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Abstract 
A numerical study is presented on the problem of 2D natural convection in a 
differentially heated cavity. The equations governing this unsteady flow phe-
nomenon were solved using the vorticity-stream function formulation of the 
Navier-Stokes equations and heat. The results obtained are compared with the 
results of the literature and make it possible to validate this approach. In this 
work, we studied the heat transfer in a cavity and we determined the variation 
of the local Nusselt number which allows obtaining the rate of thermal trans-
fer by convection in an enclosure. We analyzed thermal fields for different 
Rayleigh numbers by selecting two points to visualize temperature fluctua-
tions over time. Thus, the creation of the ascending and descending move-
ments of the fluid inside the cavity was analyzed. We have also established 
temperature histograms for the graphical presentation of the temperature dis-
tribution. The modeling of the two-dimensional problem was established us-
ing a “Fortran 90” calculation code. The results also show the different vortic-
ity contour maps in laminar flow regime. We have presented our results of 
numerical simulations using a visualization tool. The Rayleigh number varies in 
the range of 10³ to 10⁶ for a Prandtl number equal to 0.72 corresponding to air. 
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1. Introduction 

In general, numerical resolutions of heat transfer problems [1] mainly related to 
convection [2] and defined in various geometries, are performed by finite ele-
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ment methods [3] or finite volume [4]. Some studies have focused on natural 
convection and we have referred to some important works that can serve as a 
backdrop for this work. The study of the thermal and vorticity fields has been 
presented. We must know that the vorticity being connected to the circulation; a 
line of vorticity is defined analogously to a stream function. It is at a given in-
stant a curve which is tangent at all points to the local vorticity. Differently from 
the square cavity [5], natural convection has also been studied in a rectangular 
enclosure with partially active walls for nine different heating locations [6]. For 
this, the hot and cold regions have been analyzed (above, middle and bottom), to 
identify, where the rate of heat transfer is maximum and minimum. Natural 
convection has important applications in solar energy collectors, nuclear reac-
tors, cooling of electronic equipments, oil recovery, ventilation of buildings 
during fires, double glazing for thermal insulation, aerospace, etc. 

We are interested here in the numerical 2D simulation of natural air 
convection (Pr = 0.72) confined in a square cavity heated on the central halves of 
its vertical walls. It was interesting to conduct research in the study of the 
behavior of the flow for different numbers of Rayleigh and showing the effect of 
time on the properties of the fluid. In this study, we used the finite volume 
method with quadrilateral control volumes. To solve the theoretical model, it is 
necessary to go through a numerical processing; for this, the equations were 
rendered first in conservative form. We began our discretization by adopting the 
notion of the staggered mesh [7], which means that the pressure and the 
temperature are indicated in the center of the mesh while the velocities are 
indicated on the centers of the four faces of the staggered mesh and we have U_ 
{e}, U_ {w} on the abscissa and V_ {n}, V_ {s} on the ordinate. For temporal 
discretization, we used Adams Bashforth’s method for time integration. We 
recall that we have essentially given the results of calculations for air, because it 
is one of the most used fluids [8] [9]. However, the assumptions on which our 
mathematical model is based make it applicable to other Newtonian fluids. 

2. Materials and Methods 
2.1. Basic Equations 

We consider the two-dimensional natural convection phenomenon in a confined 
environment differentially heated over the centers of its vertical walls as shown 
in Figure 1. 

The governing equations, the fluid flow are written in dimensionless form 
taking into account the hypotheses following simplifiers: 

-The fluid is Newtonian, viscous and transparent. 
-The regime is laminar. 
-The flow is unsteady and the fluid is incompressible. 
-The two-dimensional flow is in the plane (Ox, Oy). 
-The physical properties of the fluid are constant, except the density in the 

gravitational term of the equations of motion, in which it varies linearly with  
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Figure 1. Cavity studied with conditions to the limits: boundary conditions (dynamic and 
thermal) of the system under consideration. 

 
temperature according to Boussinesq’s hypotheses [10]: 

