated rainfal of the GCM 
for the control period. 

4. Modelling Extremes Rainfall 

Rainfall frequency analysis is performed for current and 
future climate by fitting the peaks-over-threshold (POT) 
model, which represents the behavior of exceedances 
above a high threshold and the threshold crossing process. 
Under suitable conditions, and using a high enough 
threshold, extremes identified in this way resulted in a 
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generalized Pareto (GP) distribution. This was introduced 
by [18] and has applications in a number of fields in- 
cluding reliability studies and analysis of environmental 
extreme events. 

The cumulative distributions function, F(x), of the 
GPD, where k ≠ 0 is given as 

   
1

1 1
kk

F x x u



   
 


           (6) 

For k = 0 the GPD is just an exponential distribution: 

   
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x u
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
 

  
 

              (7) 

where, x is the random variable, x > u, and u = a thresh- 
old, k = shape parameter, σ = scale parameter and prob- 
ability density function, f(x), for GPD is given as, 

   
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
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      (8) 
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 
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4.1. Threshold Selection 

The fundamental problem when fitting GPD is selection 
of an appropriate threshold for the peak-over-threshold 
calculation. Parameters of the GPD are very sensitive to 
the threshold selection and must be set high enough that 
only true peaks, with Poisson arrival rates, are selected. 
If this is not the case, the distribution of selected ex- 
tremes will fail to converge to GPD asymptote. On the 
other hand, the threshold must be set low enough to en- 
sure that enough data are selected for satisfactory deter- 
mination of distribution parameters [19]. 

Most methods developed to solve the threshold prob- 
lem are difficult to implement, therefore efficient meth- 
ods to find the appropriate threshold is needed [20]. 
There are two distinct ways for refining the selected 
threshold that have been applied in this study. These two 
ways are initiated by fixing a threshold, a priori and ab- 
stracting from the data every peak value exceeding that 
threshold and then refining it. The refining methods are: 

1) Parameter stability plots: These are plots of shape 
and scale parameters of the GPD obtained for a range of 
thresholds and then investigated for the stability of their 
estimates. The appropriate threshold value can be chosen 
by selecting the lowest value at which the graph becomes 
constant [21,22]. 

2) Mean Residual plot: This is a plot of the mean ex- 
cess over threshold as a function of threshold. For a GPD 
model, the graph should plot as a straight line taking into 
account the 95% confidence bounds, and the appropriate 
threshold value can be chosen by selecting the suitable 

value above which the graph is straight line [23,24]. 

4.2. Fitting GPD 

The GPD parameters are estimated by the maximum 
Likelihood Estimation (MLE) method, as it is known that 
if the sample size is large (which is the case in this study) 
the MLE is preferred because of its efficiency [25,26]. 
The estimation of parameter is applied using the ex- 
tremes toolkit [27]. The following is the log likelihood 
equation, LL(x, σ, k), used in fitting the GPD for k ≠ 0: 

     
1

; , log 1 1 log 1 10
n

i

i

x u
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

         
  

  

The Extreme Quantile (XT) estimation for a specified 
Return Period T is given by: 

  1
k

TX u T
k

                    (11) 

4.3 Model Diagnostics for GPD Fitting 

It is necessary to check goodness of fit of a statistical 
distribution to extreme values series. The goodness of fit 
and reliability of GPD to simulate future extreme values 
are tested in this study using the following four diagnos- 
tics [27]: 

1) Probability plot: Equation (6 or 7) is used to cal- 
culate the fitted value of the theoretical cumulative dis- 
tribution function (cdf), which is plotted against the em- 
pirical value of the cdf for each data point. The values in 
the sample of data should be arranged in ascending order. 
In the case of perfect fit the plot is approximately linear. 

2) Quantile plot: The empirical quantile of the samp- 
le data is arranged in ascending order and is plotted agai- 
nst the fitted quantile. Equation (6 or 7) is used for estim 
ating this fitted quantile from its inverse. The plot should 
be linear if the model is well representative by the data. 

