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Abstract 

Individual tree detection (ITD) and the area-based approach (ABA) are com-
bined to generate tree-lists using airborne LiDAR data. ITD based on the 
Canopy Height Model (CHM) was applied for overstory trees, while ABA 
based on nearest neighbor (NN) imputation was applied for understory trees. 
Our approach is intended to compensate for the weakness of LiDAR data and 
ITD in estimating understory trees, keeping the strength of ITD in estimating 
overstory trees in tree-level. We investigated the effects of three parameters 
on the performance of our proposed approach: smoothing of CHM, resolu-
tion of CHM, and height cutoff (a specific height that classifies trees into 
overstory and understory). There was no single combination of those para-
meters that produced the best performance for estimating stems per ha, mean 
tree height, basal area, diameter distribution and height distribution. The 
trees in the lowest LiDAR height class yielded the largest relative bias and rel-
ative root mean squared error. Although ITD and ABA showed limited ex-
planatory powers to estimate stems per hectare and basal area, there could be 
improvements from methods such as using LiDAR data with higher density, 
applying better algorithms for ITD and decreasing distortion of the structure 
of LiDAR data. Automating the procedure of finding optimal combinations 
of those parameters is essential to expedite forest management decisions 
across forest landscapes using remote sensing data. 
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1. Introduction 

A tree-list provides detailed data foresters often desire for management and 
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planning such as tree species, diameter at breast height (DBH), tree height (HT), 
basal area (BA) and stem volume. Field cruising has been commonly used to ob-
tain such data. Field cruising is costly, however, and remote sensing data can be 
used as auxiliary information to improve the accuracy and precision of estimates 
in forest inventory. 

Among various remote sensing techniques, airborne light detection and 
ranging (LiDAR) has been increasingly used in forestry applications during the 
last decade. LiDAR has performed well in estimating forest attributes such as 
biomass (Næsset & Gobakken, 2008), diameter distribution (Gobakken & 
Næsset, 2004), volume and BA (Lindberg & Hollaus, 2012). Tree-lists have also 
been estimated by LiDAR (Lindberg, Holmgren, Olofsson, Wallerman, & Ols-
son, 2010, 2013) or aerial photographs (Temesgen, LeMay, Froese, & Marshall, 
2003). 

In general, there are mainly two approaches using LiDAR data in forestry, the 
area-based approach (ABA) and the individual tree detection (ITD) approach 
(Vauhkonen, Maltamo, McRoberts, & Næsset, 2014). ABA assumes that the ver-
tical height distribution of laser point clouds is related to variables of interest in 
an area. A host of summary statistics derived from the point cloud are used to 
predict many forest inventory attributes. Information on the LiDAR point cloud 
is not fully utilized in ABA, i.e., most of the studies have focused on vertical 
height distribution in a sample plot and only a few studies using horizontal in-
formation obtained from the LiDAR point cloud. Pippuri, Kallio, Maltamo, Pel-
tola, and Packalén (2012) found horizontal texture metrics from a canopy height 
model (CHM) could be used to predict the spatial pattern of trees, and horizon-
tal landscape metrics from a CHM used to predict the need for first thinning. 

In contrast, ITD identifies individual trees and provides estimates of forest 
attributes based on the identified individual trees. Although many variations ex-
ist, ITD commonly uses a rasterized CHM to segment individual trees with ho-
rizontal location of treetop and height across the CHM area. Thus, ITD has ap-
parent advantages over ABA regarding utilization of horizontal information in 
LiDAR point clouds and can be more suitable for tree-level forest inventories 
than ABA. However, information on understory vegetation is likely to be missed 
when using ITD (Koch, Kattenborn, Straub, & Vauhkonen, 2014). This is be-
cause rasterizing LiDAR point clouds into CHM means that there is a rounding 
effect of summarizing all the point clouds within a range of cells into one cell 
height value mainly focusing on higher point clouds making it difficult to detect 
or estimate understory vegetation. Additionally, it is well known that LiDAR has 
weaknesses for detecting or estimating understory vegetation regardless of the 
approach used because LiDAR data lack information on understory vegetation 
(lower proportion of point clouds in understory) (Takahashi, Yamamoto, 
Miyachi, Senda, & Tsuzuku, 2006). 

Many approaches have been proposed to overcome the limitations above. 
Maltamo, Eerikäinen, Pitkänen, Hyyppä, and Vehmas (2004) combined a theo-
retical probability distribution function with the tree height distribution esti-
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mated from ITD to detect small and suppressed trees. ITD first estimated the 
height distribution and the number of large trees. For small trees, two ap-
proaches have been used including—the complete Weibull distribution with the 
parameter prediction method and the left-truncated Weibull distribution with 
estimation of parameters from the estimated height distribution by ITD. These 
approaches were tested for the estimation of the height distribution and the 
number of trees. DBHs for large and small trees were then predicted using the 
relationship between DBH and LiDAR metrics. Total timber volume and stem 
density were finally determined by summing the estimates from the two ap-
proaches for large and small trees. Lindberg et al. (2010) proposed a methodol-
ogy to generate a tree-list combining a CHM-based ITD and ABA estimation. To 
better detect trees that are close to each other or small: 1) the number of trees 
per segment was estimated using a training dataset in which the number of 
field-measured trees for each tree crown segment was known, and 2) a candidate 
tree-list from the ITD was calibrated using the target distributions of HT and 
DBH estimated by a k-Nearest Neighbor (NN) approach. The combined ap-
proach improved the estimation of distributions for DBH and HT, and produced 
unbiased estimates of forest attributes. In addition to ITD based on CHM, Lind-
berg et al. (2013) utilized a 3D clustering method to model a tree crown using a 
priori information on the shape and proportions of tree crowns. The 3D clus-
tering method identified more trees below the tallest canopy layer and with a 
DBH < 20 cm than ITD based on CHM. Hamraz, Contreras, and Zhang (2017) 
proposed the use of vertical stratification of point clouds and LiDAR data with 
high point cloud density (50 points/m2), which would have more information on 
understory vegetation than the one with low density, to detect understory trees. 
The proposed approach improved detecting understory trees without affecting 
the overall quality of segmentation for overstory trees. 

Many parameters affect the performance of tree segmentation by ITD; these 
can be classified into two parameters, biological and technical. For the biological 
parameter, Vauhkonen et al. (2012) claimed that the performance of ITD me-
thods depends more on forest structure, stand density, and tree clustering than 
on detection techniques. For example, an estimated tree segment by ITD could 
have no, one, or several trees in it (Breidenbach, Næsset, Lien, Gobakken, & 
Solberg, 2010), and trees in an understory under a dense upper canopy are hard 
to detect with LiDAR (Maltamo et al., 2004). On the other hand, the methods for 
ITD were reported as the primary parameter affecting the performance of ITD 
by Kaartinen et al. (2012). Substantial differences in the percentage of matched 
and missed trees, and commission error were found among the ITD methods. 
Also, the accuracy of determining tree location, tree height, and crown delinea-
tion changed according to the ITD methods. In contrast, pulse density showed 
less impact on ITD. 

A typical ITD method consists of the following two steps: 1) generating a ras-
terized CHM with appropriate smoothing and resolution using normalized Li-
DAR point cloud data, and 2) tree segmentation using a segmentation technique 
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on the rasterized CHM (finding local maxima as treetops and delineating tree 
crowns) (Yu, Hyyppä, Holopainen, & Vastaranta, 2010). Therefore, the perfor-
mance of ITD is affected by the parameters (smoothing and resolution for CHM, 
and the algorithm used for tree segmentation). In addition to these parameters, 
Wiggins (2017) reported that excluding trees below a specific height (minimum 
height cutoff) improved ITD’s accuracy for overstory trees. Maltamo, Tokola, 
and Lehikoinen (2003) noted that a proper value of the truncation parameter of 
Weibull for DBH distribution, which can be considered the same as a height cu-
toff, should be further studied. According to McGaughey (2016) and Wiggins 
(2017), there might be an optimal parameterization that balances the smoothing 
of the CHM, resolution of the CHM, and the height cutoff to best identify indi-
vidual trees, although Koch et al. (2014) and McGaughey (2016) pointed out that 
the optimal parameterization can vary over large forest areas with diverse and 
complicated structure. To offset the variation of the optimal parameters, Koch, 
Heyder, and Weinacker (2006) proposed applying different intensities of 
smoothing according to HT. This method would prevent under- and 
over-representation of local HT maxima. 

