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1. Introduction 

The terahertz (THz) portion of the electromagnetic spectrum is located between 
the microwave and infrared segments and has remained relatively underdeve-
loped because the power output of conventional electronic circuitry (i.e., 
IMPATT, MMIC, Gunn, TUNNET, multiplexers, photomixers, RTD, etc.) drops 
significantly as the transition is made from the microwaves to the THz region. 
Similarly, photonic structures (i.e., III-V lasers, QCL, etc.) also exhibit a similar 
and noticeable deterioration in the power output as the transition is made from 
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infrared to THz frequencies. In view of the unrelenting saturation of the elec-
tromagnetic spectrum, there is an increased interest in developing passive and 
active devices with suitable performance in the THz portion of the spectrum, in-
cluding tunable structures that could alleviate said saturation. Additionally, THz 
electromagnetic waves are nonionizing and, for the same reason, attractive for 
applications where microwave interactions with organic materials could be a 
source of concern [1]-[10]. One option to overcome the performance limitations 
of conventional electronic circuitry and/or photonic devices at THz frequencies 
is the utilization of metamaterials (MMs), which are subwavelength, unit-cell 
laboratory-made structures that are fabricated to exhibit specific electromagnetic 
properties not encountered in naturally available materials. The topology encoun-
tered in MMs customarily consists of a metallic or polymeric array, in which the 
passive electromagnetic properties are determined by the dimensions of the unit 
cell, the fill factor of said cells and the materials employed in their fabrication 
[11]. Incorporating functional materials to MM designs capable of responding in 
real time to an external stimulus would improve tunability and, more generally, 
enable the demonstration of THz modulation devices [12] by modifying signal in-
tensity, phase, propagation direction, beam shape or resonant frequency. To this 
end, the utilization of UV excitation with a wavelength of 400 nm, to verify the 
modulation of THz waves of a metamaterial array coated with previously synthe-
sized photoluminescent, down-shifting ZnO QDs synthesized in colloidal solu-
tions with pH values of 10 and 12, respectively, is discussed in this work. 

2. Experimental Details  

The employed MM array (see Figure 1) which has been described elsewhere [13], 
was fabricated using a conventional lift-off process on high resistivity, <100> sil-
icon wafers and had dimensions such that the array exhibited a resonance fre-
quency of 1 THz. The metallization of the tested MM structures was performed 
by evaporating 200 nm of silver on a 20 nm layer of chromium that served as an 
adhesion layer. 

2.1. ZnO QD Synthesis  

Colloidal ZnO QDs were synthesized at room temperature by a sonochemical  
 

 
Figure 1. (a) Dimensions of the MM unit cell employed in this exercise. The black and 
blue lines represent the unit cell and metallic features, respectively. (b) Optical micro-
scope image of the microfabricated array. 
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method [14] [15] in which acoustic cavitation precludes the formation of inter-
mediate products, including Zn(OH)2, converts the reactants into ZnO QDs and 
calcination steps are not required. This method has proven useful for accelerat-
ing chemical reactions in liquid-solid systems [14]. Specifically, ZnO QD syn-
thesis was accomplished by preparing an initial solution of 0.02 M zinc acetate 
(ZnAc) (99.99%, Sigma-Aldrich) in pure ethanol. A second and independent 
solution of 0.01 M of lithium hydroxide (LiOH) (≥98% Sigma-Aldrich) was 
prepared also in pure ethanol. Subsequently, the LiOH solution was incorpo-
rated dropwise to the ZnAc solution until a pH value of 10 or 12 was obtained. 
Once the targeted pH value was reached, the mixture was placed in a sonication 
bath for 3 hours [16] [17]. The chosen pH values were found to yield stable na-
noparticles and relatively minimal agglomeration. Furthermore, the ultimate size 
of the obtained QDs was determined by the pH value of the final solution em-
ployed during synthesis and observed to be in agreement with the dependence of 
ZnO nanoparticle size on pH reported elsewhere [18]. A summary of the synthe-
sis is shown in Figure 2. The ZnO QDs were then deposited onto the surface of 
the MM shown in Figure 1.  

