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Abstract 
Polyethylene oxide solutions have a behavioral flexibility that provides re-
searchers with the opportunity to use constitutive law models in a variety of 
ways for their MRI characterization. Our results obtained in numerical simu-
lation carried out in 2D and 3D for speed profiles of a solution of PEO dep-
loyed by the simple method of the cylindrical Couette geometry considering 
the fluid Newtonian defect, allowed to identify the behavior of fluid complex 
(rheo-fluidifying threshold fluid). The relevance and the interest of the me-
thod are examined by analyzing these results generated by the numerical data 
obtained, since these profiles depend on the non-Newtonian properties of the 
fluid which one does not know a priori and which one seeks to measure by 
postulating first to the power law of Ostwald, then to the truncated power law. 
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1. Introduction 

It is well known that the use of an industrial product of any kind always requires 
the use of materials in generally liquid, pasty or solid states with a choice based 
on the physical, chemical, mechanical and rheological properties obtained by 
experimental means. Natural polymers or synthetic polymers, with very maneu-
verable properties, are no longer a scarce commodity and their uses are wide-
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spread and varied in industrial sectors, basic academic research and in the com-
mercial sector; the case of polyethylene oxide has better advantages because of its 
low cost and its behavioral flexibility. For example, PEO is used as an additive in 
polymerization reactions to prevent foaming and promote polymerization (in 
the production of vinyl chloride and acrylonitrile butadiene styrene) [1], or for 
spinning nanofibers. 

The rheological properties of polyethylene oxide solutions are related to the 
concentration, molecular weight, nature of the solvent, external parameters 
(temperature, pressure) and microstructural interactions (polymer-solvent or 
polymer-polymer) [2] [3], and on the other hand that the polyethylene oxide is a 
rheo-fluidifying or rheo-thickening fluid with threshold in steady state [2]-[10]. 

In our study, we used Couette geometry to simulate and evaluate the 
non-uniform flow curves of the PEO solution at an entanglement concentration. 
We then study the rheological behavior of this solution in order to convert the 
imposed or measured experimental quantities of torque and rotational speed in-
to Couette geometry in the form of a shear rate constraint relationship. The 
process initiated from the Newtonian model used by default, continues with the 
Oswald law model (which has remarkable shortcomings in not taking into ac-
count the localization observed when the solution is flowed at low velocities of 
rotation since the existence of a flow threshold is not predicted by this model) 
and then to the model of the truncated power law. In particular, we would like to 
show that the use of the Reynolds number eR  which is the main parameter go-
verning the different types of fluid flows in the Couette cylindrical geometry is 
possible. 

2. Materials and Equipment 

The sample of the material used in this study is a solution based on polyethylene 
oxide (PEO) with a molar mass of 106 (g·mol−1) and a concentration of 1.8% wt. 
PEO is a linear chain nonionic polymer [CH2-CH2-O]n. The choice is made on 
the geometry of Couette with imposed shear (i.e. we measure the torque on the 
inner cylinder after having imposed its rotational speed ω = 2πN (rd./s), of the 
coaxial cylinders type with wide gap in front of the microstructure size to avoid 
the effect of size which makes the smooth surface of cylinder 1R  sensitive to 
slippage, hence its coating sometimes with the Emeri canvas. The shear in the 
geometry is considered homogeneous, which can ensure that the material has 
the same structure throughout the air gap. The two coaxial cylinders are of inner 
radius ( )1 13.375 mmR =  and rotates at an angular velocity of 0.002 to 0.9 
(rd./s), resulting in low rotational speeds of 0.0026 to 1.20 (cm/s) and shear ratio 
of 0.2 to 96 (s−1). The cylinder 1R  with height h = 40.12 (mm) ensures suffi-
cient contact to increase the torque. The outer radius ( )2 13. mm55R =  is fixed, 
the curvature R1/R2 = 0.99. The numerical simulations of the velocity profiles are 
carried out with the software MATLABR2008b. The conversion of the macros-
copic data into a behavior law requires an adapted analysis.  
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3. Rheological Study in Steady State  
3.1. Speed Profile for a Newtonian Fluid in a Cylindrical Couette 