Other than ITD, detailed information on forest resources, such as a tree list or 
stand table, has been estimated by several methods that can be mainly classified 
into two categories: 1) diameter distribution modeling, and 2) imputation. In 
diameter distribution modeling, parameters of some theoretical distributions are 
estimated to describe the distribution of tree diameters. Three approaches 
commonly used are the parameter prediction method, parameter recovery me-
thod, and quantile prediction method (Temesgen et al., 2003). Imputation me-
thods directly substitute measured values from sample locations (references) for 
locations for which a prediction is desired (targets). The distance metric used to 
identify suitable references and the number of references used in a single impu-
tation (k) are the key considerations to classify the imputation methods such as 
most similar neighbor, gradient nearest neighbor, or Random Forest NN (RF 
NN hereafter) (Eskelson et al., 2009). Temesgen et al. (2003) used a set of proxy 
variables to represent a tree-list in NN imputations because there is no single va-
riable to represent the tree-list. On the other hand, Strunk et al. (2017) used plot 
identities as a response variable in NN imputations in evaluating NN strategies 
to impute a tree-list. 

In our study, we combined ABA and ITD to estimate tree-list using LiDAR 
data inspired by the ideas from Maltamo et al. (2003), Maltamo et al. (2004) and 
Wiggins (2017). This was for overcoming the weakness of LiDAR data and the 
ITD method in identifying understory trees, and utilizing the strength of ITD 
over ABA. Maltamo et al. (2003) combined pattern recognition of single trees 
with the truncated Weibull distribution to estimate forest characteristics using 
digital video imagery. Trees were grouped into large (DBH > 17 cm) and small 
(DBH ≤ 17 cm) trees. The cutoff DBH value (17 cm) was the minimum size of 
trees that could be detected by the pattern recognition method. The value of 17 
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cm in DBH was used as a truncation parameter of the left-truncated Weibull. 
Pattern recognition was applied to large trees (DBH > 17 cm), and the diameter 
distribution modeling to small trees (DBH ≤ 17 cm), respectively. This idea was 
improved upon by Maltamo et al. (2004), who combined ITD based on CHM for 
large trees and diameter distribution modeling for small trees. HT distribution 
was modeled using LiDAR metrics as auxiliary variables. Wiggins (2017) ex-
amined the effect of height cutoff on the accuracy of LiDAR data for estimating 
forest structure of taller trees and found that a 12 m height cutoff produced bet-
ter results in estimating forest structure and spatial pattern. 

For ITD, we used watershed segmentation (Vincent & Soille, 1991) for overs-
tory trees (trees taller than a height cutoff) and ABA by NN (k = 1) imputation 
for understory trees (trees shorter than the height cutoff). While the perfor-
mances of diameter distribution modeling depended on the results from large 
tree estimation by the single tree pattern recognition in Maltamo et al. (2003) or 
the ITD based on CHM in Maltamo et al. (2004), in this study, we used ITD and 
ABA independently. They were only linked by a height cutoff when generating a 
complete tree-list. Whereas Lindberg et al. (2010) estimated a tree-list for all 
trees by an ITD method and calibrated it, our approach separated a forest 
stand into overstory and understory trees, then applied different methods to 
the overstory and understory trees, respectively. We examined the effects of 
the combination of the three parameters, smoothing of CHM, resolution of 
CHM and the height cutoff, as well as LiDAR height classification of field plots 
on estimating tree-lists via ITD. The explanatory power of our approach was 
also investigated. We evaluated the performance of generating tree-lists in 
terms of BA, mean HT, stems per hectare (SPH), and distributions of DBH 
and HT. 

2. Methods 

2.1. Study Area 

The study area (43.02435˚N, 124.056˚W) is located in southwestern Oregon with 
the extent of 647,951 hectares (Figure 1). The elevation of the area ranges ap-
proximately from 20 m to 1000 m above sea level in elevation. The range of 
slopes in the area is 0˚ to 89.97˚. Douglas-fir (Pseudotsuga menziesii) is the do-
minant tree species in the study area, and other important species are western 
hemlock (Tsuga heterophylla), red alder (Alnus rubra), Oregon myrtle (Um-
bellularia californica), bigleaf maple (Acer macrophyllum), tanoak (Notholi-
thocarpus densiflorus), western redcedar (Thuja plicata), and grand fir (Abies 
grandis). 

2.2. Airborne LiDAR 

Airborne LiDAR data were collected between April 27th, 2008 and April 5th, 2009 
using Leica ALS50 Phase II instrumentation. The collection was acquired as lo-
gistical constraints and weather allowed. The average pulse density (the average  
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Figure 1. Map of study area and plots. 

 
number of pulses returned from surfaces) was 8.10/m2 for the study area. Table 
1 shows the specifications for the LiDAR survey. Laser points with elevations 
above ground level lower than 1 m and higher than 91.44 m (300 feet) were 
excluded from the computation because they did not likely represent vegeta-
tion of interest (the maximum tree height measured in the field data was 88.4 
m). 

2.3. Field Data 

Stratified sampling based on the LiDAR metrics (Hawbaker et al., 2009) was 
used for field data collection. Only the lands owned by the BLM or the Coquille 
Tribe in the study area were considered. Then, the non-forested areas were re-
moved. Within this pre-selected area, a set of LiDAR grid metrics (22.86 m by 
22.86 m) were calculated from the LiDAR point clouds. Using the principal 
component analysis, the 80th percentile and standard deviation of the LiDAR 
height were selected as describing best the variation in forest structure in the 
pre-selected area. Two thousand cells were randomly selected from the cells with 
the pre-selected area. Based on these random samples, the range of 80th percen-
tile heights was subdivided into ten classes with a length of 6.10 m, and the range 
of standard deviations within each height class into three equal-width classes. 
The maximum height of the uppermost 80th percentile class was increased to 
83.52 m to cover the values of the grid cells in the full dataset. A total of 30 bins 
(10 × 3) were created. 
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Table 1. LiDAR survey specifications. 

Attribute Description 

Sensor Leica ALS50 Phase II 

Survey altitude 900 m (flown at 900 meters above ground level) 

Pulse rate >105 kHz (>105,000 laser pulse per second) 

Pulse mode Single 

Mirror scan rate 52.5 Hz 

Field of view 28˚ (±14˚ from nadir*) 

Roll compensated Up to 20˚ 

Overlap 100% (50% side-lap) 

*Point on the ground vertically beneath the laser sensor on the aircraft. 

 
Every grid cell in the pre-defined area was assigned to the bins. Then, 30 pri-

mary and 20 alternate plot locations from each bin were randomly selected from 
the grid cells. 30 plot locations from each bin were measured by field crews from 
those 50 locations using the primary plot locations unless inconsistencies were 
found between the LiDAR measured structure and the actual state of the forest. 
Such inconsistencies were caused by disturbances, such as timber harvesting, 
fires, or wind throw that occurred after the LiDAR data acquisition. In that case, 
the next available alternate plot would replace the primary plot. Plot locations 
overlapping roads, and in tall shrub vegetation near the coast were discarded. 

Field sampling was conducted between May 25, 2010 and May 10, 2011. 
Nested plots with two plot sizes (12.68 m and 5.09 m) were used to measure 
large (both live trees with a DBH larger than 14 cm and dead trees with a height 
of 3.05 m or greater and a DBH of 14 cm or greater) and small (only live trees 
with a height taller than 1.37 m and a DBH less than 14 cm) trees, respectively. 
Note that only the large tree data were used for this analysis. There was one 
missing plot, resulting in a total of 899 plots. Table 2 and Table 3 provide a 
plot-level and tree-level summary of the field measurements. The ten 80th per-
centile classes for the stratification sampling were used as LiDAR height classes 
in the current study (from “1” to “10” as height increases) to investigate the ef-
fect of LiDAR height classification of field plots on the performance of our pro-
posed approach. 