In order to characterize the synthesized ZnO QDs in the terahertz regime, the 
nanoparticles were dispersed in a polydimethylsiloxane (PDMS) matrix. To this 
end, the ZnO QDs were harvested by drying the final solution on a hotplate 
maintained at 70˚C, and prior to dispersing them in the aforementioned matrix, 
the QD samples were thoroughly pulverized using a mortar. Once the solvent 
had completely evaporated, the ZnO QD powder was mixed with a PDMS solu-
tion that had been previously prepared by mixing 5 wt% of a curing agent in a 
silicone elastomer [19] [20]. The mixture of PDMS and ZnO QDs was then 
cured at 90˚C for 3 hours (see Figure 3).  

2.2. ZnO QD Absorption and Emission Characterization  

The UV-vis absorption characterization of the ZnO QDs was performed using  
 

 
Figure 2. ZnO QD synthesis approach and their visual appearance under UV excitation. 
The synthesis pH values employed were 10 (yellowish solution on the left) and 12 (blue 
solution on the right).  
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Figure 3. (a) Cured PDMS membranes exhibit no photoluminescent properties under 
UV excitation. (b) Observed photoluminescence of ZnO QDs synthesized with a pH val-
ue of 12 and dispersed in a PDMS matrix.  
 
an Ocean Optics Flame-S-UV-VIS spectrometer and the collected absorption 
spectra corresponding to nanocrystals synthesized with the previously men-
tioned colloidal solution pH values of 10 and 12, are shown in Figure 4, along 
with their corresponding photoluminescent response. The emission wavelength 
is directly related to quantum dot size, therefore, the larger the nanoparticles the 
longer the wavelength of their characteristic photoluminescent peak [21] [22]. 
Thus, QDs synthesized with a pH value of 12 have an emission peak located at 
510 nm, while QDs synthesized with a pH value of 10 have the peak located at 
540 nm, indicating that lower pH values produce larger nanoparticles.  

The observed QD absorbance measurements are related to QD bandgap by 
the following expression 

( )m
g

A h E
h

α ν
ν

 = − 
 

                      (1) 

where α  is the absorption coefficient, A is an optical constant, m represents 
the type of optical transition in the semiconducting material; specifically, m can 
only take the values of 1/2, 2, 3/2 or 3 corresponding to allowed direct, allowed 
indirect, forbidden direct and forbidden indirect, respectively [23], and gE  is 
the band gap of the semiconducting quantum dots. Multiplying Equation (1) by 
hν , obtaining the natural logarithm and finally taking the derivative with re-
spect to hν , the resultant equation is 
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                       (2) 

The bandgap can then be estimated by plotting Equation (2) with respect to 
energy [23], and this approach permits the identification of the inflection point 
(i.e., the bandgap value) where the slope changes sign (see Figure 5). In other 
words, the bandgap value will be determined as a discontinuity at 0gh Eν − =  
[23]. The extracted bandgap values were 3.43 eV and 3.62 eV for the ZnO QDs 
synthesized with the colloidal solutions with a pH of 10 and 12, respectively. The 
observed emission peaks were located at 510 nm (pH 12) and 540 nm (pH 10).  
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Figure 4. Collected absorbance spectra of the ZnO QDs colloidal solutions synthesized 
with pH values of 10 and 12 (solid lines), respectively. The dotted lines show the photo-
luminescence spectra of the corresponding ZnO quantum dot colloidal solutions.  
 

 
Figure 5. Estimated bandgap values of the ZnO QDs synthesized with pH values of 10 
and 12, respectively. 
 
Since the wavelength emission is directly related to QD size, i.e., the larger the 
particle, the longer the wavelength of emission, the emission peak wavelength 
observations corroborate that higher pH values during synthesis indeed lead to 
smaller ZnO quantum dots. 