3) Return level plot: Equation (11) is used for esti- 
mating the return level which is plotted against the return 
period. Confidence intervals can be added to the plot to 
increase its informativeness. If the GPD is suitable for 
the data; the empirical estimate of return level should be 
within the confidence interval in a reasonable way. 

4) Density plot: This is a comparison of the probabil- 
ity density function (pdf) of the fitted model with the 
histogram of extreme rainfall data. Equation (8 or 9) for 
estimating the fitted (pdf) is superimposed on the histo- 
gram, and matching between the two plots, is checked 
visually. 

5. Results and Discussion 

5.1. Downscaling Model Performance 

Table 2 shows set of predictors which have been selected 
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based on strength of their correlation with rainfall, for the 
two seasons in each of the two stations. 

Definition of each of the predictor that appears in Ta- 
ble 2 is given in Table 3. It can be observed from the 
data in Table 2 that the lag forward and exponential 
transformations were used in some predictors because 
they produced better corelation with the observed rainfall. 
The most dominant predictors for the rainfall in the two 
stations, for both seasons, are relative humidity (rhum), 
vorticity (p_z) at surfaces, 500 hp and 850 hp levels, and 
surface meridional velocity (p_v). The vorticity (p_z at 
different levels) tends to be the most important predictor 
(judged by its strong correlation with rainfall in all sta- 
tions). This is consistant with findings of studies carried 
out in this region by [10,28]. Zonal velocity (p-u) at 
850hp, mean sea level (msl) and surface air flow strength 
(p_f) are ranked second in terms of dominance for both 
seasons. Near surface specific humidity (shum) and sur- 
face divergence (p_zh) appear to be dominant at Wor- 
leston in winter and Tower Wood in summer, respec- 

tively. Generally, 8 predictors have been found more 
suitable in predicting rainfall occurance and amount at 
the two stations, as dictated by the correlation coefficient 
of the stepwise regression model. 

Table 4 shows the performance of the seasonal oc- 
currence models for each station in terms of the Heidke 
Skill Score (HSS) and Percent Correct (PC) indices, as 
well as their Bias (B). The models have been calibrated 
and validated using daily rainfall data for a 27 year 
(1961-1987) period and a 14-year (1988-2001) period, 
respectively. The indices values shown in Table 4 sug- 
gest that both of the Tower Wood seasonal models are 
more accurate than the Worleston ones.This is attributed 
to the nature of rainfall in the Lakes District (where the 
Windermere catchment falls) as rainfall is more frequent 
with high intensity. The results in Table 4 also confirm 
that all developed occurrence models are capable of pre- 
dicting rainfall occurrence with sufficient accuracy as 
dictated by higher values of PC (>70%) for both calibra-
tion and verification periods. 

 
Table 2. Selected large-scale climate variables for winter & summer seasons at each station. 

Station  Selected Predictors 

 p_u p_z mslp rhum p_f p_v p_zh shum

Tower wood winter 850(0) (+1) (exp) (+1), 500(0) 850(+1) (0), (+1)   

Tower wood summer  850(+1) (+1) (+1), 500(0), 850(0) 500(+1) (0) (+1)  

Worleston winter 850(+1) (+1) (+1) 850(0), 500(0) 500(+1) (+1)  (0) 

Worleston summer 850(0) 500(+1), 500(0), 850(+1)  (+1), 500(0), 850(0)  (+1)   

(+1) = Lagged forward, (exp) = exponential, (0) = no transformation. 
 

Table 3. Predictors definition. 

Code Variable 

p_u zonal velocity 

p_z surface vorticity 

mslp Mean sea level pressure 

rhum Near surface relative humidity 

p_f Surface airflow strength 

p_v Surface meridional velocity 

p_zh Surface divergence 

shum Near surface specific humidity 

 
Table 4. Percent correct (PC), Heidke skill scores (HSS) and Bias for the winter-summer rainfall occurrence models for both 
calibration (1961–1987) and verification (1988–2001) periods for Hybrid model. 