2.4. Generating Tree-Lists 

The general steps of our approach are shown in Figure 2. Trees taller than a 
specified height (a height cutoff) were estimated by ITD using LiDAR data 
yielding the number and HT of the taller trees. DBHs for the taller trees were 
predicted based on the estimated HT using the relationship between DBH and 
HT from field data. For estimating the trees shorter than the height cutoff, 
tree-lists for target plots were first imputed with the tree-list from reference plots 
by RF NN imputation using both LiDAR and field data. Then, the shorter trees  
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Figure 2. Flowchart of the approach. 

 
Table 2. Plot-level summary statistics of attributes from the field measurements. 

Attribute Minimum Maximum Median Mean SD* 

BA (m2/ha) 0.0 236.5 50.3 61.9 45.9 

HT (m) 0.0 63.3 23.4 24.6 10.1 

SPH (stems/ha) 0.0 1462.9 316.3 354.1 222.1 

*Standard deviation. 

 
Table 3. Tree-level summary statistics from the field measurements. 

Attribute Minimum Maximum Median Mean SD* 

DBH (cm) 14.0 266.2 26.9 37.4 28.7 

HT (m) 0.3 88.4 19.51 23.5 14.2 

*Standard deviation. 
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were selected from the imputed tree-lists. A complete tree-list can be generated 
by combining those estimated taller and shorter trees. The variables in the com-
plete tree-list were the tree ID, HT, and DBH. 

2.5. Individual Tree Detection 

ITD was implemented by the function “TreeSeg” in the FUSION software 
(McGaughey, 2016) with the argument “ht_threshold” to estimate the tree-list 
for large trees. This function applies a generalized watershed segmentation algo-
rithm by Vincent and Soille (1991) to a CHM. It should be noted that 
over-segmentation, known as one of the disadvantages of the watershed algo-
rithm, may be produced with noisy imagery (Romero-Zaliz & Reinoso-Gordo, 
2018). Conceptually, the CHM is inverted, so tree crowns appear as basins. Wa-
ter fills the basins from local height minima in the CHM by the algorithm, and 
the basins fill and join with adjacent basins, then watershed edges are established 
(McGaughey, 2016). This also can be explained at the pixel level on the CHM. In 
every CHM pixel above a height threshold, a path is placed by iteratively moving 
to the neighboring pixel with the largest height value until a local height maxi-
mum is reached. A tree crown segment is defined by cells that reach the same 
local height maximum (Lindberg & Holmgren, 2017). The “ht_threshold” sets 
minimum height (height cutoff) for tree segmentation. Fractions of CHM below 
this height cutoff were excluded in the segmentation process. The other two pa-
rameters, the amount of smoothing and the resolution of the CHM, were applied 
in generating the CHM implemented by the function “CanopyModel” in 
FUSION. We set levels of those three parameters as follows: 1) 3 levels of 
smoothing of CHM—no smoothing, median filter using a 3 by 3 neighbor win-
dow and median filter using a 5 by 5 neighbor window, 2) 24 resolutions of 
CHM—0.2, 0.3, …, 2.4, and 2.5 m, 3) 9 percentile height cutoffs on the LiDAR 
height for each plot—10th, 20th, …, 90th. Because the range of HT is extensive, the 
LiDAR height percentiles were used as height cutoffs instead of absolute heights 
as in Wiggins (2017). 

After implementing ITD, we obtained a tree-list above a height cutoff includ-
ing information on individual tree count, HT, a location of tree, and a number of 
CHM cells within a tree crown at a combination of smoothing, resolution of 
CHM, and height cutoff. To predict the DBHs of trees in the estimated tree-lists, 
an RF regression model for DBH was fitted with the HTs from the field data 
(16,200 trees). With this model, the DBHs of trees in the estimated tree-lists 
were predicted using the HTs of those trees. Then, those predicted DBHs were 
added to the estimated tree-lists. The model was fitted in R version 3.3.3 (R Core 
Team, 2017) using the R package “randomForest” (Liaw & Wiener, 2002). 

2.6. Nearest Neighbor Imputation 

To estimate tree-lists for understory trees, we used RF NN imputation instead of 
diameter distribution modeling because there were many sample plots with mul-
timodal or irregular shapes in diameter distribution and some plots had a small 
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number of trees. NN imputation directly substitutes measured values from ref-
erences for targets. The type of NN imputation is determined mainly by the dis-
tance metric and number of neighbors (k) (Eskelson et al., 2009). The distance 
metric measures the similarity between target and reference observations, and 
the k indicates how many reference observations are used in a single imputation 
(prediction). Four distance metrics, Euclidean, Mahalanobis, most similar 
neighbor and RF (Breiman, 2001), were tested. RF appeared the best for BA, 
SPH and error index (EI; will be defined in the following section), and Euclidean 
showed the best for HT (this result is not presented in this manuscript). Thus, 
we selected the RF algorithm as the distance metric and chose k = 1. RF builds 
multiple classification (or regression) trees, called forests, with bootstrap sam-
ples of training data, while selecting predictors randomly for the best split at 
each node in the trees. Distance in RF NN is computed as one minus the pro-
portion of classification trees where a target observation is in the same terminal 
node as a reference observation (Crookston & Finley, 2008). To estimate 
tree-lists by RF NN imputation, we imputed plot identities as in Strunk et al. 
(2017). 

To fit an NN model, it is necessary to define response and predictor variables. 
Predictor variables were derived from LiDAR point clouds at each filed plot lo-
cation. It is not clear which a single response variable or multiple response va-
riables should be used for estimating tree-lists because many attributes can be 
extracted from a tree-list. For example, Temesgen et al. (2003) used a set of 22 
proxy variables to represent a tree-list. We considered several forest inventory 
attributes (basal area, stem volume, Lorey’s height, quadratic mean diameter, 
stems per ha) simultaneously to select appropriate predictor variables for esti-
mating tree-lists via RF NN imputation. “Best subsets” was used as a variable se-
lection method producing the best three predictors for each forest inventory 
attribute. 

From the best predictors for each forest inventory attribute, we obtained a to-
tal of 11 predictors after removing duplicates. The selected predictors are shown 
in Table 4. Like leave-one-out validation, the target plot was excluded from 
training data when modeling. Nine different tree-lists for each height cutoff were 
generated from the estimated tree-lists by subtracting trees above the corres-
ponding height cutoff. The variable selection and imputation modeling were im-
plemented in R version 3.3.3 (R Core Team, 2017) using R packages “yaImpute” 
(Crookston & Finley, 2008) and “randomForest” (Liaw & Wiener, 2002). 

2.7. Performance Measures 

Bias and root mean squared error (RMSE) (Walther & Moore, 2005) for mean 
HT, BA and SPH were computed as follows: 

( )1
ˆ

bias
n

i ii y y
n

=
−

= ∑                         (1) 
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Table 4. Selected predictor variables for RF NN imputation. 

Metrics Min Max Mean SD Description 

sqrt_mean (m) 2.4 63.1 27.7 13.5 LiDAR height quadratic mean 

CHM_SD (m) 1.1 30.1 10.2 6.2 Height standard deviation of rasterized CHM 

Vol_3D (m3) 768.9 30,258.3 12,461.5 6645.6 Volume of the region between rasterized CHM and ground 

AShape.4 (m3) 792.7 20,231.1 8627.4 3938.8 3D alpha shape with alpha value of 4 

mode_30th (m) 1.0 53.7 12.8 11.9 
LiDAR height mode from the point clouds less than LiDAR height 30th  
percentile 

SD_30th (m) 0.1 17.6 4.9 3.7 
LiDAR height standard deviation from the point clouds less than LiDAR height 
30th percentile 

sqrt_10 (m) 1.8 8.8 5.6 1.2 LiDAR height quadratic mean from the point clouds under 10 m 

p.a.2 (%) 8.3 100.0 89.9 16.3 Percentage of first returns above height of 2 m 

p.u.5 (%) 0.0 98.6 15.5 20.5 Percentage of first returns under height of 5 m 

p.a.15 (%) 0.0 99.6 64.0 32.7 Number of total first returns above 15 m 100
Number of total first returns above 2 m

×  

p.a.10th (%) 12.0 100.0 86.0 16.2 
th  Number of total first returns above LiDAR height 10 percentile 100

Number of total first returns above 2m
×  

 

( )2
1

ˆn
i ii y y

RMSE
n

=
−

= ∑                    (2) 

where ˆiy  is the prediction at the ith plot, iy  is the field-measured value at the 
ith plot, and n is the number of total sample plots. 