The first work is based on the determination of the shear rate on which the con-
stituent laws predominantly lead to the equations of the velocities. In cylindrical 
coordinates, this requires knowledge of the speed gradient from which they de-
rive [11]. Regardless of the laminar flow fluid in the Couette cylindrical geome-
try, the shear rate depends on the tangential velocity component ( ) ( ),rV rθ  ex-
pressed by Equation (1) [12]. 

( ) ( ) ( ) ( ) ( ), , ,r r rV r V r V
r

r r r r
θ θ θγ

∂  ∂
= − =   ∂ ∂  
                  (1) 

The search for the velocity profile under the multiple flow hypotheses is done 
as follows: 

1) Laminate which imposes a low speed for a displacement in layer of lamellae 
with respect to each other causing friction forces; 

2) Isothermal or permanent to express the independence of variables over 
time; 

3) Incompressible; 
4) In the cylindrical coordinate system (r, θ, z) where the components of the 

axial, tangential and radial velocities are respectively zV , ( ),rV θ , rV , taking into 
account the symmetry of the problem with respect to z and at θ and in the ab-
sence of an axial pressure gradient, 0zV =  and ( ),rV θ  is independent of θ; 

5) The forces of inertia are at all points and at all moment’s negligible vis-à-vis 
the forces of viscosity, which is expressed by: 1eR  . 

The constitutive equation which connects the stress to the shear rates is given 
by Equation (2): 

( ) ( ),r rω γτ η=                             (2) 

This shear rate is derived from the expression of the velocity given by Equa-
tion (3): 

( ) ( )
2 2
1 2

, 2 2
2 1

r
R RV r r
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ω  

= − + 
−  

                    (3) 

or: 

( ) ( )

( )

2
2

,

1
2

2 1

,

with:

e e NGAr

NGA

RV R r R K r
r

RK
R R e

ω

µ

  
= − +  

 



 =

+

                  (4) 

NGAK  is the period of fluid flow in the air gap in (s−1).  
The Equation (4) reformulates the Equation (3) in consideration of hypothes-

es (5), so that the flow velocity takes into account the property of the solution 
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related to the Reynold number ( )1eR eRω µ=  with µ η ρ= , the angular ve-
locity ω (rd./s) and the geometry of the duvet outlet device having internal radii 

1R  and outer 2R . The resulting shear rate is given by Equation (5): 

( )
2 2
1 2

2 2 2
2 1

2 1R Rr
R R r
ω

γ =
−

                         (5) 

Thus the stress at the inner cylinder 1R  or at any radial position cr  mm is 
given by the Equation (6): 

( ) ( )1, 2
12πr

MR
hRωτ =                         (6) 

A fluid is Newtonian if its dynamic viscosity is independent of stress and shear 
duration. There are a large number of fluids very commonly used which have a 
more complex flow behavior. In the case of polymer solutions when the concen-
tration of the polymer is greater than the overlap concentration (c > c*), the in-
teractions are essentially attractive and the polymers attract each other and at-
tach to each other [4] [13]. Tangles of molecules appear and the polymer - po-
lymer interactions become predominant with respect to the solvent-polymer in-
teractions and the solution becomes complex and the flow curve is non-uniform 
as in the case of this work. The rheology makes it possible to characterize these 
fluids and to deduce the hypotheses of structuration.  

The expressions of the shear rate and the stress in the air gap depend strongly 
on the radius of the virtual cylinder (r). Because of this dependence, these two 
quantities are measured at the same place and for a Newtonian fluid we can 
write: ( ) ( )r rτ γη=  . In practice, rheometers indicate average values of stress 
and shear rate local in the air gap for this Newtonian fluid. 

