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Abstract 
The kinetics of the periodate oxidation of chromium(III)-complex, 
[CrIII(NTA)(Ala)(H2O)]-(NTA = Nitrilotriacetate and Ala = ß-alanine) to 
Cr(VI) have been carried out for the temperature range 15˚C - 35˚C under 
pseudo-first order conditions, 4IO−      [complex]. Reaction obeyed first 

order dependence with respect to 4IO−    and [Cr(III)], and the rate of reac-

tion increases with increasing of pH for the range 3.40 - 4.45. Experimentally, 
the mechanism of this reaction is found to be consistent with the rate law in 
which the hydroxo species, [CrIII(NTA)(Ala)(OH)]2− is considerably much 
more reactive than their conjugate acid. ΔH* and ΔS* have been calculated. It 
is proposed that electron transfer occurs through an inner-sphere mechanism 
via coordination of 4IO−  to chromium(III). 
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1. Introduction 

The Ternary complexes of oxygen-donor ligands and heteroaromatic N-bases 
such as nitrilotriacetic acid (NTA) and iminodiacetic acid (IDA) with transition 
metals have attracted much interest, as they can display exceptionally high sta-
bility and may be biologically relevant [1] [2]. The use of transition metal com-
plexes of NTA is gaining increasing use in biotechnology, particularly in the 
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protein purification technique known as immobilized metal-ion chromatogra-
phy [3]. The chromium(III) complexes of a amino acids are biologically availa-
ble, depending on the complexing ability of the ligands for chromium against 
OH−. Chromium can also aid in the transportation of amino acids through the 
cell membrane [4]. The biological oxidation of chromium from the trivalent to 
the hexavalent state is an important environmental process because of the high 
mobility and toxicity of chromium(VI) [5]. Recently, Cr(III) oxidation to Cr(V) 
and/or Cr(VI) in biological systems came into consideration as a possible reason 
for the anti-diabetic activities of some Cr(III) complexes, as well as the 
long-term toxicities of such complexes [6]. The specific interactions of chro-
mium ions with cellular insulin receptors [7] are a consequence of intra- or 
extracellular oxidations of Cr(III) to Cr(V) and/or Cr(VI) compounds, which act 
as protein tyrosine phosphatase (PTP) inhibitors. Periodate oxidations have 
been reported to play an important role in biological processes [8] [9] [10].  

Studies of the kinetics of periodate oxidations on a series of dextran oligo-
mers, polymers and some dimeric carbohydrates [8] revealed a dependence of 
the kinetic rates on the molecular weight. The oxidation of caffeic acid 
(3,4-dihydroxy cinnamic acid) by sodium periodate was found to mimic the 
mechanism of polyphenol oxidase. The antioxidant product 2-s-cysteinyl caffeic 
acid exhibits slightly improved antiradical activity compared to the parent mo-
lecule (caffeic acid) [9]. The imidazol-modified M-salophen/NaIO4 system can 
be applied to oxidize a large number of primary aromatic amines in good yield at 
short times and room temperature [10].  

An inner-sphere mechanism for oxidation of chromium(III) complexes of 
some amino acids [11] [12] [13] and nucleosides [14] [15] [16] by periodate has 
been proposed with the hydroxo group acting as bridging ligand, or through the 
substitution of coordinated H2O by [IO4]−. Oxidation of ternary nitrilotriaceta-
tocobalt(II) complexes involving succinate, malonate, tartrate, maleate and ben-
zoate as secondary ligands by periodate has been investigated [17] [18] [19]. In 
all cases, initial cobalt(III) products were formed, and these changed slowly to 
the final cobalt(III) products. It is proposed that the reaction follows an in-
ner-sphere mechanism, involving a ring closure step that is faster than the oxi-
dation step. The IVI in the initial product is probably substitutional by water at a 
very slow rate due to the substituted inertness of Co(III) and also the 
Co(II)-OIO3 bond being stronger than Co-H2O bond. The oxidation of co-
balt(II) complexes of propylenediaminetetraacetate (PDTA) [20], 
1,3-diamino-2-hydroxypropanetetraacetate (HPDTA) [20], diethylenetria-
mine-pentaacetate (DPTA) [21], trimethylenediaminetetraacetate (TMDTA) 
[22] and ethyleneglycol,bis(2-aminoethyl)ether,N,N,N0,N0-tetraacetate (EGTA) 
[22] by periodate gave only the final product. Periodate oxidations of the chro-
mium(III) complexes of NTA [23], 2-aminopyridine [24] and IDA [25] were 
studied. In all cases, the electron transfer proceeds through an inner-sphere me-
chanism via coordination of 4IO−  to chromium(III).  
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In this paper, we report on the kinetics and mechanism of the periodate oxi-
dation of ternary complexes of chromium(III) involving NTA as primary ligand 
and ß-alanine as a secondary ligand, in order to study the effect of secondary li-
gand on the stability of [CrIII(NTA)(Ala)(H2O)]− [23] toward oxidation. 