Large trees would produce greater uncertainty in estimation than small ones 
because the larger trees have greater values of HT, DBH, etc. To see the effect of 
several parameters on tree-list estimation free from the influence of greater val-
ue, relative bias (RBias) and relative RMSE (RRMSE) were also calculated for 
each LiDAR height class by the equations below: 

( ) ( )1
ˆ 100%

n
ih ihi

h h

y y
RBias

n y
=

−
= ×∑                 (3) 

( ) ( )
2

1

100ˆ% n
ih ihi

h

RRMSE y y
y=

= − ×∑               (4) 

where ˆihy  is the prediction at the ith plot in the hth LiDAR height class, ihy  is 
the field-measured value at the ith plot in the hth LiDAR height class, hy  is the 
average of field-measured values at in the hth LiDAR height class, h is the num-
ber of LiDAR height classes, and hn  is the number of sample plots in the hth 
LiDAR height class. 

The error index (EI) (Reynolds, Burk, & Huang, 1988) was used to evaluate 
the size distributions of DBH and HT, respectively. EI measures the proportions 
of absolute deviation between the predicted and field-measured number of trees 
to the total number of field-measured trees over the entire distribution. EI for a 
plot was computed as: 

( ) 1% 100
k

pi oii n n
EI

N
=

−
= ×
∑

                     (5) 
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where pin  and oin  are the predicted and observed numbers of trees, respec-
tively, in DBH or HT class i. k is the number of DBH or HT classes. N is the total 
number of field-measured trees. The bin widths for classifying DBH and HT 
were 10 cm and 5 m, respectively. 

The coefficient of determination measures (R2) the proportion of variance in a 
response variable that is explained by predictor variables. It shows that how well 
a model’s predictions fit the observed values of the response variable, which 
means the actual explanatory power of the model. The R2 is calculated as: 

( )
( )

2
2 1

2
1

ˆ
1

n
i ii

n
ii

y y
R

y y
=

=

−
= −

−

∑
∑

                     (6) 

where ˆiy  is the prediction at the ith plot, iy  is the field-measured value at the 
ith plot, y  is the average of field-measured values of the total sample plots, and 
n is the number of total sample plots. 

3. Results 

3.1. Effects of Smoothing, Resolution, and Height Cutoff on 
Tree-List Estimation 

All the resolutions with pixel size less than 1 m produced too large of estimates 
of SPH and yielded unreasonable estimates of other attributes regardless of the 
amount of smoothing and the height cutoff. Hence, resolutions with pixel sizes 
less than 1 m were dropped from the analysis. The amount of smoothing in 
CHM had a relatively small effect on tree-list estimation compared to the other 
parameters. The smoothing generally decreased the variability of estimation 
among the resolutions at a given height cutoff or the height cutoffs at a given 
resolution. For this reason, we show the performance only from the smoothing 
of 3 by 3 neighbor window. 

Most cases of the combinations of resolution and height cutoff resulted in the 
underestimation of SPH (Figure 3(a)). Unbiased SPH estimations were found 
around 1.1 m to 2.0 m in CHM resolution with the various height cutoffs. Gen-
erally, a higher cutoff had a smaller absolute bias compared with the absolute bi-
as from a lower cutoff. In terms of precision, Figure 3(b) shows that a higher 
cutoff had a relatively consistent RMSE along with resolutions in CHM, which 
means that higher cutoffs were less affected by resolution for SPH estimation 
than lower cutoffs as also shown in Figure 3(a). The combinations of the finer 
resolutions (1.2 ~ 1.3 m) and the lower height cutoffs (p20 and p30) provided 
the lowest RMSEs. For overstory trees, the patterns of performance measures 
were similar to the patterns from the combined approach, but the best RMSEs 
were always found at height cutoff p90. For understory trees, bias and RMSE in-
creased as height cutoff increased except for the bias at height cutoff p90. 

For BA estimation, bias decreased as resolution decreased as shown in Figure 
4(a). Unbiased BA estimation was achieved for the combination of several cu-
toffs from p10 to p60 and resolutions with pixel sizes larger than 1.7 m. RMSE in  
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Figure 3. (a) Bias and (b) RMSE in SPH estimation: the left graph is for overstory and understory trees via the combined approach 
by resolution of CHM and height cutoff; the middle graph is for overstory trees via ITD by amount of smoothing, resolution of 
CHM and height cutoff; and the right graph is for understory trees via RF NN by height cutoff (the horizontal dashed line indi-
cates unbiased estimates). 

 
BA estimation also decreased as resolution decreased (Figure 4(b)). Lower cu-
toffs yielded lower RMSE. The lowest RMSEs appeared for resolutions around 
1.8 ~ 2.0 m. For overstory trees, the differences in RMSE between height cutoffs 
at a given resolution were smaller than the differences for the combined ap-
proach except for 1.0 m resolution. For understory trees, bias and RMSE in-
creased as height cutoff increased, and all height cutoffs overestimated SPH. 

HT estimation had better performance than the other attributes. The pattern 
for HT estimation was different from the other attributes. The best accuracy in 
HT estimation was found with the cutoff at p50 or p60 for any resolution. The 
poorest accuracy in HT estimation appeared only for the cutoff p10, which had a 
worse bias for HT estimation as resolution decreased. HT estimation became 
unbiased as resolution decreased except with cutoffs p10 and p20 (Figure 5(a)). 
Height cutoffs showing better RMSEs were p50 and p60 with the middle and 
higher resolutions, and p80 in the lower resolutions at any smoothing level. 
RMSE increased as resolution decreased especially for cutoffs p10, p20, and p30  

https://doi.org/10.4236/ojf.2018.84032


J. Shin, H. Temesgen 
 

 

DOI: 10.4236/ojf.2018.84032 513 Open Journal of Forestry 

 

 

Figure 4. (a) Bias and (b) RMSE in BA estimation: the left graph is for overstory and understory trees via the combined approach 
by resolution of CHM and height cutoff; the middle graph is for overstory trees via ITD by amount of smoothing, resolution of 
CHM and height cutoff; and the right graph is for understory trees via RF NN by height cutoff (the horizontal dashed line indi-
cates unbiased estimates). 

 
(Figure 5(b)). Bias and RMSE of HT estimation for overstory trees only by ITD 
increased as the resolution decreased. For understory trees, Bias and RMSE for 
HT estimation also increased as height cutoff increased. 

For the lower resolutions, the lower cutoffs showed better DBH distribution 
estimation than the higher cutoffs, while it was the opposite with the higher res-
olutions (Figure 6(a)). This pattern was also observed in HT distribution esti-
mation. The best DBH distribution was found with cutoffs p30 and p40 and 
lower resolutions while cutoff p90 had the best DBH distribution for the higher 
resolutions. The HT distribution estimation, in most cases, had the better result 
with the lower cutoffs than the higher cutoffs (Figure 6(b)). The cutoff p50 had 
the best performance in most cases, except p90 for 1 and 1.1 m resolutions, and 
p30 for 1.3 ~ 1.5 m resolutions. The resolutions with medium pixel sizes were 
better for estimating the HT distribution. For overstory trees, EI for DBH de-
creased as resolution decreased, and the lowest height cutoff p10 always yielded 
the best DBH distribution estimation at every resolution. DBH distribution  
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Figure 5. (a) Bias and (b) RMSE in HT estimation: the left graph is for overstory and understory trees via the combined approach 
by resolution of CHM and height cutoff; the middle graph is for overstory trees via ITD by amount of smoothing, resolution of 
CHM and height cutoff; and the right graph is for understory trees via RF NN by height cutoff (the horizontal dashed line indi-
cates unbiased estimates). 

 
estimation for overstory trees was poorer than for both overstory and understory 
trees. The best height cutoff for HT distribution of overstory trees estimation in-
creased as resolution decreased. For understory trees, EIs for DBH and HT were 
reduced as height cutoff increased except for cutoff p80. Contrary to HT estima-
tion for both overstory and understory trees by the combined approach, the best 
height cutoffs in the estimation of the HT distribution for overstory trees by ITD 
was for higher cutoffs from p60 to p80 except for resolutions higher than 1.4 m. 