 
2 2 2 2
1 2 1 2

2 2 2 2
1 2 2 1

and
4π
R R R RM

HR R R R
σ ωγ

+ +
= =

−


                 (7) 

If the fluid is not Newtonian, man can expect a difference between the law of 
actual behavior of the material ( )fσ γ=   and that given by the rheometer 

( )fσ γ= 
    . However, when the cell used has a small difference that is to 
say when 2 1 1R R R−  , it is possible to confuse the macroscopic law of the 
rheological behavior given by the rheometer with most non-Newtonian local 
rheological behaviors. In this work, it is essential to use a wide gap rheometer to 
identify the actual varying behavior of the sheared fluid. 

3.2. Numerical Simulations in 2D and 3D Speed Profiles 

1) Numerical Simulation in 2D 
The second work of our rheological study after the first which allowed to es-

tablish the laws of the profiles of speed will lead to their simulation in the cen-
tered Couette geometry with a wide gap: the inner cylinder is moving at an an-
gular velocity ω (rd./s) or controlled by eR  (Reynolds number), the outer cy-
linder is fixed, for a polyethylene oxide solution with a concentration of 1.8 wt%. 
According to Equation (3) and Equation (4), two profiles of dimensionless ve-
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locities are used: The first profile of Figure 1, continuous lines, is obtained from 
the ratio of Equation (3) relative to the effective value (i.e. 1R  maximum value 
of this speed 0V  (mm/s) at the level of the inner cylinder 1R ). The second tri-
angle profile is also obtained from the ratio of Equation (4), with respect to its 
same effective value 0V  (mm/s). The two velocity profiles are obtained follow-
ing numerical simulations with MATLABR2008b at an angular velocity ω = 0.9 
(rd./s) and at 0.0075eR = . 

2) 3D numerical simulation and analysis 
The main interest of 3D modeling is to see the velocity profiles in spatial 

mode in order to graph the different zones of the velocity profile and the condi-
tions of inhomogeneous flows in steady state Figure 2(a). It is important to un-
derstand that the local rheological model used must obey certain conditions so 
that blocked regions and flowing regions can coexist, we will see further. Indeed, 
in this case, the same material, subjected to the same shear stress cτ  (Pa), must 
be simultaneously present in two distinct states of deformation Figure 2(b). A 
mathematical condition that allows this coexistence is the existence of an unsta-
ble zone in the flow curve of the material [14] [15] [16], due to a decrease in the 
rheological law within a certain range of shear rates. But as the portion of insta-
bility is not a general case of the curves of flow; the case of foams, how is the 
coexistence of bands at different shear rates possible? [17]. 
 

 
Figure 1. 2D sized air velocity profiles in the air gap of a Couette cell. (a) Modeling according to the initial theoretical law of the 
fluid velocity of ( ) 0,V r Vω  (continuous line); (b) According to the modified theoretical law of the fluid velocity ( ) 0,eV R r V  

(triangular marks). rc marks the interface between the solid zone and the liquid zone for a flow in the geometry. The variation of 
the shear rate with the velocity profile from 2γ  (s−1) to 1γ  (s−1) is observed before falling into the blocked zone. 
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                                       (a) 

 
                                        (b) 

Figure 2. (a) Resilient velocity profiles ( ) ( ) 0,rV r Vω  and  ( ) ( ) 0,eR rV r V  in 3D showing blocked re-