2. Experimental 
2.1. Materials and Methods 

The ternary complexes of chromium(III) involving nitrilotriacetato and 
β-alanine was prepared according to the report method [26]. All chemicals used 
in this study were of analar grade (BDH, Aldrich and Sigma). Buffer solutions 
were prepared from CH3COONa (Sigma 99%) and CH3COOH (BHD 99.9%) of 
known concentration. NaNO3 (Aldrich 99.99%) was used to adjust ionic 
strength in the different buffered solutions. Doubly distilled H2O was used in all 
kinetic runs. A stock solution of NaIO4 (Aldrich 99.9%) was prepared by accu-
rate weighing and wrapped in aluminum foil to avoid photochemical decompo-
sition [27]. 

2.2. Instrumentation 

UV-vis spectrophotometer model JASCO UV-530 was used to record the elec-
tronic spectra of the investigated complexes. The oxidation of complex, 
[CrIII(NTA)(Ala)(H2O)]− by 4IO−  were followed spectrophotometrically. The 
absorption measurements for the oxidation of reaction products are maximum 
at the reaction pH. Automatic circulation thermostat was used to regulate the 
temperature of solution. The average stabilizing accuracy was ±0.1˚C. Large 
excess of 4IO−  (>10-fold) was used in all measurements to get the pseudo-first 
order situation. NaNO3 solution was utilized to make a constant ionic strength. 
It is noticed that during the course of the reaction the pH of the reaction is con-
stant. 

2.3. Kinetic Measurements 

The UV-Visible absorption spectra of the products of oxidation of the complex 
[CrIII(NTA)(Ala)(H2O)]− by 4IO−  was followed spectrophotometrically for a 
measured period of time using a JASCO UV-530 spectrophotometer. All reac-
tants were thermally equilibrated for ca 15 min in an automatic circulation 
thermostat, then mixed thoroughly and quickly transferred to an absorption cell. 
The oxidation rates were measured by monitoring the absorbance of Cr(VI) at 
350 nm, on a Jenway 3600 spectrophotometer, where the absorption of the oxi-
dation products is maximal at the reaction pH. The pH of the reaction mixture 
was measured using a G-C825 pH-meter. Pseudo-first-order conditions were 
maintained in all runs by maintaining a large excess (>10-fold) of 4IO−  over 
complexes. The ionic strength was kept constant by the addition of NaNO3 solu-
tion. The pH of the reaction mixture was found to be constant during the reac-
tion runs. Potentiometric measurements were performed with a Metrohm 702 
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SM titrino, using Irving and Rossotti techniques [28]. 

3. Results and Discussion 

The UV-Visible spectra of the oxidation product of the complex, 
[CrIII(NTA)(Ala)(H2O)]− by periodate were recorded over time on a JASCO 
UV-530 spectrophotometer (Figure 1). The spectrum gives a maxima at 564 and 
410 nm for [CrIII(NTA)(Ala)(H2O)]− complex which disappeared and replaced 
by a single peak at 350 nm due to the formation of chromium (VI). The presence 
of one isosbestic point at 501 nm in the absorption spectra (Figure 1) indicates 
the presence of two absorbing species in equilibrium. To measure the stoichi-
ometry, a known excess of Cr(III) complex was added to 4IO−  solution and the 
absorbance of Cr(VI) produced was measured at 350 nm after 24 h. The quantity 
of Cr(III) consumed was calculated using the molar absorptivity of Cr(VI) at the 
utilized pH. 

