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Abstract 
This study used the ability of remote sensing technology to identify alteration 
zones in porphyry copper mining and Iron oxides of area in south Nain dis-
trict in Iran by using Lands at-8 data source. The band ratio of 3/2 derived 
from image spectra was used to indicate the distribution of iron oxides and 
6/3 for identifying gossan. Hydrothermal alteration mineral zones associated 
with porphyry copper mineralization identified and discriminated based on 
two algorithms of target detection, MTTCIMF and OSP. Those techniques 
identified porphyry copper mineralization in study area and six points were 
diagnosed as the best location for ore exploration. For more accurate study 
and recognition between mineralization and tectonic structure of district, the 
lineament map of area was produced by applying Gaussian high-pass filter on 
IRS data. The Spatial distribution of hydrothermal alteration zones has been 
verified by inspection in field works and Fuzzy logic. Results showed that im-
age processing techniques have a great ability to obtain comprehensive infor-
mation for reconnaissance stage of porphyry copper exploration in the case 
study and assist researcher to explore porphyry copper and iron oxides re-
gions before time-consuming and costly ground investigation.  
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1. Introduction 

Satellite Remote sensing is a useful tool for mapping lithology and surface mi-
neralogy and exploring ore deposits [1] [2] [3] [4]. Multispectral remote sensing 
datasets which capture data in wide ranges of electromagnetic spectrum help re-
searcher to identify minerals. Each mineral has specific chemical composition 
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and crystal structure with specific absorption and reflection range in electro-
magnetic spectrum. Hydrothermal fluids processes that alter the mineralogy and 
chemical composition of rock generate porphyry ore deposits. Early studies of 
alteration mineral assemblages emphasized zonal arrangements of mineralogy 
around several porphyry copper deposits. Each zone depending on different 
minerals assemblages has diagnostic spectral absorption features in visible, NIR 
and SWIR regions of Lands at-8 data [5] [6] [7]. Series of recognized alteration 
zones are: Potassic, Argillic, Phyllic and propylitic. A core of quartz and other 
forms of silica (chalcedony, opal, amorphous silica) with potassium-bearing 
minerals are surrounded by multiple zones. Other zones contain clay such as il-
lite, sericite, smectite, chlorite and other hydroxyl minerals with diagnostic 
spectral absorption properties in the Visible, SWIR, NIR spectrum. The first clue 
for exploring ore deposits is studying the behavior of minerals assemblages of 
each alteration zone in. The second clue is Supergene alteration processes over 
porphyry copper bodies produce rust-colored and oxide and hydroxide minerals 
of iron and manganese which are termed Gossan [1] [8]. Gossan forms by the 
oxidation of the sulfide minerals in an ore deposit and they thus may be used as 
clues to the existence of subsurface ore deposit. The spectroscopy of minerals 
assemblage of each altered zone indicate that muscovite (sericite) show an in-
tense Al-OH absorption feature centered at 2.20 µm and a less intense absorp-
tion feature at 2.35 µm that characterized as phyllic zone. The argillic zone is 
characterized by Kaolinite and alunite that have absorption features situated in 
the 2.165 µm and 2.2 µm. The propylitic zone including epidote, chlorite and 
calcite have absorption features at Fe, Mg-OH and CO3 in the 2.31 µm 2.33 µm 
Figure 1(a) shows the spectral library of minerals [2] [5] [9]-[15]. Iron oxide 
and hydroxide minerals such as limonite, jarosite and hematite tend to have  
 

 
(a)                                       (b) 

Figure 1. (a) Laboratory spectra of epidote, calcite, muscovite, kaolinite, chlorite and alu-
nite; (b) laboratory spectra of limonite, jarosite, hematite and goethite (Clark et al., 1993). 
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spectral absorption features in the visible to middle infrared from 0.4 to 1.1 µm 
of the electromagnetic spectrum shows in Figure 1(b). The purpose of this pa-
per is to utilize Lands at-8 data for mapping hydrothermal alteration mineral 
zones associated with porphyry copper mineralization and detect gossan and 
Iron oxides. 