gions and flowing regions. The color bar informs us about the evolution of the magnitude of the ve-
locity profiles as a function of the parameters on which they depend in the air gap. Thus the high 
shear level of 0.65 to 1 at high speed in a restricted air gap develops high shear rates with very low 
viscosity. This viscosity increases gradually with the reduction of the shear rate from 0.65 to 0.35 and 
then from 0.35 to 0 with the increase of the air gap: we pass from the flow zone to the blocked zone. 
(b) The profiles of the same velocities in the plane (ω, r) showing a localization around the cylinder 
R1 and the trajectory of the projectile of the fluid jets, the direction of rotation is that of the hands of 
a watch. 
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Works of [4] [13] and that the fluid appears as a threshold fluid, that is to say 
that the applied stress must exceed a certain critical value called threshold stress 
for the flow to begin to occur. Many authors have specified this notion of thre-
shold constraint [18] [19] [20] [21]. These materials may be solid under a certain 
level of stress, and therefore have a certain arrangement within which the ele-
ments are blocked, and liquids beyond a certain constraint, and thus have an in-
different arrangement and movable elements. These fluids undergo a smooth 
transition from the solid regime to the liquid regime around a given stress, 
which means that its flow curve ( vsτ γ ) presents, in a logarithmic representation, 
a plateau with low velocity gradients. Its apparent viscosity tends to infinity 
when γ  (s−1) → 0. 

3) Observations 
For the two 2D curves of Figure 3(a) and Figure 3(b), a discontinuity in the 

slopes of the velocity profiles is observed in this Couette geometry. This situation 
reflects the heterogeneity of the shear rate and, also of the stresses in the fluid. 
The velocity profiles each have an almost constant slope 2γ  (s−1) over a signifi-
cant distance, and they fall to 1γ  (s−1) as in and then tend to zero and remain 
around this value for larger distances of the inner cylinder. They thus corres-
pond to the velocity profiles obtained for a shear flow of giant micelles [22] in a 
Couette viscometer by laser velocimetry approach (PIV: Particle Image Veloci-
metry) and nuclear velocimetry (MRI: Magnetic Resonance Imaging), for gra-
nular materials [23], for polymer suspensions [24], and more generally for com-
plex fluids [25] [26] [27].  

This rheological study not only leads to the obtaining of rheological quantities 
of fluids, but also provides a window through which other complementary cha-
racteristics are deduced, particularly the behavior that binds the stresses to the 
flow of the fluids. Fluids according to theoretical, linear and non-linear mathe-
matical models existing in the current literature [28]. The simulation of the two 
models of theoretical mathematical relation which are established in Equation 
(3) and Equation (4), will make it possible to understand and to identify the ma-
terial by its mechanical behavior studied through the curves of the profiles of 
speeds from which derives the shear rate. The conditions of appearance or not of 
flow can be summarized as follows: 

( )

( ) ( )

2 ,

2 2 2
1 2 2

1 , ,2 2
2 1

0

and

e

c r

c er R r

r r R V

R R RR r r V r ou V R K r
r rR R

ω

ω
ω

⇒ =




    ≤ ⇒ = − + = − +    −    

 



   (8) 

4) The critical values of rotation speed and Reynolds number 
In order to show all the influence of the angular velocity or of the Reynolds 

number on the modeling of the velocity profiles and consequently on the flow of 
our fluid in the Couette cylinder, we will again carry out two representations of 
the same profiles sized with the variation of these two parameters Figure 3(a)  
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                               (a) 

 
                               (b) 
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                            (c) 

Figure 3. Profiles of local speeds 2D in the air gap of a Couette cell with the variation of the experimental parameters (a) 

( ) 0,V r Vω  for different rotational angular velocities (0.02 to 0.9 (rd./s) imposed on the inner cylinder, (b) 

( ) 0,eV R r V  for different Reynolds number (0.000002 to 0.0076), (c) zoom out to (a) and (b). 

 
and Figure 3(b). We observe in the two cases of 2D representation of Figure 3 
that for higher velocities of rotation ( )0.8 rd. scω ω> =  which correspond to 

454 10e ecR R −> = × ) the reduced velocity profiles ( ) 0,rV Vω  and ( ) 0,eR rV V  
have non-zero values throughout the air gap and remain very close to one 
another. This is not the case for lower rotational speeds, precisely for 

( )0.6 rd. scω ω< =  which correspond to 33 10e ecR R −< = × , shear is more and 
more localized in the vicinity of the inner cylinder with the decrease of this rota-
tion speed or of the Reynold number and the zoom out of Figure 3(c) shows it. 
This also shows the results which corroborate with the results obtained in MRI 
in the works of [23] [24]. 