The oxidation of [CrIII(NTA)(Ala)(H2O)]-complex by periodate was carried 
out in the pH range 3.40 - 4.45, 0.2 M ionic strength, 4IO−    range (0.5 - 5.0) × 
10−2 M and with temperature range 15˚C - 35˚C (±0.1˚C). The stoichiometry of 
the reaction can be represented by Equation (1): 

( ) ( ) ( ) ( )2Cr III 3I VII 2Cr VI 3I V+ → +                 (1) 

where Cr(III) and I(VII) represent total chromium(III)-complex and periodate, 
respectively. The concentration ratio of 4IO−  initially present to Cr(VI)  
 

 
Figure 1. Absorbance spectra of reaction mixtures at interval times; 
[complex] = 2.5 × 10−4 mol·dm−3, 4IO−    = 0.02 mol·dm−3, I = 0.2 

mol·dm−3, pH = 4.05 and T = 30˚C. Curve (…………) spectrum of 
the complex (2.5 × 10−4 mol·dm−3) at the same pH. 
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produced was found to be 3:2. The stoichiometry is also consistent with the ob-
servation that 3IO−  does not oxidize the Cr(III)-complex over the studied pH 
range. Table 1 shows pseudo-first order rate constants, kobs. Data obtained exhi-
bits that kobs does not have any effect, when we change the concentration of 
[CrIII(NTA)(Ala)(H2O)]− complex with constant 4IO−  concentration of 2.0 × 
10−2 mol·dm−3, pH = 4.05, ionic strength 0.20 mol·dm−3, temperature 25˚C and at 
different concentrations of complex over the range (1.25 - 6.25) × 10−4 mol·dm−3, 
confirming that this reaction is first order and related to the concentration of 
Cr(III) complex, [CrIII(NTA)(Ala)(H2O)]−. This behavior is represented by Equ-
ation (2). 

( )( )( )III
obs 2Rate Cr NTA Ala H Ok

−
 =                   (2) 

The effect of periodate on the rate of the reaction of CrIII(NTA)(Ala)(H2O)]− 

was studied over the temperature range (15˚C - 35˚C). The variation of rate 
constant, kobs, with different concentrations of 4IO−    at different temperatures 
are summarized in Table 1. Plotting kobs against 4IO−   , was found to be linear 
without intercept as shown in Figure 2. The dependence of kobs on 4IO−    is 
thus described by Equation (3): 

obs 1 4IOk k − =                             (3) 

The dependence of the reaction rate on pH was investigated over the 3.40 - 4.45 
pH range at constant 4IO−    = 2.0 × 10−2 mol·dm−3, [CrIII(NTA)(Ala)(H2O)]− = 
2.5 × 10−4 mol·dm−3, I = 0.20 mol·dm−3 and T = 25˚C. The kinetic data are 
graphically represented in Figure 3. Variation of the kobs with pH is summarized 
in (Table 2), which indicates that the reaction rate increases with increasing pH 
values. Plot of kobs against 4IO−    at different pH values are given in Figure 3. 
From Figure 3, it was found that, the slopes are dependent on pH (Table 3). 
Plot of these slopes (k1) versus 1/H+ are linear with slope (k3) and an intercept 
(k2) according to Equation (4). 

1 2 3 Hk k k + = +                           (4) 

 
Table 1. Dependence of kobs on 4IO−    at pH = 4.05, [CrIII(NTA)(Ala)(H2O)]−a = 2.5 × 

10−4 mol·dm−3, and I = 0.2 mol·dm−3 at different temperatures. 