2. Materials and Methods 
2.1. Geological Setting 

Iran is a semi-arid country. It has been divided into several units depends on a 
relatively unique record of stratigraphy, magmatic activities, metamorphism 
orogenic event, tectonics and overall geological style [17]. The ore deposit of 
Iran were developed in the middle part of Tethyan orogenic and metallogenic 
belt. The study of area is located in the west of central Iran unit on Uru-
miyeh-Dokhtar Volcanic belt (U-DVB). This belt is the largest volcanic belt in 
central Iran. The belt by NW-SE trending is the most important volca-
no-plutonic complex with economic potential for copper mineralization. Sub-
duction of the Arabian plate beneath central Iran during Alpine-Himalayan 
orogenic formed Urumiyeh-Dokhtar volcanic belt. This study focuss on south of 
Naein city at (55˚45'E - 55˚ 45'E and 32˚15'N - 32˚25'N) Figure 2 shows the lo-
cation of area. Rock units of area consist of three parts: 1) Paleozoic sedimentary 
rocks consist of dolomite and carbonate rocks. 2) Igneous rocks and volcan-
ic-sedimentary rocks belong to cretaceous and clastic rocks and volcanic rocks 
belong to Oligocene. 3) Ophiolite complex inclusion serpentinite, peridotite, 
with harzburgite, diabase dike with low and medium grade metamorphism, ro-
dingite dike, listvenite rocks and radiolarian cherts belongs to upper cretaceous 
Figure 3 [16]. 
 

 
Figure 2. Location of Naein and Urumiyhe-dokhtar volcanic belt in Iran. 
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Figure 3. Geology map of study, Naein (GSI, 2004). 

 
Two main faults, Dehsheer-Baft from East and Qum-Zefreh from west have 

confined the district. The function of them produced transvers faults in area. 
Qum-Zefreh fault system reflects a dextral strike—slip displacement that have 
had an important role in generating igneous rocks in area. Deh-sheer fault is lat-
eral strike-slip and colored melange complex can be seen in length of it in Naein 
area... Being ensnared between two faults allows lava to stay and alter the sur-
rounding rocks. The result of this operation is alteration of dacite rocks which 
have lost their chemical structure and have changed to chlorite and Sericite. 
During this process minerals such as magnetite, Chalcopyrite, Chalcocite, Bor-
nite were formed (GIS, 2004). The altered rocks in this area confirm the pres-
ence of porphyry copper deposit.  

2.2. Remote Sensing Data  
2.2.1. Lands at 8 (OLI) 
Lands at 8 is a North American Earth observation satellite launched on February 
11, 2013. Lands at8 data can be downloaded at (http://earthexplorer.usgs.gov) 
and has been used in wide range of studies [18] [19] [20]. 
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Lands at 8 carries two instruments: The Operational Land Imager (OLI)1 sen-
sor and Thermal Infrared Sensor (TIRS)2 This satellite image has 11 bands: 5 in 
the visible and Near-infrared (VNIR), 2 in the thermal infrared (TIR) region of 
the electromagnetic spectrum, 2 in the SWIR region, new band (ultrablue) for 
coastal and aerosol studies and another new band for cirrus cloud detection and 
1 panchromatic channel (band 8). Spatial resolution is 15 meters for the pan-
chromatic band, 30 meters for VNIR and SWIR bands and 100 meters for the 
TIR bands. The images which has been used in this study was downloaded from 
US Geological Survey (USGS) website on July 25, 2013 consisted of cloud free 
level 1 Terrain corrected (L1T) scene of the study area in central Iran. The level 
1T data product provides systematic radiometric accuracy, geometric accuracy 
by incorporating ground control points, while also employing a digital elevation 
model DEM for topographic accuracy  
(https://landsat.usgs.gov/landsat-8-l8-data-users-handbook-section-4). 

The images were pre-georeferenced to UTM zone 39 North projection with 
using the WGS-84datum. In addition Lands at8 L1T data converted to reflec-
tance using the Internal Average Relative Reflection IAAR method. This dialog 
is used to convert raw DN values to relative reflectance and that is more useful 
for mineralogical mapping for this study. This algorithm is recommended for 
mineralogical mapping as a preferred calibration technique, which it dose not 
necessitate to have the prior knowledge of samples that collected from the field. 
This is particularly effective for reducing hyperspectral data to relative reflec-
tance in an area where no ground measurements exist and little is known about 
the scene. For this case study just bands of OLI sensor consist of 2, 3, 4 in visible 
region, 5 in near infrared and 6, 7 that are posited in SWIR region, were processed 
and analyzed by ENVI (Environment For Visualizing Image) version 5.1. 