Compared to the combined approach for all trees or the ITD for overstory 
trees, NN imputation produced much lower biases for understory trees’ SPH, 
BA, and HT (Figures 3-5). The smallest biases for understory trees for SPH, BA 
and HT estimation were found at cutoffs p10, p20, and p40, respectively. The 
smallest RMSEs in the three attributes were observed only at cutoff p10. 

3.2. Effects of Classification of Field Plots by LiDAR Height on 
Tree-List Estimation 

The absolute and relative performance measures separated by LiDAR height 
class were calculated for each forest attribute estimated. The smallest group,  
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Figure 6. (a) EI for DBH and (b) EI for HT: the left graph is for overstory and understory trees via the combined approach by 
resolution of CHM and height cutoff; the middle graph is for overstory trees via ITD by amount of smoothing, resolution of CHM 
and height cutoff; and the right graph is for understory trees via RF NN by height cutoff. 

 
class 1, showed distinct properties in those performances. For the absolute 
measures, such as bias and RMSE, lower LiDAR height classes, especially the 
lowest class, generally yielded comparable or better performances for BA and 
SPH than the higher classes. However, based on the relative measures, the lowest 
class had much poorer results. Similar patterns were found in EIs for DBH and 
HT as well. The effect of the amount of smoothing in CHM by LiDAR height 
class was relatively small. The performances by height cutoff in a given resolu-
tion were averaged for this section because it is better to show the general effect 
of height class on tree-list estimation performance. For SPH estimation (Figure 
7), bias decreased as resolution decreased for every height class, but the resolu-
tions showing unbiasedness varied among height classes. Lower height classes 
had larger variability in bias among resolutions than higher height class. Height 
class 1 had much larger RBias at higher resolutions than the other height classes. 
Larger RMSE occurred in height classes 1 through 6, and the largest RMSE was 
found in height class 3. RRMSE in height class 1 was largest at every resolution. 
Relatively larger RRMSEs at higher resolutions were observed in the taller height 
classes. 
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Figure 7. Bias, RBias, RMSE, and RRMSE for SPH estimation via the combined approach by LiDAR height class and resolution of 
CHM: the values of each performance by height cutoff in a given resolution are averaged. 

 
In BA estimation (Figure 8), biases in the taller height classes were generally 

larger than biases in the shorter height classes. This pattern was similar for RBias 
except for height class 1. RBias in height class 1 was larger than the other height 
classes at resolutions less than or equal to 2.3 m. Lower height classes generally 
had smaller RMSE than higher height classes, but height class 1 had a much 
larger RRMSE than the other height classes. Figure 9 shows the performance 
measures for HT estimation by height class. The pattern of HT estimation 
among height classes was different from the pattern of SPH and BA estimation. 
Height class 1 had comparable or better performance in bias, RBias, and RMSE. 
The primary difference in bias and RBias between class 1 and the other classes 
was that class 1 mainly underestimated HT while the other classes overesti-
mated. RRMSE for HT in height class 1 had slightly larger values than RRMSE 
from other height classes. Estimated distributions of DBH and HT for height 
class 1 were much poorer than the distributions for the other classes. Except 
class 1, lower height classes showed better performance in EIs for both DBH 
and HT than higher height classes. Lower resolution generally had lower EIs 
(Figure 10). 
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Figure 8. Bias, RBias, RMSE, and RRMSE for BA estimation via the combined approach by LiDAR height class and resolu-
tion of CHM: the values of each performance by height cutoff in a given resolution are averaged. 

3.3. Explanatory Power of Individual Tree Detection for  
Overstory Trees and Random Forest Nearest Neighbor  
Imputation for Understory Trees 

Tables 5-7 show R2s for SPH, BA and HT estimation for trees over a given 
height cutoff (overstory trees) via ITD by resolution of CHM and height cutoff 
with smoothing using a 3 by 3 window. For SPH estimation (Table 5), the best 
R2 was found at resolutions between 1.2 m and 1.7 m for each height cutoff. 
Height cutoff p90 yielded the largest R2, 0.501, and the best R2 decreased as the 
height cutoff decreased. The lowest height cutoff p10 had negative R2 at all the 
resolutions. BA estimation by ITD showed poor explanatory power for overstory 
(Table 6). Most combinations of resolutions and height cutoffs had negative R2s, 
and the best R2 was 0.338 with the resolution 2.0 m and the height cutoff p10. 
Larger height cutoffs, from p70 to p90 provided negative R2 at every resolution. 
In HT estimation (Table 7), the 1.0 m resolution yielded the best R2 at every 
height cutoff except p90. The middle height cutoffs, p50 or p60, had better R2 
than the other height cutoffs. Inferior explanatory power was found at height 
cutoffs p10 and p90. The explanatory power for HT estimation generally de-
creased as resolution increased. 
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Figure 9. Bias, RBias, RMSE, and RRMSE for HT estimation via the combined approach by LiDAR height class and resolution of 
CHM: the values of each performance by height cutoff in a given resolution are averaged. 

 

 
Figure 10. EIs for DBH and HT estimation via the combined approach by LiDAR height class and resolution of CHM: the values 
of each performance by height cutoff in a given resolution are averaged. 

 
Table 8 shows the explanatory power of RF NN imputation for trees under a 

given height cutoff (understory trees). For HT estimation, the R2s were around 
0.5. However, the R2s for BA and SPH estimation were much poorer than the R2s 
for HT estimation or even had negative values. For understory trees for each  
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Table 5. Explanatory power (R2) of SPH via ITD for trees taller than given height cutoffs with the smoothing of 3 by 3 neighbor 
window. 

Height 
cutoff 

Resolution (m) 

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 

p10 −0.100 −0.020 −0.009 −0.039 −0.104 −0.199 −0.267 −0.343 −0.418 −0.514 −0.566 −0.644 −0.710 −0.779 −0.832 −0.904 

p20 −0.115 0.048 0.106 0.107 0.069 −0.008 −0.059 −0.124 −0.192 −0.280 −0.326 −0.399 −0.458 −0.523 −0.574 −0.641 

p30 −0.134 0.084 0.170 0.196 0.180 0.122 0.086 0.029 −0.027 −0.110 −0.147 −0.216 −0.267 −0.332 −0380 −0.439 

p40 −0.139 0.106 0.215 0.262 0.262 0.223 0.196 0.156 0.104 0.033 0.000 −0.062 −0.103 −0.167 −0.210 −0.261 

p50 −0.144 0.124 0.253 0.311 0.319 0.297 0.285 0.252 0.207 0.142 0.113 0.054 0.018 −0.044 −0.081 −0.129 

p60 −0.131 0.138 0.274 0.347 0.364 0.356 0.357 0.333 0.296 0.234 0.211 0.158 0.127 0.066 0.039 −0.011 

p70 −0.057 0.198 0.321 0.386 0.409 0.403 0.418 0.400 0.369 0.319 0.301 0.252 0.227 0.171 0.148 0.101 

p80 0.048 0.264 0.371 0.421 0.452 0.448 0.464 0.460 0.434 0.396 0.390 0.345 0.325 0.276 0.255 0.217 

p90 0.236 0.376 0.431 0.464 0.497 0.480 0.500 0.501 0.483 0.454 0.455 0.423 0.417 0.372 0.353 0.330 

 
Table 6. Explanatory power (R2) of BA via ITD for trees taller than given height cutoffs with the smoothing of 3 by 3 neighbor 
window. 