2
410 IO−    (mol·dm−3) 104 kobs (s−1) 15˚C 20˚C 25˚C 30˚C 35˚C 

0.5 0.500 0.88 1.20 1.51 2.31 

1.0 1.25 1.95 2.96 3.48 6.23 

1.5 2.51 3.25 4.15 4.81 8.50 

2.0 2.98 4.5 5.65 6.33 12.00 

3.0 4.46 6.68 8.31 10.15 13.50 

4.0 - 8.80 9.86 12.25 - 

5.0 7.25 10.20 12.75 - 20.05 
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Table 2. Effect of pH on kobs at [CrIII(NTA)(Ala)(H2O)]− = 2.5 × 10−4 mol·dm−3, I = 0.2 
mol·dm−3, and T = 25˚C. 

2
410 IO−    

(mol·dm−3) 

104kobs (s−1) 
pH = 3.40 

pH = 3.72 pH = 4.05 pH = 4.27 pH = 4.45 

0.5 0.66 0.83 1.20 1.66 3.60 

1.0 0.88 1.51 2.96 5.51 - 

1.5 1.20 2.28 4.14 6.4 8.45 

2.0 1.58 2.66 5.65 10.51 12.16 

3.0 2.95 4.01 8.31 15.5 19.01 

4.0 4.16 5.66 9.86 19.03 22.56 

5.0 5.00 7.58 12.75 23.68 31.20 

 
Table 3. Values of (k1) at different temperatures. 

T (˚C) 103/T (K−1) 102k1 (mol−1·dm3·s−1) −lnk1/T (mol−1·dm3·s−1·K−1) 

15 3.47 1.42 9.92 

20 3.41 2.13 9.53 

25 3.35 2.64 9.33 

30 3.30 3.21 9.15 

35 3.25 4.05 8.93 

 

 

Figure 2. Plot of kobs versus 4IO−    at different temperatures. 
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Figure 3. Plot of kobs versus 4IO−    at different pH. 

 
The values of k2 and k3 were obtained from the intercept and slope as 4.28 × 

10−3 mol−1·dm3·s−1 and 2.09 × 10−6 s−1 respectively at T = 25˚C. 
From Equations (2), (3) and (4), the rate law for the oxidation of 

[CrIII(NTA)(Ala)(H2O)]− by periodate is given by Equation (5): 

( )( )( ) ( )VI III
4 2 2 3d Cr d IO Cr NTA Ala H O Ht k k

−− +       = +              (5) 

and 

( )obs 2 3 4H IOk k k + −   = +                         (6) 

Table 3 shows the values of k1 which obtained from the slopes of Figure 2 at 
different temperatures. From these results, thermodynamic activation parame-
ters ∆H* and ∆S* associated with constant (k1) in Equation (3) were calculated 
using Eyring approximation. ∆H* and ∆S* are equal to 35.75 kJ·mol−1 and 
−155.3 J·K−1·mol−1 respectively. According to the data reported, The effect of hy-
drogen ion concentration was investigated over the pH range 3.40 - 4.45, we no-
ticed that in acidic aqueous medium the chromium(III) complex may be in-
volved in the equilibrium shown in Equation (7). 

( )( )( ) ( )( )( )
2III III

2 1Cr NTA Ala H O Cr NTA Ala OH H K
− − +    +   

  (7) 

The value of K1 can be determined potentiometrically and has the value 1.70 × 
10−5 at 25˚C. From the pH range and K1 value, it may be suggested that the in-
volvement of the deprotonated form of the chromium(III)-complex in the 
rate-determining step. There are possibilities for the coordination of 4IO−  due 
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to the following reasons. Firstly, the H2O ligand in [CrIII(NTA)(Ala)(H2O)]− may 
be labile and hence substitution by 4IO−  is likely [29] [30] [31]. Secondly, peri-
odate ion is capable of acting as a ligand, as evidenced from its coordination to 
copper(III) [32] and nickel(IV) [33]. Also there is a direct relationship between 
the reaction rate and ionic strength, where the values of 104kobs obtained at I = 
0.30, 0.40, 0.50 and 0.60 mol·dm−3, pH = 4.05, 4IO−    = 0.02 mol·dm−3 and T = 
25˚C are 5.83, 6.05, 6.27 and 6.57, respectively which is attributed to the reaction 
between similar charged species. It may be concluded that from the reported 
equilibrium constants of aqueous periodate solutions over the pH range used 
that, the periodate species likely to be present are 4IO− , 4 6H IO−  and 2