2.2.2. IRS Data 
The Indian remote sensing satellite (IRS)3 was launched on December 17, 1988. 
In this study IRS satellite data obtained from geological survey of Iran on may20, 
2015. In this case study just panchromatic band of IRS data were utilized because 
of its high spatial resolution. The image converted to universal Transverse Mer-
cator zone 39 N from the WGS-84 datum. Figure 4 shows the Flow chart of re-
search methodology in this study. 

2.3. Band Ratio  

Band ratio Images improve the contrast between features by dividing Digital 
number value of one band to the Digital number value of another band. Band 
ratios are very useful for highlighting certain feature or minerals that cannot be 
seen in the raw bands [21]. Band ratio transformation is useful for qualitative 
detection of hydrothermal alteration minerals, lithological units and lineaments 
of area [1] [22] [23] [24]. 

 

 

1Operational Land Imager. 
2Thermal InfraRed Sensor. 
3Indian Remote Sensing.  
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Figure 4. Flow chart of area. 

2.4. Target Detection 

This study describes the utility of Lands at-8 OLI data for sub-pixel mineral in-
vestigation using target detection algorithms for identification hydrothermal al-
teration zones. Satellites acquire images of earth surface in many electromagnet-
ic spectrums in such a way that a complete spectral pattern of each pixel can be 
derived for target detection, discrimination and classification. Most of the sur-
face minerals show diagnostic spectral signature in VNIR and SWIR of electro-
magnetic spectrum which enables their detection base on characteristics spectral 
signature. Minerals detected according to the similarity of the Image pixel with 
the reference spectra based on the threshold value derived from standard spec-
trum database [9] [11] [25]. In previous studies application of algorithms such as 
Matched Filtering (MF) and MTMF4 for sub-pixel target detection were investi-
gated [26] [27] [28]. However, still these algorithms are not effective in mini-
mizing the effect of interferences on the spectral mapping. In this study 
MTTCIMF5 algorithm developed by Jin et al., 2009 and OSP algorithm were im-
plemented for sub-pixel mineral investigation to detect target minerals correctly. 

1) OSP 
Orthogonal Subspace Projection (OSP)6 first designs to eliminate the response 

of non-targets, then applies matched filter (MF) to match the desired target from 
the data. The matched filter is the optimal linear filter for maximizing the signal 
to noise ratio (SNR) in the presence of additive stochastic noise [29]. OSP idea is 
based on two aspects: 1) how to best utilize the target knowledge provided a pri-
ori and 2) how to effectively make use of available contiguous spectral bands 
[30]. OSP is efficient and effective when target signatures are distinct. When the 
spectral angle between the target signature and the non-target signature is small, 
the attenuation of the target signal is dramatic and the performance of OSP 

 

 

4Mixture Tuned Matched Filtering.  
5Mixture Tuned Target-Constrained Interference-Minimized Filter.  
6Orthogonal Subspace Projection.  
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could be poor. This method is only available if you provided more than one tar-
get spectra [31]. 

2) MTTCIMF  
MTTCIMF developed by [32] which was implemented on processed Hyperion 

data for subpixel mineral investigation. The algorithm combines MTMF and 
TCIMF7 target detectors which offers opportunity to provide target as well as 
non-target information for improved sub-pixel target detection [33]. MTMF 
uses MNF transformed bands to perform MF and it add an infeasibility Image to 
reduce the number of false positives. TCIMF is constrained to eliminate the re-
sponse of non-targets and minimization of interfering effects to improve the ef-
ficiency of spectral mapping [34]. 

2.5. Filtering 

Lineaments are natural and man-made geomorphic features that have a surface 
expression, which could be fault, fracture, dykes, geological sharp boundaries or 
artificial road and canals Gaussian high-pass filter used to enhance the linea-
ments from IRS satellite image. The experience has shown that the best inter-
pretation is achieved with the use of the panchromatic band, which has high 
spatial resolution (5 m) that will increase the accuracy and precision of detecting 
lineaments. In order to obtain a better image for interpretation, processing with 
Gaussian high-pass filtering technique take place. The function of this technique 
is to enhance the high frequency components. The linear and edge in the origi-
nal image become more obvious and sharper in the filtered image. The aim of 
detecting lineaments in this research is to clear relationship between lineament 
and mineralization in the case study. Lineaments have important role in initial 
mineral exploration. Mineralization is associated with Lineaments, vein and 
shear zone systems when those are active. The aim of detecting lineaments of 
this study is to clear relationship between lineaments of study area with por-
phyry copper mineralization that will be find through image processing. The re-
lationship between lineaments, structure, and mineralization was emphasized by 
[35]. Figure 5 shows lineaments of area. 