( )0 1 T Trρ ρ β= − −                         (1) 

We have dimensionless quantities: 

2

2

, , , , ,

, ,

x y t T Tr uX Y U
A A Tg TdA

A

vV

A A

τ θ
α

α
ψ ω

ζ
α αα

−
= = = = =

−   
     

= Ψ = =
   
   
   

         (2) 

In the vorticity-stream function formulation, the dimensionless Navier-stokes 
equations are written: 
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2divζ = − Ψ                            (5) 

In this study, we used the finite volume method with quadrilateral control 
volumes and a staggered mesh. The latter is the subdivision of the field of study 
into longitudinal and transverse grids whose intersection represents a node, 
where the variables P and θ are located while the components U and V of the 
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velocity vector lie in the middle of the segments connecting two nodes adjacent. 
After discretization of the differential transport equations we obtain a system of 
nonlinear algebraic equations, these equations describe the discrete properties of 
the fluid at the nodes in the solution domain. 

2.2. Validation of the Code 

To examine the reliability of our computer code in Fortran 90, using the finite 
volume method, we compared our results with those of the literature. The results 
are graphically displayed and show the effect of internal heat generation. We 
first used a classical test of G. De Vahl Davis Benchmark [11] and P. M. Gresho 
[12], we studied the fluid flow in a square cavity consisting of two adiabatic 
horizontal walls and vertical walls (left and right) subjected to constant hot and 
cold temperatures respectively at their centers. 

In addition, numerical results in terms of Nusselt numbers were compared 
with those in the literature. We found a good agreement for a 81 × 81 mesh as 
shown in Table 1. 

2.3. Numerical Procedure 

The governing Equations (3)-(5) are discretized using the finite volume formu-
lation with the central difference scheme. The region of interest is covered with 
m vertical and n horizontal uniformly spaced grid lines. The numerical solution 
is truly transient. An iterative process is employed to find the temperature and 
vorticity fields. The process is repeated until the following convergence criterion: 

1 1
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1 1
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           (6) 

In the above expression n is any time level: in the square cavity, the flow de-
pends on the time. Unsteady laminar natural convection in a cavity with partial-
ly thermally active side walls is studied numerically (code Fortran 90). The cal-
culation time was of the order of: 
-for the mesh 41 * 41 

( )
( )

12 minutes 1000

11 minutes 10000

Ra

Ra

=


=
                    (7) 

 
Table 1. Local Nusselt number for Ra = 100,000. 

Authors 
localNu  

G. De Vahl Davis [11] P. M. Gresho [12] Present Study 

maxNu  7.717 7.731 7.804 

Y 0.081 0.0746 0.085 

minNu  0.729 0.7277 0.809 

Y 1 1.0 0.984 
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-and for the mesh 81 * 81 

( )
( )

57 minutes 100000

01 h 05 minutes 1000000

Ra

Ra

=


=
                    (8) 

3. Results and Discussion 

We performed our simulations by varying the Rayleigh number. 

3.1. Nusselt Number 

Thermal exchanges during the flow of the fluid are characterized by the number 
of Nusselt. It is a dimensionless number which represents the ratio between the 
heat flux exchanged by convection to that by conduction. The rate of heat 
transfer by convection in a cavity is obtained from the calculation of the Nusselt 
number. We are interested in heat transfer at the heated part. The Nusselt 
number measures the effectiveness of convection. The convective heat transfers 
(local and average) on the hot active part are expressed respectively by: 
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We note in Figure 2 that the convective heat transfer increases with the 
number of Ra. In the beginning, the growth is weak (conduction regime), then it 
becomes important when the number of Ra exceeds 1000. The differences 
between the local numbers of Nusselt become accentuated as the number of Ra 
increases. We notice that this number reaches its maximum when the first 
contact between the fluid and the hot wall is made (heat exchange becomes 
important). 
 