Height 
cutoff 

Resolution (m) 

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 

p10 −2.421 −1.008 −0.443 −0.197 0.033 0.178 0.240 0.283 0.326 0.284 0.338 0.294 0.289 0.322 0.271 0.280 

p20 −2.947 −1.320 −0.665 −0.378 −0.102 0.078 0.168 0.220 0.279 0.242 0.314 0.270 0.273 0.318 0.263 0.286 

p30 −3.593 −1.717 −0.972 −0.628 −0.300 −0.065 0.049 0.118 0.197 0.166 0.265 0.217 0.232 0.287 0.229 0.266 

p40 −4.306 −2.159 −1.303 −0.904 −0.516 −0.219 −0.088 0.011 0.106 0.084 0.203 0.161 0.182 0.256 0.197 0.253 

p50 −5.072 −2.663 −1.706 −1.244 −0.794 −0.432 −0.273 −0.141 −0.035 −0.052 0.095 0.055 0.089 0.181 0.132 0.202 

p60 −6.058 −3.323 −2.242 −1.740 −1.201 −0.752 −0.561 −0.387 −0.253 −0.257 −0.068 −0.108 −0.051 0.060 0.011 0.098 

p70 −6.510 −3.724 −2.598 −2.104 −1.525 −1.037 −0.832 −0.616 −0.488 −0.488 −0.254 −0.295 −0.233 −0.118 −0.133 −0.040 

p80 −7.105 −4.372 −3.169 −2.752 −2.116 −1.574 −1.377 −1.092 −0.990 −0.928 −0.641 −0.707 −0.615 −0.479 −0.501 −0.354 

p90 −6.662 −4.746 −3.638 −3.239 −2.737 −2.125 −2.020 −1.748 −1.648 −1.613 −1.263 −1.386 −1.245 −1.045 −1.084 −0.872 

 
forest inventory attribute, the scatter plots of observed vs. predicted via RF NN 
imputation did not show any anomaly. The lower height cutoff we used, the 
more observations with zero values we had. The prediction results for those ob-
servations with zero values were inferior for every height cutoff. 

4. Discussion 

No single combination of smoothing, resolution and height cutoff was found to 
produce the best results for all performance measures (Table 9). Koch et al. 
(2014) and McGaughey (2016) also reported similar findings. Similarly, ITD’s 
performance varied depending on the algorithm used to delineate trees in the 
CHM (Kaartinen et al., 2012). Differences in performance between the lowest 
LiDAR height class and the other classes were found based on both absolute and  
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Table 7. Explanatory power (R2) of HT via ITD for trees taller than given height cutoffs with the smoothing of 3 by 3 neighbor 
window. 

Height 
cutoff 

Resolution (m) 

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 

p10 0.073 0.022 −0.052 −0.156 −0.223 −0.298 −0.347 −0.427 −0.504 −0.621 −0.639 −0.733 −0.794 −0.844 −0.952 −1.040 

p20 0.514 0.481 0.447 0.385 0.364 0.300 0.283 0.231 0.192 0.113 0.110 0.054 0.013 −0.014 −0.070 −0.131 

p30 0.700 0.681 0.661 0.629 0.619 0.578 0.567 0.536 0.523 0.469 0.463 0.434 0.407 0.389 0.349 0.307 

p40 0.784 0.770 0.760 0.738 0.736 0.718 0.709 0.695 0.685 0.650 0.639 0.625 0.620 0.597 0.569 0.554 

p50 0.804 0.797 0.788 0.772 0.771 0.762 0.751 0.744 0.733 0.710 0.708 0.694 0.686 0.676 0.655 0.652 

P60 0.775 0.768 0.756 0.748 0.751 0.745 0.738 0.728 0.723 0.713 0.702 0.699 0.687 0.691 0.667 0.671 

p70 0.676 0.673 0.670 0.659 0.663 0.658 0.652 0.641 0.637 0.628 0.621 0.611 0.608 0.613 0.592 0.598 

p80 0.453 0.450 0.432 0.424 0.414 0.419 0.411 0.405 0.393 0.392 0.387 0.382 0.383 0.379 0.367 0.357 

p90 0.028 0.033 0.010 0.014 −0.001 −0.001 −0.008 −0.015 −0.001 −0.021 −0.017 −0.003 −0.039 −0.006 −0.038 −0.024 

 
Table 8. Performance measures of RF NN imputation by inventory attributes for trees shorter than given height cutoffs. 

Height 
cutoff SPH

SD∗  BiasSPH RMSESPH 
SPH

2R  *
BASD  BiasBA RMSEBA 2

BAR  *
HTSD  BiasHT RMSEHT 2

HTR  

p10 89.20 0.73 87.99 0.03 9.13 −0.25 10.56 −0.34 6.09 −0.15 4.15 0.54 

p20 115.32 1.72 110.63 0.08 11.35 0.08 13.26 −0.37 7.46 −0.05 4.88 0.57 

p30 133.73 5.01 129.52 0.06 13.77 0.38 15.41 −0.25 8.11 0.10 5.69 0.51 

p40 146.14 6.07 145.21 0.01 15.95 0.51 17.79 −0.25 8.58 0.04 6.12 0.49 

p50 156.35 7.83 158.25 −0.03 18.42 1.00 20.59 −0.25 8.89 0.05 6.23 0.51 

p60 166.25 8.42 168.72 −0.03 22.11 1.22 24.12 −0.19 9.05 −0.10 6.32 0.51 

p70 177.05 9.04 179.29 −0.03 25.18 1.41 26.86 −0.14 9.20 0.08 6.40 0.52 

p80 187.56 10.80 193.97 −0.07 29.47 2.16 29.78 −0.02 9.24 0.05 6.84 0.45 

p90 197.84 8.78 204.64 −0.07 35.78 2.20 34.17 0.09 9.55 0.08 7.27 0.42 

*Standard deviation of field-measured inventory attribute under given height cutoffs. 

 
relative performance measures. Kaartinen et al. (2012) reported that the HT class 
did not generally impact the accuracy of HT estimation, but greater uncertainty 
was observed for ITD methods capable of finding small trees. According to 
Hopkinson et al. (2005), vegetation classes with short height, such as low shrub 
and aquatic vegetation, yielded the largest relative errors in canopy height esti-
mation, whereas tall vegetation classes showed the largest absolute errors. The 
low level of penetration of LiDAR returns into the sub-canopy surface might be 
an essential reason for the high relative bias for low shrub and aquatic vegeta-
tion. For aquatic vegetation, it was also believed that the weak laser backscatter 
from the saturated ground caused the high relative bias. These results were very 
similar to ours although the smallest height class in our research almost exclu-
sively consisted of trees. 

As we reported above, resolutions with pixel sizes less than 1.0 m were 
dropped in the analysis because it yielded unreasonably large SPH estimations.  
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Table 9. Best performance for each assessment by estimation method. 

Method Target BiasSPH RMSESPH BiasBA RMSEBA BiasHT RMSEHT EIDBH EIHT 

Combined All 0.3079 212.2541 0.0233 35.0225 1.0967 8.4800 91.0333 91.2693 

  3/2.1/p90* No/1.3/p30 5/2.0/p30 3/2.0/p10 No/2.3/p50 No/2.0/p50 No/2.3/p40 No/1.9/p50 

ITD Overstory 0.5497 89.4945 0.0189 29.7892 1.7553 7.7367 96.6311 83.4631 

  5/1.2/p50* 3/1.7/p90 No/1.8/p20 No/2.4/p60 No/1.0/p60 No/1.0/p40 No/2.3/p10 No/1.9/p70 

NN Understory 0.7256 87.9857 0.0829 10.5628 0.0420 4.1457 98.2339 101.8002 

  p10† p10 p20 p10 p40 p10 p90 p90 

NN All −0.3958 217.6176 0.1438 36.2711 −0.4132 8.3843 91.6049 96.4568 

*The first argument indicates the amount of smoothing, the second resolution in CHM, and the third percentile height cutoff for the combined method. 
†This represents percentile height cutoff. 