3. Results and Discussion 

Lands at-8 consisted of 11 bands. The first spectral band of (0.433 - 0.453 µm) is 
a deep-blue band designed for studies of coastal water and aerosols and cannot 
be used to detect geological features. So it was therefore excluded from research. 
Band 2 is positioned in the blue (0.450 - 0.515 µm), band 3 in the green (0.525 - 
0.600 µm) and band 4 in the red (0.630 - 0.680 µm). Band 5 is located in (0.845 - 
0.88 µm) near-infrared region of electromagnetic spectrum. Short wave infrared 
(band 6: 1.560 - 1.660 µm, band 7: 2.100 - 2.300 µm) is used for imaging soil 
types, geological features and minerals such as copper and sulfates. Panchro-
matic, cirrus cloud (band 9) and TIR bands (band 10: 10.6 - 11.1 µm, band 11:  

 

 

7Target-Constrained interference-minimized filter. 
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Figure 5. Lineaments of area detected by performing High Gaussian filter on 
panchromatic band of IRS data. 

 
11.5 - 12.5 µm) were not used in this study. Several color combination of Lands 
at-8 were created. Vegetation shows absorption at 0.45-0.68 µm and high reflec-
tance in the near infrared from 0.7 to 1.2 µm and hence become more clear in 
color composite that contain near infrared region that is positioned in band 5 of 
Lands at-8. Figure 6 shows the RGB color combination (532) image. The vege-
tated areas appear in light-red. Textural features of different rocks of area are 
diagnosed clearly. The vegetated areas were very rare. Iron minerals and vegeta-
tion have similar reflectance. Iron oxide minerals have spectral absorption fea-
tures in the visible to middle infrared from 0.4 to 1.1 µm of the electromagnetic 
spectrum. Vegetation shows absorption features from 0.45 to 0.68, µm and high 
reflectance in near infrared. Iron oxide minerals have high reflectance in the 
range of 0.63 - 0.6 µm, while the range of 0.76 - 0.90 µm covers higher range of 
the vegetation red edge reflectance feature in near infrared. One of the gole of 
this study is to detect pixels that contain iron oxide. Hence for more accuracy in 
assessment iron oxide pixels from vegetation pixels, the normalized difference 
vegetation index (NDVI)8 was applied to determine vegetated areas and their 
condition and then were already eliminated through masking operation. NDVI  

 

 

8Normalized difference vegetation index.  
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Figure 6. RGB color combination image of bans 5, 3 and 2. 
 
is a numerical indicator that use the visible and near-infrared bands of the elec-
tromagnetic spectrum defined as (NIR − red)/(NIR + red), where NIR stand for 
the spectral reflectance measurement in near infrared, corresponds to Lands at-8 
band 5, and red corresponds to Lands at-8 band 4. 

Hydrothermally altered rocks are identified by iron oxide, clay, carbonate, and 
sulfate minerals, that have diagnostic absorption signatures. Electronic processes 
produce absorption features in the visible and near infrared radiation (0.4 to 1.1 
μm) due to the presence of transition elements such as Fe2+, Fe3+ and often 
changed by Mn, Cr, and Ni in the crystal structure of the minerals. Supergne al-
teration processes, interaction with air and surface water, over porphyry copper 
bodies generate Fe-rich crust with abroad iron oxide/hydroxide minerals (yello-
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wish to reddish color altered rocks), that are collectively termed gossan [5] [9]. 
Two band ratios were designated on the basis of the laboratory spectra of altera-
tion minerals for mapping iron oxide and gossan. Iron oxide minerals have total 
reflectivity from 0.5 - 0.6 microns and high absorption between 0.45 and 0.52 
µm which were mapped with band ratio of 3/2. Related to previous study gossan 
was detected by using 4/2 band ratio of aster data which the equivalent of it for 
Lands at 8/oli is 6/3 and used for mapping gossan of area Figure 7 shows the 
result of band ratio for mapping iron oxide and gossan. 