 
Figure 2. Variation of the local Nusselt number along the active part for different Ray-
leigh numbers: middle active locations. 
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The local Nusselt numbers for various grid sizes are presented to develop an 
understanding of the grid fineness that is necessary for accurate numerical 
simulation. Hence considering the accuracy of the results required and 
computational time involved, an 41 × 41 grid size is chosen for (Ra = 1000, Ra = 
10,000) and an 81 × 81 grid size is chosen for (Ra = 100,000, Ra = 1,000,000). 
There is a considerable change in the local Nusselt number from Ra = 1000 to Ra 
= 1,000,000. The Nusselt number profiles gradually decrease until reaching a 
minimum value. This is explained by the fact that the temperature difference 
between the fluid and the hot wall starts to drop, which gives a low heat flow. If 
Nu = 1, there is no convection and if the Nusselt increases, convection cooling is 
more and more effective. The relative variation of the local Nusselt number 
along the active left portion is illustrated in Figure 2 for different Rayleigh 
numbers. 

3.2. Influence of the Variation of Time 

Natural convection is a movement whose origin is a thermal imbalance. It dis-
appears when the temperature gradients are zero. In the cavity, the flow is un-
steady and therefore depends on the time. The established flow is a spatial no-
tion while the notion of unsteady (non-permanent) flow is a temporal notion. It 
would be interesting to see how temperature changes over time at points on the 
cavity. To study the temporal behavior of the flow, we studied the temperature 
fluctuations at two points (A and B) located respectively on the left and right 
walls. These latter points are discussed below. We have chosen these points, al-
though many more can be established, because they constantly come up in our 
study and, as we see it, represent the essential issues relating to heat transfer. The 
central parts of the vertical walls are at imposed temperatures (horizontal gra-
dient). 

Our point A is marked with a pink color (Figure 3). Figure 4 shows the tem-
perature variations of a point A at the top of the left vertical wall as a function of 
time for different Rayleigh numbers. We have temperature profiles as a function 
of time that increases before stabilizing. The curves are upward before becoming 
constant, which is explained by the rise of hot air. In Figure 4(a), for a given 
time (t = 50 s), the temperature profiles are almost constant whereas for Figure 
4(b), they are almost constant at t = 25 s. In Figure 4(c), for a given time (t = 20 
s), the temperature profiles are almost constant whereas for Figure 4(d), they 
are almost constant at t = 15 s. 

Our point B is marked with a pink color (Figure 5). Figure 6 shows the tem-
perature variations of a point B at the bottom of the right vertical wall as a func-
tion of time for different Rayleigh numbers. We have temperature profiles as a 
function of time that decreases before stabilizing. The curves are descending be-
fore becoming constant, which is explained by the descent of cold air. The 
movement of the air in the form of a clockwise vortex is explained by the fact 
that we neglect the density variations in all the terms except in the Archimedes  
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(a)                                       (b) 

 
(c)                                       (d) 

Figure 3. Temperature field and point A for different Rayleigh numbers: (a) Ra = 1000; 
(b) Ra = 10,000; (c) Ra = 100,000; (d) Ra = 1,000,000 at the end of simulation. 
 
Principle. In Figure 6(a), for a given time (t = 50 s), the temperature profiles are 
almost constant whereas for Figure 6(b), they are almost constant at t = 25 s. In 
Figure 6(c), for a given time (t = 20 s), the temperature profiles are almost con-
stant whereas for Figure 6(d), they are almost constant at t = 15 s. We can also 
point out that the temperature profiles on the upper left and lower right walls 
vary in opposite ways, reflecting incessant movements of cold and hot particles 
from the walls to the inside of the cavity. This agitation is much more prevalent 
if the Rayleigh number increases. 