 
Pouliot, King, Bell, and Pitt (2002) claimed that in high-resolution imagery, tree 
detection and crown delineation became more complicated. This is because 
high-resolution imagery can display very detailed objects such as branches 
causing tree crowns to deviate from the conic shape. Thus, more tree crowns 
could be estimated at higher image resolutions. Conversely, in low-resolution 
imagery, it is more challenging to identify crown boundaries because they be-
come less distinct. Another reason for our large SPH estimation might be data 
pits, which are height irregularities in a CHM. The function ‘CanopyModel’ in 
FUSION used for generating CHMs in our study fills pixels without LiDAR 
point clouds using an eight-way search and a distance-weighted average 
(McGaughey, 2016). However, it might be difficult to avoid irregularities in 
height on a CHM if laser pulses used for our LiDAR data acquisition penetrated 
deeply into tree crowns causing large height variations within individual tree 
crowns (Persson, Holmgren, & Soderman, 2002). Image smoothing with various 
filters using mean, median, or Gaussian approaches have been applied to reduce 
data pits (Persson et al., 2002; Yu, Hyyppä, Vastaranta, Holopainen, & Viitala, 
2011). In our study, the smoothing did not work well at resolutions with pixel 
sizes larger than 1.0 m although the smoothing using a 5 by 5 window showed 
smaller SPH estimation than no smoothing and the smoothing with a 3 by 3 
window. A pit-free CHM proposed by Khosravipour, Skidmore, Isenburg, 
Wang, and Hussin (2014) was found to improve the accuracy of tree detection 
based on either high or low-density LiDAR data; however, this approach could 
help solve our large SPH estimation at the finer resolutions. 

The ratio of average crown diameter to image pixel size was proposed as a 
guide to determine an optimal image resolution for tree detection and crown de-
lineation using digital camera imagery (Pouliot et al., 2002). With a small crown 
diameter to pixel size ratio, it is hard to have distinct crown boundaries in an 
image, resulting in under-segmentation. However, a large crown diameter to 
pixel size ratio might cause high variability within a crown in an image resulting 
in over-segmentation. Although our data from field surveys do not have infor-
mation on crown diameter, there might be significant variations in the tree 
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crowns considering the diversity of forest stands in our study area. This might be 
one of the reasons why the high CHM resolutions overestimated SPH in our 
study. Barnes et al. (2017) found that no single CHM resolution produced the 
best performance of ITD for both healthy and diseased larch trees, claiming that 
not only the tree crown size but also the maximum tree height governed an op-
timal size of CHM resolution. The performance of ITD with high-resolution 
CHMs (0.15 m) was best for plots with low maximum height (<20 m), and the 
performance with low-resolution CHMs (0.5 m) was best for plots with high 
maximum height (>30 m). 

LiDAR point cloud density might be related to the optimal CHM resolution as 
with the tree crown diameter. With LiDAR data of high point cloud density, 
high CHM resolution could yield high within-crown variations on a CHM. In-
versely, with LiDAR data of low point cloud density, low CHM resolution could 
produce less distinct crown boundaries making it difficult to identify tree 
crowns. The high CHM resolutions should have yielded good performance in 
that the LiDAR data used for this study had low point cloud density. However, 
the high diversity of forest stands in the study area might add more with-
in-crown variations. Even though an optimal resolution of CHM was set based 
on the crown diameter to CHM resolution ratio, it should be noted that the per-
formance of ITD was still affected by LiDAR point cloud density for trees with 
small DBH (<20 cm) as reported in Khosravipour et al. (2014). 

The results of large SPH estimation are quite different from previous studies. 
Stereńczak, Będkowski, and Weinacker (2008) reported that the 0.25 and 0.5 m 
resolutions in CHMs were better than the 1.0 m resolution for estimating SPH 
through individual tree delineation based on a similar method to Heurich and 
Weinacker (2004). It was found that the number of detected trees decreased as 
the resolution of CHM decreased (Stereńczak et al., 2008), and this was also ob-
served in our work, excluding height cutoffs p10 and p20. Smreček et al. (2018) 
showed very similar results to ours for SPH estimation based on ITD. At the 
highest resolution (0.5 m), the number of trees identified was hugely overesti-
mated; the number of trees identified decreased as the CHM resolution de-
creased from 0.5 m to 2.0 m, as was the case in our study. The optimal resolu-
tions for tree identification were 1.0 and 1.5 m depending on the sample plot. 
Smreček et al. (2018) claimed that this was because the CHM with 0.5 m resolu-
tion was too detailed. We observed many estimated trees from ITD with extreme 
small areas compared to their estimated heights. Those trees should have been 
removed from the estimated tree-list using an appropriate criterion. With this 
filtering process, overestimation at high resolutions would be decreased. 

Most combinations of parameters resulted in underestimating SPH. Accord-
ing to Lindberg et al. (2010), ITD underestimates SPH because ITD often misses 
trees below dominant trees or recognizes trees close to each other as one tree. It 
was expected that there would be more underestimation as pixel size increased. 
The larger pixel size we have, the more aggregated information we would get, so 
lower resolution also would result in underestimating SPH. For this reason, es-
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timates of BA decreased as resolution decreased. The approach of Lindberg et al. 
(2010) could give an improvement for estimating overstory trees for our study. 
Considering that most of the combinations for overstory trees by ITD produced 
negative biases in SPH estimation in our study (Figure 3(a)), estimating of the 
number of trees per segment would improve the negative biases in SPH estima-
tion by increasing the number of detected trees. 

Performance measures for HT estimation were better than measures for the 
other variables tested. This might be because LiDAR directly measures heights of 
target objects, so there is less uncertainty in height estimation than other 
attribute estimation. According to Stereńczak et al. (2008), there was no differ-
ence between the three resolutions (0.25, 0.5, and 1.0 m) in CHM for HT estima-
tion. For understory trees, biases in HT estimation less than 0.15 m in absolute 
value were produced by RF NN at every height cutoff. The higher the height cu-
toff applied, the larger the RMSE obtained. This is attributed to the fact that RF 
NN will have more and larger trees to estimate with higher height cutoffs. 

While RF NN imputation showed better performance in estimating SPH than 
the combined approach and tree segmentation (Figures 3-6), this does not mean 
that RF NN imputation is better than the combined approach or ITD. It is be-
cause the target trees for those two methods are different from each other (tall 
trees above a height cutoff for ITD and short trees below the height cutoff for RF 
NN imputation). Therefore, the values dealt with in RF NN imputation were 
smaller than ITD. Based on relative measures not included on this manuscript, 
RF NN imputation was generally better in RBias, comparable in EIs, and worse 
in RRMSE. 

The errors for BA and mean HT estimation in taller height classes were larger 
than in shorter height classes contradicting the fact that airborne LiDAR has dif-
ficulty in detecting understory vegetation. This might be because large trees have 
larger DBH and HT than small trees. To offset this potential issue, relative per-
formance measures such as RBias and RRMSE were calculated. These relative 
measures revealed that the performance of estimation in shorter height classes 
was poorer than for the trees in taller height classes. Stereńczak et al. (2008) 
found a similar phenomenon for young stands. 

There was also no single combination of the three parameters tested for ex-
planatory powers that proved best overall. While HT estimation was good, esti-
mation of BA and SPH were poor. Especially, BA estimation was very poor. The 
negative R2 indicates (Tables 5-8) our results were worse than the mean value of 
the data. However, the combinations of parameters for each forest attribute 
could be a partial guide of generating tree-lists for the forest attributes. First, for 
overstory trees, R2 for SPH had larger values with the finer resolution and the 
higher height cutoff. On the contrary to SPH, R2 for BA had larger values with 
the coarser resolution and the lower height cutoff. R2 for HT had larger values 
with the finer resolution and the middle height cutoff. For understory trees, R2 
for SPH had larger values with lower height cutoff, and R2 for BA with higher 
height cutoff. BA estimation for overstory trees via ITD had more uncertainty 
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sources than the other attributes, including SPH estimation and subsequent pre-
diction of DBH for each detected individual tree (estimated HT used to predict 
DBH provided additional uncertainty source to the DBH prediction). These un-
certainty sources might partially explain the poor performance in BA estimation. 
Utilizing the limited information in LiDAR data might affect the poor perfor-
mance for the explanatory powers. We used CHM-based ITD; this method has 
limitation summarizing LiDAR point clouds within a range of cell into one cell 
height value regardless of generating a pit-free CHM. Instead, 3D ITD methods 
have been recently studied using information in LiDAR as much as possible 
(Kandare, Ørka, Chan, & Dalponte, 2016). However, the 3D ITD methods re-
quired more complex algorithms to implement, and also processing time could 
be a new parameter to consider (Pirotti, Kobal, & Roussel, 2017). 