MTTCIMF and OSP algorithm detect Argillic, Phyllic, Propylitic alteration 
based on key minerals spectrum. Two algorithms were performed to identify al-
teration zone by considering the reference spectral acquired from standard spec-
trum data base of USGS. The output of MTTCIMF is set of images that give 
TCIMF and infeasibility scores with target images of each minerals and the out-
put of OSP algorithm is target images and OSP images of selected minerals for 
each alteration. In this research alteration mineral assemblages are demonstrated 
with different colors, narrow argillic areas as blue color for kaolinite and yellow 
color as alunite, broad phyllic as green color for muscovite. propylitic zone as 
cyne color for epidote, red color for chlorite and pink color for calcite that has 
the most expanse in this area. Figure 8 shows alteration detected by MTTCIMF 
algorithm and Figure 9 Shows alteration detected by OSP algorithm. Results 
show that porpylitic alteration has the most expanse than other alteration. Argil-
lic and phyllic alteration manifested just by a few pixels. Both OSP and MTTCIMF 
algorithm identified alteration but in MTTCIMF image it is more clear. 
 

 
Figure 7. Band ratio of 3/2 for Iron oxide and 6/3 for Gossan of area. 
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Figure 8. Alteration detected by MTTCIMF technique. 
 

 
Figure 9. Alteration detected by OSP technique. 

Comparison with Ground Truth and Fuzzy Model  

The results of all image processing of band ratio and target detection were pe-
rused and six points were selected as the best location for investigation porphyry 
copper deposit. Figure 10 shows 6 points that were selected. In each point all the 
alteration were appeared. The validity of the results has been verified through  
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Figure 10. Locations of six points as the best places for investigation. 

 
comparison between image processing results and fieldwork. The latitude and 
longitude of six points were obtained and the equivalent of them on the ground 
by GPS survey were found. Rock sampling have been done to obtain compre-
hensive information of the study area. Figure 11 shows the fieldwork result. 

The relationship between lineaments of area and mineralization was evaluated 
by fuzzy logical model. This method is a partly knowledge-driven and partly da-
ta-driven approach [36]. Fuzzy logic can be used with data from any measure-
ment scale and the weighting of evidences. Each of points matched with field-
work in terms of alteration base on image processing weighted and classified. 
Point 3 has the most alteration and economic potential for copper investigation. 
Lineaments of area in terms of distance of six points were selected as the best 
points for porphyry copper mineralization classified and weighted. Table 1 
shows classification. Fuzzy logic model implemented on data in Arc GIS soft-
ware. Result of fuzzy logic in Figure 12 shows that places with dark blue have 
the most alteration and mineralization while white places have no alteration with 
zero possibility for mineralization. 

https://doi.org/10.4236/ojg.2018.86035


A. Mahan, R. Arfania 
 

 

DOI: 10.4236/ojg.2018.86035 618 Open Journal of Geology 
 

 
Figure 11. Field photographs of the study area. 

 

 
Figure 12. Result of fuzzy model base on relationship of lineaments and alteration. 

 
Table 1. Weighting table modified for fuzzy logic model. 

Distance of lineaments Weighting Selected mineralization points 

0 - 100 3 6 

100 - 200 5 5 

200 - 300 2 4 

300 - 400 6 3 

400 - 500 4 2 

500 - 600 11 6 
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4. Conclusion 

This study is the first use of remote sensing techniques in exploring minerals in 
this area. In this research applicability of Lands at-8OLI data for obtaining in-
formation on hydrothermal alteration associated with porphyry copper deposits 
iron oxide and gossan evaluated. Band ratio and target detection carried out for 
detailed hydrothermal alteration mapping, resulting in the identification of cop-
per mineralization. Analysis of Lands at8 OLI level 1 T data performed after ap-
plying atmospheric correction using Internal Average Relative Reflection (IARR) 
method .Results of band ratio indicated the iron oxide and gossan of area can be 
utilized as a useful tool for mapping porphyry copper deposits. The result of 
MTTCIMF and OSP showed their capability in distinguishing of the argillic and 
phyllic and propylitic mineral assemblages based on their spectral properties. 
Lineaments of area were detected base on High Gussion filtering to make clear 
the relationship of them with mineralization of area. Results are proven to be ef-
fective with results of field work and Fuzzy logic. The results were validated us-
ing fuzzy logic and comparison between the image-based results and field sur-
veying. To do this, we randomly selected six points over the study area for the 
field surveying process. In all six points we observed the correlation between 
Iron and Goassan and the existing faults of the area. This investigation shows 
that the integration of the image processing techniques and Lands at8 data have 
great ability to assist economic geologist for initial stages of mineral exploration, 
and can be extrapolated to intact area for exploring high potential copper mine-
ralization zones. 
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