Station PC HSS Bias 

 Calibration Verification Calibration Verification Calibration Verification 

Tower Wood winter 0.83 0.86 0.66 0.69 1.03 1.01 

Tower Wood summer 0.80 0.81 0.61 0.97 1.00 1.00 

Worleston winter 0.77 0.78 0.55 0.56 1.01 1.14 

Worleston summer 0.78 0.80 0.54 0.58 0.94 0.97 
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Figures 2-5 show the inter-annual variability between 

the observed and simulated rainfall series for winter and 
summer for the period 1961-2001(calibration and verifica-
tion periods) for the two stations. The average yearly val-
ues appear to have been adequately captured by the GLM- 
 

 

Figure 2. Inter-annual variability for observed and modeled 
winter rainfall for Tower Wood during calibration and 
verification periods (1961-2001). 
 

 

Figure 3. Inter-annual variability for observed and modeled 
summer rainfall for Tower Wood during calibration and 
verification periods (1961-2001). 
 

 

Figure 4. Inter-annual variability for observed and modeled 
winter rainfall for Worleston during calibration and verifi-
cation periods (1961-2001). 
 

 

Figure 5. Inter-annual variability for observed and modeled 
summer rainfall for Worleston during calibration and veri-
fication periods (1961-2001). 

ANN model. Therefore, these results demonstrate that 
the hybrid GLM-ANN model used here is accurate in 
reproducing the observed rainfall which considered to be 
the most important requirement when assessing climate 
impacts on a hydrological system. 

Another diagnostic test for reproduction of rainfall 
values, is a plot of quantiles of observed versus simulated 
rainfall values as can be seen in Figures 6-7. The figures 
show the quantile-quantile plot for years1961-2001 (cali- 
bration and verification period). At both stations, it can 
be observed that the GLM-ANN model follows the 45˚ 
line for all rainfall values in winter and summer, sug-
gesting that the GLM-ANN model is closer to the ob-
served rainfall distribution and that winter extreme rain-
fall is well represented by the GLM-ANN. For the sum-
mer, there are some outliers for extreme amounts in the 
GLM-ANN outputs; however, the model has still shown 
good overall performance. 

The winter is considered the wettest season and the 
summer is the drier one. So the aim of this paper is to 
explore the extreme pattern of rainfall under these two 
conditions. Moreover, using the high and low scenarios 
of greenhouse emissions would lead for assessing the 
climate condition at worst conditions (highest and lowest) 
for these seasons. However most studies undertaken used 
the medium scenario and few considered the above sce-
narios. 

5.2. Quantifying the Changes in Future Rainfall 
Extremes 

Figure 8 shows an example of threshold selection using 
parameter stability and the mean residual plot described 
earlier. The plot shows that a threshold of 11 mm for 
Tower Wood summer (e.g. under scenario A1FI for fu- 
ture period 2050s) is good choice for the Peak-over- 
threshold model with GPD, as values of the shape and 
scale parameter tend to be constant from 11 mm. 

Performance of fitting GPD appears in Figure 9 (ex- 
ample is given for Tower Wood summer in 2050s) which 
demonstrates that the model is well represented by the 
extremes in terms of probability, quantile, return level 
and PDF plots. 

Following fitting of the GPD to the extracted POT ex- 
treme values series, return levels (quantiles) for the base 
period (1961-1990) and future periods (the 20s, 50s and 
80s) have been calculated using Equation (11) for speci- 
fied return periods. Analysis of the obtained quantiles 
yields significant changes in the intensity and frequency 
(return period) of the rainfall extremes in the future pe- 
riods of the 2020s, 2050s and 2080s compared to the 
base period of 1961-1990, in both studied catchments. 

In winter, rainfall in the Windermere catchment is 
projected to experience an increase in heavy rainfall un- 
der the high (A1FI) and low (B1) scenarios, while in the 
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Figure 6. Quantile-Quantile plot of daily rainfall for year 1961-2001 (calibration & verification period) for Tower Wood win-
ter (left) & summer (right). 
 