3 6H IO −  
[34], according to the equilibria, Equations (8)-(10):  

( )3 3 1
5 6 4 6 2H IO H IO H 1.98 10 dm molK− + − −+ = × ⋅           (8) 

( )4 6 2 4 3H IO 2H O IO 0.025K− −+ =                 (9) 

( )2 6 3 1
4 6 3 6 4H IO H IO H 5.0 10 dm molK− − + −+ = × ⋅          (10) 

From K4 value, 2
3 6H IO −  is not the predominant species ( 4IO−  will be used to 

represent 4 6H IO− ). 
The mechanistic pathway for the oxidation of nitrilotriacetatetrisodium salt 

chromium(III) complex by periodate over the studied pH range may be 
represented by Equations (11)-(23): 

( )( )( ) ( )( )( )
2III III

2 1Cr NTA Ala H O Cr NTA Ala OH H K
− − +    +   

  (11) 

( )( )( )

( )( )( )

III
2 4

2III
3 2 5

Cr NTA Ala H O IO

Cr NTA Ala OIO H O K

− −

−

   +   

  + 

            (12) 

( )( )( )

( )( )( )( ) ( )

2III
4

3III
3 6

Cr NTA Ala OH IO

Cr NTA Ala OH OIO K

− −

−

   +   

  

            (13) 

( )( )( ) 4
2III

3Cr NTA Ala OIO Productsk−
  →              (14) 

( )( )( )( ) 5
3III

3Cr NTA Ala OIO OH Productsk−
  →            (15) 

From the above mechanism, the rate of the reaction is given by: 

( )( )( )

( )( )( )( )

2VI III
4 3

3III
5 3

d Cr d Cr NTA Ala OIO

Cr NTA Ala OH OIO

t k

k

−

−

   =   

 +  

         (16) 

Since  

( )( )( ) ( )( )( )
2III III

3 5 2 4Cr NTA Ala OIO Cr NTA Ala H O IOK
− − −     =         (17) 

and 

( )( )( )( ) ( )( )( )
3 2III III

3 6 4Cr NTA Ala OH OIO Cr NTA Ala OH IOK
− − −     =       (18) 

Substitution in Equations (17) and (18) in Equation (16) leads to: 
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( )( )( )

( )( )( )

VI III
2 4 2 4

2III
5 6 4

d Cr d Cr NTA Ala H O IO

Cr NTA Ala OH IO

t K k

k K

− −

− −

     =     

   +    

         (19) 

Since  

( )( )( ) ( )( )( )
2III III

1 2Cr NTA Ala OH Cr NTA Ala H O HK
− − +     =          (20) 

Substitution Equation (20) in Equation (19) we obtained: 

( )( )( )

( ) ( )( )( )

VI III
5 4 2 4

III
5 6 1 2 4

d Cr d Cr NTA Ala H O IO

H Cr NTA Ala H O IO

t K k

k K K

− −

−+ −

     =     

     +      

    (21) 

On rearrangement: 

( ) ( )( )( )VI III
4 5 5 6 1 2 4d Cr d H Cr NTA Ala H O IOt k K k K K

−+ −       = +          (22) 

Hence, 

( ){ }obs 4 4 5 5 1 6IO Hk k K k K K− +   = +                    (23) 

From a comparison of Equations (6) and (23) one obtains k2 = k4K5 and k3 = 
k5K1K6. Equation (23) contains two terms, first term represents path indepen-
dent of [H+] and the second term represents path dependent on [H+]. In com-
parison with the oxidation of [Cr(NTA)(H2O)2] [23] under the same conditions, 
the deprotonated complexes are significantly found to be more reactive than 
their conjugate acids. The rate of oxidation of this [Cr(NTA)(H2O)2] is more 
than [CrIII(NTA)(Ala)(H2O)]− This means that the stability of the ternary com-
plex, [CrIII(NTA)(Ala)(H2O)]−, is more than the binary one, [Cr(NTA)(H2O)2], 
toward oxidation. This may be due to the presence of the amino acid as a sec-
ondary ligand in the ternary complex, increase the stability of chromium(III) 
towards oxidation than binary complex, [CrIII(NTA)(H2O)2]. 