5) Location of the shear  
When the stress field in geometry is heterogeneous, the shear rate is zero in 

the zones where the shear stress τ is less than the flow threshold cτ  (Pa). This is 
the case in cylindrical pipe flows where the shear stress is proportional to the ra-
dius: the material is sheared only near the walls and the central part of the ma-
terial (where cτ τ< ) is transported at constant speed, then the shear is loca-
lized. This problem is found in the rheometry of threshold fluids where the ve-
locity field measured locally by MRI during the flow of a concentrated emulsion 
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in the Couette geometry is represented. In the case of our study by a numerical 
simulation in Figures 1-3, we note that the material is not sheared in the whole 
of the air gap: there is a zone near the outer cylinder where the speed is zero. 
Moreover, the size of the sheared zone decreases when the rotation speed ω of 
the inner cylinder or the Reynolds number Re is decreased as shown by the work 
[23] [24] [29]. 

Thus, we can say that at low rotational speeds which correspond to very low 
numbers of Reynolds Figure 3(a) and Figure 3(b) or (i.e. ( )0.02 rd. scω =  
which correspond to 62 10eR −= × ), the velocity profiles only deploy over a 
small part of the air gap close to the inner cylinder of radius 1R  therefore the 
shearing decreases with the decrease of the angular velocity or the number of 
Reynolds: there is localization of the shear, only a small fraction of the material 
is sheared. However, by increasing the rotational speed, we observe that the 
higher the rotational speed, the larger the shear fraction of the material, the 
greater the air gap [23] [24] [29]. The assembly then thickens and the engines 
can no longer rotate the inner cylinder: the system is blocked systematically. 
This blocking can be attributed to the rheo-thickening by the abrupt increase of 
the torque measured on the axis of the rheometer [24]. In order to see explicitly 
what has just been said in the paragraph above, a zoom out is carried out in Fig-
ure 3(a) and Figure 3(b). Moreover, the discontinuity of the shear rate in two 
regions shows the existence of at least two shear rates: 2γ  is constant for the 
liquid zone and 1 0γ →  for the solid zone in Figure 4. This behavior when va-
ried γ , 1 2γ γ γ< <    is closer to what is usually described as flow in shear 
bands, i.e. the flow is heterogeneous (nonlinearity of the velocity gradient with 
several regions sheared locally at different shear rates [30] [31] [32] [33]. It may 
thus appear paradoxical that the same material, subjected to a uniform or sub-
stantially heterogeneous shear stress cτ  (Pa) between two coaxial cylinders or 
between two plates, may be simultaneously present in two distinct states in dif-
ferent regions of the flow. This situation is explained mechanically by a fluctua-
tion of the stress, which translates into another term by the relation of depen-
dence between stress and shear rate.  

6) Shear band 
The fact that we obtain two different zones at different shear rates 2γ γ<   

and 1γγ >   translates a mechanical instability (existence of an elastic limit) [34] 
as in the case of micelles giant. It is expected that a phase coexistence for 

1 2γ γ γ< <    in the form of a heterogeneous flow consisting of two locally 
sheared regions with characteristic shear rates 1γ  (s−1) and 2γ  (s−1) Figure 4. 
Such a so-called shear bend flow was clearly demonstrated for the first time in 
cylindrical Taylor-Couette geometry a decade ago thanks to the use of velocime-
try techniques locally probing the velocity field at d rheology experiments [30]. 
The shear bands are frequently accompanied by large fluctuations of the velocity 
field [31]. The team of Sandra Lerouge was able to explain these fluctuations as 
emanating from an elastic instability in the “aligned phase” [35]. While the inertial  
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Figure 4. Evolution of the shear rate for the local velocity profiles in the air gap of a Couette cell with the variation of the experi-
mental parameters. The variation of the shear rate with the 2γ  (s−1) flow velocity profile at 1γ  (s−1) is observed before falling 
into the blocked zone (dead zone). 