3.3. Histograms of Temperature 

The histogram is a graphical presentation of the distribution of a variable. In this 
part we have analyzed temperature graphs over time for different Rayleigh 
numbers. In statistics, a histogram is a type of column chart that shows the 
distribution of the data. They are frequently used because their standardized 
format makes them easily understandable and promotes communication 
between users, even those unfamiliar with statistical methods. Thus, we clearly 
see the temperature that dominates every moment in the cavity thanks to the  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4. Temperature fluctuations at point A for different Rayleigh numbers: (a) Ra = 
1000; (b) Ra = 10,000; (c) Ra = 100,000; (d) Ra = 1,000,000 over time. 
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(a)                                       (b) 

 
(c)                                       (d) 

Figure 5. Temperature field and point B for different Rayleigh numbers: (a) Ra = 1000; 
(b) Ra = 10,000; (c) Ra = 100,000; (d) Ra = 1,000,000 at the end of simulation. 
 
height of the peaks. 

Histograms are useful for illustrating changes in data over a period or 
illustrating comparisons between elements. Each histogram is composed of 
adjoining columns of varying heights. The ordinate (y-vertical axis) receives the 
values and the abscissa (x-horizontal axis) determines categories. Columns are 
drawn from the x-axis to the value of the y-axis. Categories are grouped into 
classes or groups. As the cavity is heated differentially, temperature histograms 
are established for different Rayleigh numbers as shown in Figure 7. 

-For Ra = 1000 and for Ra = 10,000: the histograms 7(a) and 7(b) show that 
the temperature measures have their peaks around 295 K. 

-For Ra = 100,000: the histogram 7(c) shows that the temperature measures 
have two peaks, one around 294 K, and another higher peak around 296 K. 

-For Ra = 1,000,000: the histogram 7(d) shows that the temperature measures 
have two peaks, one around 280 K, and another higher peak around 310 K. 

3.4. The Isovorticity Contours 

Some works of natural convection in a cavity are also studying vorticity [13]  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6. Temperature fluctuations at point B for different Rayleigh numbers: (a) Ra = 
1000; (b) Ra = 10,000; (c) Ra = 100,000; (d) Ra = 1,000,000 over time. 
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(a)                                       (b) 

 
(c)                                       (d) 

Figure 7. Temperature histograms: (a) Ra = 1000; (b) Ra = 10,000; (c) Ra = 100,000; (d) 
Ra = 1,000,000 at the end of simulation. 
 
[14]. A vorticity represents a vector quantity that locally measures the rotation of 
the fluid (whatever its state). In mathematical terms, the vorticity is equal to the 
rotational velocity vector of the wind. 

We have varied the temperature variation of the heated parts until a Rayleigh 
number belonging to the range of 1000 to 1,000,000 is obtained in a laminar 
regime. We solved the problem from the finite volume method by solving the 
system for Prandtl Pr = 0.72 (air). Let us note that the computation times for a 
finer mesh 81 * 81 (Ra = 100,000 and Ra = 1,000,000) are here equal to 
approximately 5 times those in case the mesh size is 41 * 41 (Ra = 1000 and Ra = 
10,000). The computation times become increasingly longer with the increase of 
number of cells of the mesh since the solver has more values to be determined. 
The simulation is based on a modeling of the problem which required 
assumptions that simplify. Since the flow is unsteady, numerical simulations 
have been carried out for each Rayleigh number at different times. In Figure 8, 
we show the vorticity fields corresponding to the beginning of the simulation for 
each Rayleigh number. 

In Figure 9, we show the vorticity fields corresponding to the end of the  
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(a)                                       (b) 

 
(c)                                       (d) 

Figure 8. Contour maps of vorticity ω at the beginning of simulation: (a) Ra = 1000; (b) 
Ra = 10,000; (c) Ra = 100,000; (d) Ra = 1,000,000 inside the cavity. 
 