The small ΔH* values and large negative activation entropies reasonably could 
reflect some nonadibatically in the electron transfer process [35]. Both ΔH* and 
ΔS* then may be expected to systematically increases as the orientation of the 
oxidant in the precursor complex is alter so as to enhance overlap between do-
nor and acceptor redox orbitals and consequently the probability of adiabatic 
electron transfer [35]. The relatively low value of ΔH* for 
[CrIII(NTA)(Ala)(H2O)]− is due to its composite value including formation 
which may be exothermic and intramolecular electron transfer which may be 
endothermic.  

Enthalpies and entropies of activation for the oxidation of chromium(III) 
complexes by periodate are collected in Table 4. ΔH* and ΔS* for the oxidation 
of these complexes were calculated related to intramolecular electron transfer 
steps except for [CrIII(HIDA)2(H2O)], and [CrIII(NTA)(Hist)(H2O)]−, ΔH* and 
ΔS* are composite values including the enthalpy of formation of the precursor 
complexes and the intramolecular electron transfer steps. A plot of ΔH* versus 
ΔS* for these complexes is shown in Figure 4, and an excellent linear relationship  
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Table 4. Enthalpies and entropies of activation for the oxidation of chromium(III) com-
plexes by periodate. 

Complex 
103ket 
(s−1) 

ΔH* 
(KJ/mol) 

−ΔS* 
(J/Kmol) 

Ref. 
Figure 4 

key 

[CrIII(TOH)(H2O)] 2.95 76 38.7 29 1 

[CrIII(NTA)(Asp)(H2O)]− 3.93 64.6 76 13 2 

[CrIII(Ud)(Asp)(H2O)3]2+ 0.70 59.5 106.8 16 3 

[CrIII(NTA)(Hist)(H2O)]− 32.00 36.5 148 13 4 

[CrIII(NTA)(Ala)(H2O)]− 26.40 35.75 155.3 
This 
work 

5 

[CrIII(Arg)2(H2O)2]+ 3.46 30 192 13 6 

[CrIII(NTA)(H2O)2] 62.00 14 220 23 7 

[CrIII(HIDA)2(H2O)] 10.90 12.3 240.7 25 8 

 

 
Figure 4. Enthalpies and entropies of activation of some chromium(III) complexes. 
 
was obtained. Similar linear plots were found for a large number of redox reac-
tions [36] [37] and for each reaction series a common rate-determining step is 
proposed. The isokinetic relation lends support a common mechanism for the 
oxidation of chromium(III) complexes, reported here, by periodate. 

This consists of a periodate ion coordination to the chromium(III) complexes 
in step preceding the rate-determining intramolecular electron transfer within 
the precursor complex. Isokinetic compensation between ΔH* and ΔS* in a series 
of related reactions usually implies that one interaction between the reactants 
varies within the series, the remainder of the mechanism being invariant [32]. 
The electron transfer reactivities of these complexes with periodate are compa-
rable, as the coordination of periodate with these complexes are identical. All of 
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this suggests that the excellent correlation often observed between ΔS* and ΔH* 
mainly reflects the fact that both thermodynamic parameters are in reality two 
measures of the same thing, and that measuring a compensation temperature is 
just a rather indirect way of measuring the average temperature at which the ex-
periments were carried out. As this temperature will often be in a range that the 
experimenter expects to have some biological significance, it is not surprising if 
the compensation temperature turns out to have a biologically suggestive value 
[38] [39] [40]. 

4. Conclusion 

Oxidation of [CrIII(NTA)(Ala)(H2O)]− by periodate proceeds via an inner-sphere 
mechanism. Rate of oxidation increases with increasing pH. These reactions 
proceed through two-electron transfer process leading to the formation of 
chromium(VI). A common mechanism for the oxidation of ternary chro-
mium(III) complex by periodate is proposed, and is supported by the excellent 
isokinetic relationship between ΔH* and ΔS* values for these reactions. 
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