 

Figure 7. Quantile-Quantile plot of daily rainfall for year 1961-2001(calibration & verification period) for Worleston winter 
(left) & summer (right). 
 

 

Figure 8. Shape (top) and scale parameter estimated for different thresholds for Tower Wood summer (A1FI, 2050s). Both 
estimates of shape and scale parameter near constant from 11 mm. Hence, we choose threshold 11 mm. 
 

 

Figure 9. Performance of GPD fitting using rainfall extremes with the selected threshold 11 m for Tower Wood summer 
(A1FI, 2050s). 

Copyright © 2012 SciRes.                                                                                OJMH 



Climate Change Impacts on the Extreme Rainfall for Selected Sites in North Western England 

Copyright © 2012 SciRes.                                                                                OJMH 

56 

 
Crewe catchment the increase is projected under scenario 
A1FI only. Sometimes, the increase in winter storms 
would only be associated with the storms of a high return 
period of 20 years and thereafter in the 2020s as in the 
case in the Windermere catchment under scenario B1 
(see Figure 10). However, in the 2050s and 2080s, the 
increase is predicted to be even for storms of low return 
period (see Figures 10 and 11). 

In summer, the Windermere catchment is predicted to 
have significant increase of extreme rainfall in the 2020s, 
2050s and 2080s under the high scenario (A1FI), which 

is attributed to its location in the wettest region of North- 
western England (Figure 12). However, for the same 
scenario, the increase in the Crewe rainfall, would only 
be associated with the 2020s, with a considerable drop in 
the 2050s and 2080s (see Figure 13). For the low sce-
nario (B1), the two catchments are predicted to suffer 
from significant reduction in extreme rainfall and that is 
attributed to the reduction in the greenhouse emissions 
considered in this scenario, as the assumption inherent in 
the emission scenario B1 which considers the use of 
clean energy (see Figures 12 and 13). 

 

 

Figure 10. Return level & Return period for Windermere in winter under A1FI & B1 scenario emission. 
 

 

Figure 11. Return level & Return period for Crewe in winter under A1FI & B1 scenario emission. 
 

 

Figure 12. Return level & Return period for Windermere in summer under A1FI & B1 scenario emission. 
 

 

Figure 13. Return level & Return period for Crewe in summer under A1FI & B1 scenario emission. 
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6. Conclusions 

In the present study, downscaling from Global Climate 
Model (HadCM3), frequency analysis and assessment of 
future extreme rainfall under scenarios A1FI and B1 for 
two urban catchments in the Northwest region of Eng-
land has been addressed. 

For the downscaling part, screening for suitable pre- 
dictors from NCEP data is carried out to build the rainfall 
occurrence and amount models. The downscaling model 
used is the hybrid Generalised Linear Model and Artifi- 
cial Neural Network modeling approach (GLM-ANN). 

Frequency analysis to establish the relationship be- 
tween extreme rainfall and its frequency of occurrence is 
then carried out on the observed and downscaled rainfall 
time series. The approach used in the frequency analysis 
is the combined Peak-over-Threshold Generalised Pareto 
Distribution (POT_GPD) model. 

Changes in the frequency and magnitude of extreme 
rainfall for winter and summer seasons, under scenarios 
A1FI and B1, for the considered standard base period 
(1961-1990) and selected future periods, have then been 
discussed and assessed. 

The study found that increase in frequency of extreme 
rainfall depends on its own return period, season of the 
year, the future period considered and the emission sce- 
nario under which it was predicted. In the winter season 
both studied catchments are predicted to experience in-
crease in extremes intensity under scenario A1FI. Un- 
der scenario B1, only Windermere would experience an 
increase in extremes intensity. In both studied catch- 
ments, summer extreme rainfalls are projected to in- 
crease in frequency under the high emission scenario 
(A1FI), however the increase for Worleston is only pre- 
dicted to be in the 2020s. The two catchments are pre- 
dicted to suffer from a decrease in frequency of extreme 
rainfall under the low emission scenario (B1) during the 
summer seasons. 
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