 
force (centrifugal force) is the driving force of Taylor-Couette instability in a 
simple fluid, elastic in stability is generated by the (centripetal) forces exerted 
along curved current lines [33]. In the case of flow in shear bands, instability 
develops only in the heavily sheared region. There follows a very particular flow 
in which the Taylor-Couette rollers deform the interface between the two shear 
bands. Mechanically, these fluids can be considered as flow stress fluids in the 
sense that they can- not flow at steady state unless the stress applied to them ex-
ceeds a value critical and finite. This property results from the existence of a 
continuous network of interactions (i.e. blocked structure) between the ele-
ments, which must be broken for flow to occur. The elastic limit of the material 
is therefore related to the resistance of this network. On the other hand, on our 
curve in Figure 4 a discontinuity in the slope of the velocity profile measured 

https://doi.org/10.4236/ojfd.2017.74044


N. Ngarmoundou et al. 
 

 

DOI: 10.4236/ojfd.2017.74044 684 Open Journal of Fluid Dynamics 
 

during flows for very low speeds. 
The velocity profile at an almost constant slope at a distance and sharply de-

creases to near zero and maintains this value for greater distances. We still have 
the coexistence of a solid region and a liquid region in such a flow. However, 
there is here a discontinuity of the shear rate at the interface between the two re-
gions: the shear rate is critical at a point of shear rate cγ  (s−1) in the liquid re-
gion and equal to zero in the solid region. This behavior is closer to what is 
usually called the shear band [24] [29]. 

The velocity profile at an almost constant slope at a distance and sharply de-
creases to near zero and maintains this value for greater distances. We still have 
the coexistence of a solid region and a liquid region in such a flow. However, 
there is here a discontinuity of the shear rate at the interface between the two re-
gions: the shear rate is critical at a point of shear rate cγ  (s−1) in the liquid re-
gion and equal to zero in the solid region. This behavior is closer to what is 
usually called the shear band [24] [29]. 

7) Position of location and link between microscopic and macroscopic mea-
surements 

Since the paragraph 3.2, the explanatory approach of the behavior of our ma-
terial in the geometry to start and will continue for the determination of the 
quantities that will allow to establish the law of complete behavior of the materi-
al. It is necessary to determine the threshold of the material which will be added 
to a power law. In fact, the position of location shows in the Couette geometry 
the area or shear fluid in fraction and the zone or the fluid shears totally accord-
ing to thicknesses cr  (mm) Figure 5 with the increase of the angular velocity ω 
(rd./s) or the Reynold number eR . This value of cr  (mm) is a geometric factor 
which makes it possible to obtain, at first glance, the apparent shear rate c crγ  
imposed in the sheared region cr  (mm). Then, as the behavior of Figure 1 and 
Figure 2(a) shows the inhomogeneity of the stress in the material studied, the 
variation in the state of the liquid structure in solid, while the shear stress τ(R) at 
a radial position (r) in the centered duvet geometry is written [36]: 

( ) 22πR M hRτ =                         (9) 

M is the torque applied to the inner cylinder of radius 1R  and of height h 
given by Equation (9) above. The measurement of the critical radius cr  (mm). 
To which the material ceases to flow imposes knowledge of the critical stress 
characterizing the flow threshold by other means and the knowledge of the tor-
que applied to the inner cylinder will make it possible to deduce the location cr  
(mm) as in Equation (9) (i.e. ( ) 22πc c cr M hrτ = ). 