 
(a)                                       (b) 

 
(c)                                       (d) 

Figure 9. Contour maps of vorticity ω at the end of simulation: (a) Ra = 1000; (b) Ra = 
10,000; (c) Ra = 100,000; (d) Ra = 1,000,000 inside the cavity. 
 
simulation (final time). We can observe the existence of a stagnant zone in the 
center of the cavity, which means that the heat exchange takes place in an 
intense way at the corners of the cavity (Figure 9(a) and Figure 9(b)). In Figure 
9(c) and Figure 9(d), for higher Rayleigh numbers, we observed the existence of 
two recirculation cells inside the cavity. In the course of time, we observe that 
the hot air is ascending for the left vertical wall and the cold air descends for the 
right one (Boussinesq approximation). The formation of the two cells shows that 
the solution has a symmetrical flow. The plot of the vorticity shows the existence 
of a two-dimensional centro-symmetry in the shape of the simulations. This 
property is described in the literature, it concerns the three fields U, V and θ and 
it is stated as follows: 
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( )( ) ( )( ), , , , , 1 ,1U V X Y U V X Yθ θ= − − −            (11) 

4. Conclusions 

In the present study, we studied laminar natural convection in a two-dimensional 
confined environment differentially heated by numerical simulation and filled 
with a fluid. The geometric configuration of the physical model is a square cavi-
ty, subjected to a horizontal temperature gradient. Temperatures have been im-
posed on the central halves of the vertical walls, knowing that the left one is 
warmer than the one on the right. The inactive parts being adiabatic like the ho-
rizontal walls, fluidic movements have been created inside the cavity. Based on 
the Boussinesq approximations, a mathematical model describing the problem 
was developed. It was approached using a numerical approach, based on the fi-
nite volume method, using a code Fortran and a visualization tool ParaView. 

The model developed makes it possible to determine the number of Nusselt, 
the fields, profiles and histograms of temperature, as well as the isovorticity 
contours in all the field studied. The analysis consisted in studying the influence 
of Rayleigh number variation and time too on temperature and vorticity fields. 
As the Rayleigh number increases, the heat transfer rate also increases. The 
results show the existence of a two-dimensional centro-symmetry. In this study, 
we studied the influence of certain parameters such as Rayleigh number on 
(Nusselt number and isovorticity contours) and also the effect of time on 
temperature profiles. From the set of numerical results we can conclude that: the 
Rayleigh number has a great influence on the dominant heat transfer mode in 
the cavity especially for the number Ra = 10,000 where the convective motion 
begins and for Ra = 1,000,000 where convection is dominant. So the heat 
exchange in the cavity increases with the increase of Ra. The determination of 
the flow field allowed us to analyze the behavior of the fluid inside the cavity. 
For a small number of Rayleigh, of the order of 1000, we have noticed the 
dominance of the mode of heat transfer by conduction. Beyond this value, 
convection dominates and appears more clearly for Ra = 1,000,000. We validated 
for each case our code based on the results of other authors. These results 
illustrate the importance of convective flow in many natural phenomena and 
industrial applications such as the development of materials, energy production 
and storage, solar collectors, double glazing for thermal insulation, etc. 
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Nomenclature 

A, Side of the cavity, m 
max, Maximum 
Nu, Nusselt number 
Pr, Prandtl number 
Ra, Rayleigh number 
s, Length of active parts, m 
t, Dimensional time, s 
T, Dimensional temperature, K 
Td, Dimensional temperature of right active part, K 
Tg, Dimensional temperature of left active part, K 
Tr, Reference temperature, K 
u, Dimensional horizontal velocity, m/s 
U, Dimensionless horizontal velocity 
v, Dimensional vertical velocity, m/s 
V, Dimensionless vertical velocity 
x, Dimensional abscissa, m 
X, Dimensionless abscissa 
y, Dimensional ordinate, m 
Y, Dimensionless ordinate 

Greek Symbols 

α, Thermal diffusivity, m2/s 
β, Coefficient of thermal expansion, 1/K 
ζ, Dimensionless vorticity 
θ, Dimensionless temperature 
ρ, Density of fluid, kg/m3 τ, Dimensionless time Ψ, Dimensionless stream 
function ψ, Dimensional stream function, m2/s ω, Dimensional vorticity, s⁻¹ 

Subscript 

i, j, Indices  
local, Local value  
max, Maximum value  
min, Minimum value  
0, Reference. 

Superscript 

−, Average value  
n, Any time level. 
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