It is well known that it is difficult to estimate characteristics of understory ve-
getation. Eskelson, Madsen, Hagar, and Temesgen (2011) used beta regression to 
estimate percent shrub cover, and it yielded poor explanatory power. Rahman 
and Gorte (2008) developed a tree filtering technique to separate dominant tree 
and undergrowth vegetation, but it was found difficult to separate undergrowth 
vegetation very close to a tree using the filtering. Liu, Shen, Zhao, and Xu (2013) 
suggested a method to extract individual tree crowns from airborne LiDAR in 
residential areas showing promising applications, but also reported that small 
trees were omitted if there were an only small number of points representing 
them in the dataset. Our results for understory trees via RF NN were not good 
(Table 8). To improve NN estimation with LiDAR data having low point cloud 
density, we investigated many LiDAR metrics such as metrics from LiDAR point 
clouds under several height cutoffs as Wing et al. (2012) proposed to estimate 
understory vegetation cover with airborne LiDAR. Some of the metrics from 
understory point clouds were selected for NN imputation (Table 4). However, it 
did not greatly improve the performance of NN imputation compared to NN 
imputation without those metrics (not presented here). This might fundamen-
tally be because our LiDAR data lacked information on understory vegetation. 

In NN imputation, one of the critical parameters is the selection of a number 
of neighbors for imputation modeling or distance metrics used to measure the 
similarity between the reference and target plot using auxiliary variables (Eskel-
son et al., 2009). While their result varied among different forest types, Strunk et 
al. (2017) reported that k = 3 and Mahalanobis distance metric produced better 
performance over other NN strategies in estimating tree-lists. In this study, we 
only used k = 1 and RF as a distance metric in NN modeling. Combination of 
the two parameters needs to be examined for understory vegetation. In addition 
to these two factors, implementing variable selection procedure for NN imputa-
tion to each LiDAR height class could have the potential to improve NN model-
ing performance. 

Compared to the results of HT estimation, results related to DBH estimation 
such as BA and EI for DBH showed poorer performance. It is known that pre-
dicting tree-level DBH from height-derived metrics has considerable variability 
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(Matti Maltamo & Gobakken, 2014). Kaartinen et al. (2012) reported that esti-
mation of DBH based on HT and crown size would have considerable uncer-
tainty because allometric equations used for estimating DBH are sensitive to er-
rors in input data such as the size of tree crown or HT. Another potential reason 
is the dead trees in the field data. The Pearson’s correlation coefficients between 
the field-measured HT and DBH for live and dead trees are 0.771 and 0.212, re-
spectively. Even though the dead trees account for only 8.8% of a total number 
of field-measured trees, appropriate handling for dead trees would give oppor-
tunities to improve estimating tree-lists. 

The scanning angle is another parameter to consider for LiDAR projects 
(Gatziolis & Andersen, 2008). If the scanning angle increases, it facilitates 
changes in pulse propagation direction and increases the distance the pulse 
moves through the canopy. The change in pulse direction and the increased dis-
tance are related to LiDAR data artifacts such as returns below the ground. 
Therefore, with a wide scanning angle, LiDAR data might have more data arti-
facts than with a narrow-angle. Additionally, these data artifacts could increase 
when data acquisition is carried out on a slope, as an off-nadir scanning angle 
increases on the slope (Gatziolis & Andersen, 2008). 

39.4% of our field plots had slopes more than 30˚ based on digital terrain 
models from the study site. Khosravipour, Skidmore, Wang, Isenburg, and 
Khoshelham (2015) showed that normalized LiDAR point clouds could distort 
tree locations detected from CHM and height estimation depending on the 
steepness of slope and crown shape. For the slope of more than 30˚ 44.6% of 
correctly detected trees with wider and irregular crown shapes were affected by 
the horizontal and vertical displacements. They suggested using a 
non-normalized CHM to avoid the adverse effect of the distortion by steep 
slopes, especially in a heterogeneous forest with multiple species. The slope was 
also found to affect the ABA approach by distorting heights of LiDAR point 
clouds (Hansen et al., 2017). They proposed two methods, Procrustean trans-
formation and histogram matching, to counter the distortion of LiDAR point 
clouds on slope terrain for extracting LiDAR metrics. These point cloud distor-
tions by slope terrain could worsen our results for both overstory and understo-
ry estimations. 

Another issue is that there was the time lag between LiDAR acquisition and 
field surveys. This might have the potential source of error, particularly for 
younger fast-growing stands. Also, there were seasonal differences in the LiDAR 
acquisition dates (e.g., April through June in the spring, June through August in 
the summer, and September and October in the fall). According to Gatziolis and 
Andersen (2008), the seasonal differences can induce considerable variability in 
canopy penetrability by LiDAR pulses especially for deciduous forests (e.g., 
leaf-on and leaf-off conditions) and weather-related limitations. The variability 
in canopy penetrability might increase uncertainty in modeling forest attributes, 
and the weather-related limitations could make it difficult to keep the quality of 
LiDAR data consistent over our whole study area. Time windows, part of LiDAR 
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data acquisition considerations in Gatziolis and Andersen (2008), should be 
carefully planned according to project objectives. 

5. Conclusion 

We proposed an approach to combine ITD and ABA to generate a tree-list using 
airborne LiDAR data and field measured data. The approach aimed to compen-
sate for the disadvantage of LiDAR data and ITD in estimating understory trees, 
and to keep the strength of ITD in estimating overstory trees in tree-level. The 
selected parameters, smoothing, resolution and height cutoff, were examined to 
determine how they affected the performance of the proposed approach. There 
was no single combination of the three parameters that provides the best estima-
tion results for all the forest attributes in this study. For each attribute, the best 
results depended on different combinations of those parameters. This is concur-
rent with what Koch et al. (2014) and McGaughey (2016) reported. However, 
our study provided the ranges and patterns of the selected parameters that 
yielded better performance results for each forest attribute, which could be a 
partial guide of estimating tree-lists using airborne LiDAR. It would be practical 
and useful to determine how to automatically find the optimal combinations of 
those parameters across the forest landscape using remote sensing data. In addi-
tion to the three parameters tested in the present study, the automation for the 
optimal combinations would require considering additional parameters such as 
forest types, tree species, tree-size parameters (tree crown width or maximum 
tree height) and topography. 

There are several topics for further study to improve the combined approach. 
A denser point cloud data would have more information on both overstory and 
understory vegetation in a forest, thus could increase the combined approach’s 
performance. The algorithm used to generate a CHM and to delineate trees on 
the CHM is another critical parameter in ITD. Comparison of different algo-
rithms for processing the CHM is an active area of research. Estimating the 
number of trees per crown segment would help obtain unbiased SPH estimation. 
A point cloud based ITD method could lead to improvement by utilizing more 
information in LiDAR data. A minimum crown area by ITD should be examined 
so that tiny crown would not degrade the quality of the predicted tree-lists. The 
effect of slope on CHM generation and LiDAR metrics extraction need to be 
considered for better estimation. Fusing ITD and ABA to predict overstory and 
understory vegetation shown in this research indicates that forest analysts can 
benefit from the predictive abilities of the imputation approach and the quality 
information provided by LiDAR. In that, the approach presented herein can be 
sufficient for strategic inventory purposes. 
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Acronyms 

ABA: Area-based approach 
BA: Basal area 
CHM: Canopy height model 
DBH: Diameter at breast height 
SPH: Stems per hectare 
EI: Error index 
HT: Tree height 
ITD: Individual tree detection 
NN: Nearest neighbor 
LiDAR: Light detection and ranging 
R2: Coefficient of determination 
RBias: Relative bias 
RF: Random forest 
RMSE: Root mean squared error 
RRMSE: Relative root mean squared error 
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