We obtain a threshold stress cτ  (Pa), a constraint which is sometimes too 
low to be detected by a simple experiment such as an inclined plane test [37]. 
Thus, although the solution does not seem to behave macroscopically like a 
threshold fluid, it sometimes has a very low threshold. It is also noted that there 
exists a shear rate associated with this flow threshold given by Equation (10) be-
low in a Couette cell. 
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Figure 5. Evolution of the size of the interface rc between the sheared zone and the unsheared zone as a function of the speed of 
rotation for a large gap 4.5 (cm). When the air-gap is reduced by 2 (mm), the interface becomes linear. 

 

( ) ( ) ( )V r V r
r

r r
γ

∂
= −

∂
                       (10) 

At the interface of the sheared and non-sheared zones characterizing the 
stoppage of flow, the associated shear rate is given by the slope of the velocity 
profiles. This rate corresponds to cγ  (s−1), and below this threshold cγ  (s−1), 
value, there is no stable flow. The existence of a threshold shear rate associated 
with a stress threshold is a general property of threshold materials discovered 
recently [36]. Thus, for given cγ  (s−1), to lower values, the whole sample is 
sheared. Also for higher values cγ  (s−1), cr  (mm) increases and the fluid is 
sheared throughout the air gap. cγ  (s−1) is the same for two different air gaps 
[23]. Also in the gap, the local shear rate decreases exponentially in Figure 4 and 
Equation (5). This leads to the variation of the constraint in 21 r  as we will 
show by the conservation of the moment. The viscosity also varies according to 
the equation in the air gap, and therefore two questions arise: can one define a 
viscosity for the viscous solution which could completely characterize its resis-
tance to flow? Will it have compatibility for a viscous solution between the 
“overall” viscosity measured macroscopically without worrying about the speed 
profile and the “local” viscosity of the solution? [23]. These two questions thus 
pose problems between macroscopic and microscopic measurements. And ac-
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cording to the work of Nicolas Huang [30]: It is possible to measure the viscosity 
of the material from a profile locally, which is to say at a given distance, r (mm) 
from the axis of the cylinder of speeds. If it is possible to define a viscosity to the 
material, then, for the same stress, the local viscosity resulting from a velocity 
profile must be identical to the overall viscosity measured in the classic Couette 
cell experiments. Conservation of the moment in r (mm) and in 1R  leads to the 
determination of the local stress which varies as a function of 21 r .  

( )
2

2
i

i
R

r
r

σ σ=                           (11) 

Since the local shear rate is the spatial derivative of the velocity profile (slope 
of the profile), the local viscosity can be calculated as compared to the overall 
viscosity. The localization of shear is due to the fact that the shear stress ( ),Rωτ  
measured at low rotational velocity ω (rd./s) of the inner cylinder passes below 
the threshold at the interface and of Equation (12), the interface of the two zones 
of flow and of non-flow (dead zone) by the equation.  

( ) ( )
1

,
c

c

r
R R

τ ω
ω

τ
=                        (12) 

When ω  (rd./s) tends to 0, ( )cR ω  then tends to 1R , i.e. the thickness of 
flowing material tends to zero and the shear stress ( )1 ,R ωτ  on the inner cylinder 
tends towards cτ  (Pa) [29]. The two curves in Figure 1 each have a constant 
slope over a significant length of the air gap up to the value cr  (mm), and then 
the two slopes suddenly fall to a value which tends to zero for the large values of 
r (mm) on the rest of the gap. This value point cr  (mm) of the Equation (12) of 
the Couette geometry is defined in several ways [38] [39]. It is preferred to de-
fine it here as the position separating the discharge region from the rigid, or 
equivalently as the limit value of the radius at which the deformation rate is zero. 
This shows that we are in the presence of the coexistence of two regions, one 
solid therefore without flow or not sheared, and the other liquid sheared in such 
and such a fluid Figures 6(a)-(c). All observations and analyzes show that the 
velocity profile in the air gap is non-Newtonian, but it is possible to obtain a ve-
locity profile relationship as before by postulating a constituitve law for the fluid. 
Thus, assuming that the fluid obeys a power law of Ostwald of the Equation (13): 

nkσ γ=                              (13) 

8) Medialization 
This situation is presented as the behavior of stress fluids in simple shear 

which has a viscosity plateau. It is modeled according to Equation (14). 