Once the bandgap value had been calculated, the size of the QDs was esti-
mated employing Brus’ quantum mechanical approximation [24] 

2 2 2

2 * *

1 1 1.8
2g Bulk

e h

eE E
rr m m

 π
= + + − 

 




                 (3) 

where gE  is the band gap energy of the semiconductor quantum dots, BulkE  is 
the band gap energy of the bulk semiconductor material,   is the reduced 
Planck constant, *

em  and *
hm  represent the effective mass of electron and hole 

of the material under consideration,   is the bulk relative permittivity, and r is 
the QD radius. For the pH 10 ZnO QDs we estimated a radius of 3.00 nm and 
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for the pH 12 ZnO QDs we obtained a radius of 2.12 nm. To corroborate the es-
timated sizes, transmission electron microscope (TEM) images for both samples 
were obtained and are shown in Figure 6. The measured values were approx-
imately 3.2 nm and 1.85 nm radius for the ZnO pH 10 and ZnO pH 12 samples, 
respectively, in reasonable agreement with the sizes estimated via Equation (3).  

3. Experimental Results and Discussion  

The THz time domain spectroscopy (THz-TDS) characterization was performed 
by employing a Menlo Systems TeraSmart equipment [25], operated in trans-
mission mode (see Figure 7). This system employs a photoconductive antenna 
based on an InGaAs/InAlAs multilayered mesa as the emitter and detector, 
which are activated by a femtosecond laser of wavelength 800 nm. The system  
 

 
Figure 6. ZnO pH10 and ZnO pH12 TEM images used to corroborate sizes estimated 
values. 
 

 
Figure 7. THz Time Domain Spectroscopy test setup. 
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was aligned until the THz amplitude was at its maximum. Subsequently, the 
equipment was thermalized for ~1 hour, and the sample was positioned at the 
focal point of the THz beam path. Five measurements at room temperature were 
collected for each reference and samples, each of which corresponded to a thou-
sand-point averaging. 

Stand-alone PDMS membranes with and without QDs were tested, as well as 
MM arrays with QDs on the surface and exposed to UV laser excitation of 400 
nm in wavelength to determine the prospective modulation behavior of the ar-
rangement.  

The obtained THz time domain waveform signal was processed by applying a 
Gaussian window to remove reflections after the main THz pulse [26] and, sub-
sequently, a Fast Fourier transform (FFT) was employed to obtain the amplitude 
and phase information of both the reference as well as the sample under consid-
eration. In both cases, i.e., a stand-alone PDMS membrane and MM array, sam-
ples without QDs were employed as a reference. The transmittance as a function 
of frequency of the samples was calculated using the following equation [26] 

( ) ( )
( )

( )
( )

( ) ( )( )e sam refisam sam
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φ ω φ ωω ω

ω
ωω

−
= = ⋅






             (4) 

where samE  and refE  are the complex electric fields, samA  and refA  are the 
THz amplitudes and samφ  and refφ  are the phase angles of the sample and ref-
erence, respectively. Depending on the sample transmittance results could show 
specific features as a function of frequency.  

3.1. THz Quantum Dot Characterization 

From the collected THz-TDS data, optical properties of interest such as refrac-
tive index, permittivity and conductivity can be extracted. The real part ( )n ω  
and imaginary part ( )κ ω  of the refractive index can be calculated by using the 
following equations [26] 
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respectively. Similarly, the permittivity and the index of refraction are related by 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )2 2 2i n i nω ω ω ω κ ω ω κ ω′ ′′= + = − +          (7) 

where   is the complex permittivity, ′  is the real part of the permittivity, ′′  
is the imaginary part of the permittivity. The extracted real effective refractive 
index of the PDMS + QDs membrane at 1 THz (see Figure 8), was of ~1.50 for 
the smaller QDs synthesized with a pH value of 12 (blue dotted line), and to 
~1.85 (green solid line) for the larger QDs synthesized with a pH value of 10. 
Subsequently, the samples were exposed to UV excitation of 400 nm wavelength 
(see Figure 9 and Figure 10). The intensity of the UV source was measured using  
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Figure 8. Extracted real part of the effective refractive index of the media with the incor-
porated ZnO QDs described herein. 
 

 
Figure 9. Extracted real part of the refractive index of the medium with the relatively 
larger ZnO QDs (pH 10) with (dotted line) and without UV excitation of 400 nm (solid 
line).  
 

 
Figure 10. Extracted real part of the refractive index of the medium with the relatively small-
er ZnO QDs (pH 12) with (dotted line) and without UV excitation of 400 nm (solid line).  
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an ILT2400 Light Meter and observed to be 2.5 × 10−4 W/cm2. The observations 
indicate that larger quantum dots exhibit a relatively more pronounced response 
to UV excitation. This can be explained on the grounds that the synthesized se-
miconducting nanoparticles exhibit quantum confinement effects where exciton 
polarizability, reported to be proportional to the fourth power of the radius 
( 4~ Rα ), can be defined as [27] 

( )2

2

Δ 2

9
s QD

sn

χ
α

+
=

 


                        (8) 

were Δ sχ  is the susceptibility of the material (related to the permittivity by 
1sχ = −  ), QD  is the permittivity of the quantum dots,   is the permittivity 

of the medium and sn  is the sheet excitation density. This result is in agree-
ment with the extracted real part of the effective refractive index of the media 
with the incorporated ZnO QDs shown in Figure 8. Ostensibly, studies of pola-
rizability as a function of frequency and quantum dot dimensions can be per-
formed employing THz-TDS.  

3.2. THz Metamaterial Characterization 

The experimental characterization of the metamaterial array previously de-
scribed and shown in Figure 1, corroborated the anticipated resonant frequency 
at 1 THz (dotted lines Figure 11 and Figure 12). Subsequently, the synthesized 
ZnO QDs were deployed directly on the MM surface, and the resonance fre-
quency was observed to shift to 0.95 THz and to 0.96 THz for the ZnO QDs 
synthesized with pH values of 10 and 12, respectively. The observed variation in 
the resonance frequency reflects the permittivity value trends presented in Fig-
ure 8, thus, larger permittivity values are associated with lower resonant fre-
quencies. 
 

 
Figure 11. The modification of the effective permittivity of the medium by the deploy-
ment of the ZnO QDs synthesized with a pH value of 10, triggered the resonant frequency 
to decrease from 1 THz to 0.95 THz.  
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Figure 12. Variation of the resonant frequency of the MM array before (1 THz) and after 
(0.96 THz) deployment of the ZnO QDs synthesized with a pH value of 12.  
 

 
Figure 13. Transmittance calculation of the metamaterial with ZnO pH 10 QDs with and 
without UV excitation of 400 nm. 
 

In order to measure the modulation of the metamaterial arrays with the dep-
loyed quantum dots, the samples were excited with a UV source of 400 nm while 
being tested with the THz-TDS (results are shown in Figure 13). The experi-
mental observations yielded a modulation of 4.55% for the ZnO QDs synthe-
sized with colloidal solutions with a pH value of 10, while the nanoparticles syn-
thesized with a pH value of 12 exhibited a relatively large modulation of 9.21%. 
The observed results are thought to be due to a higher degree of confinement ef-
fects in smaller quantum dots [27]. These changes in modulation depth demon-
strate the capability of hexagonal MM via the deployment of ZnO QDs to tune 
THz electromagnetic signals.  

4. Conclusion 

ZnO quantum dots were chemically synthesized employing colloidal solutions 
with pH values of 10 and 12, and the estimated bandgap and radii were calcu-
lated to be 3.37 eV (3.00 nm) and 3.50 eV (2.12 nm), respectively. Upon deploy-
ing the produced QDs on previously fabricated hexagonal metamaterial arrays 
and exposing the samples to UV excitation with a wavelength of 400 nm while 
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performing THz spectroscopy in transmission mode, signal modulation values 
of 4.55% and 9.21% were observed. The results reported herein could promote 
the proliferation of THz regime modulation devices. Furthermore, since the 
photolithographic process for the MM fabrication is mass-production compati-
ble [28], while the ZnO QDs are stable, biologically compatible, and low-cost 
[29], the MM-ZnO QD setup described herein is considered to be attractive for 
industrial applications.  
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