( )

0
but:

c

n
c f k

τ τ γ

τ τ τ γ γ

 ⇒ =


 ≥ ⇒ = =




 

                    (14) 

and in this case, the final law of the behavior is: 
n

c Kτ τ γ= +                             (15) 
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                         (a)                                                           (b) 

 
(c) 

Figure 6. (a) Façade of the velocity profiles in the air gap of a Couette cell (dominance: partially sheared zone), and possibilities of 
encountering the flowing zone and the blocked zone from the parameters (ω, r). The level of the blocked band varies from ω = 
0.002 to 0.9 (rd./s) when the sheared space varies from r = 0.002 to 2 (mm). The locking is very important over a large space of the 
air gap (r), moving away from the cylinder R1 progressively with the decrease in the rotational speed or in the number of Rey-
nolds. (b) Behind plane facade of the velocity profiles in the air gap of a Couette cell. The velocity profile (dominance: totally 
sheared zone) shows the dominance of the sheared zone on the blocked zone with the increase of the two parameters always in the 
same plane (ω, r). The interface (rc) of the last profile is the first point of the border of this profile when it appears parallel to the 
axis r. rc = 1.5 (mm) and this value increases with the decrease of the angular velocity or the Reynolds number. (c) The basic plane 
showing the evolution of the velocity profiles from the clear zone to the dark blocked area. 
 

where cτ  (Pa) corresponds to the threshold constraint, it is deduced from the 
equation rheological equation. The rheograms of the experimental data are plot-
ted in the log-log coordinates. The number n represents the slope of the line ob-
tained and is also the index of structure. For 0 < n <1 the fluid is rheo-fluidifier, 
then n = 1 is the Bingham case and n > 1 the rheo-thickening case. K is the con-
sistency in [N sec2/m2], is given by the point of intersection of the line with the 
axis corresponding to 1γ =  (s−1). Since γ  in cylindrical coordinates is writ-
ten: 
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( ),rV
r

r r
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=   ∂  
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We have:  
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The system of Equation (8) is repeated for a complex fluid in the form: 

( )
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1 , 2
2 1
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θ ω

≤ ≤ ⇒ =
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
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− ≤ ≤ ⇒ = −

              (18) 

This model of velocity profile fairly well represents the flow of PEO solution 
Figure 7 and Figure 8. However, in addition to the shear rate which is not al-
ways constant Figure 9, it has a remarkable failure to take into account the loca-
lization observed during the flow of the solution at low rotation speeds, existence 
of a threshold is not predicted by this model. Indeed, the localization of the flow 
in Couette geometry is closely related to the flow threshold. Thus, in order to 
describe the localization, a truncated power model was proposed by Equation 
(20) [38] [39] [40].  

0c
n

c
c c

τ τ γ

τ γτ τ
τ γ

⇒ =


 
≥ ⇒ =  

 








                     (19) 

cτ  and cγ  correspond respectively to the stress and the shear rate at the in-
terface between the sheared zone and the non-sheared zone of the Equation (13). 
When 2cr R=  (mm), radius of the outer cylinder, there is no localization and 
the velocity profile remains analogous to that obtained by the Ostwald model.  

In this case the Ostwald law is not sufficient to analyze the non-localized ve-
locity profiles. On the other hand, in the case of low rotational speeds where the 
flow is localized, the characterization of the flow is performed by the truncated 
power law. In this case, the speed profile is given by: 

( )

( )

2 ,

2

1 ,

0

1
2 2

c r

n
c

c cr

r r R V

rnR r r V r

θ

θ γ

≤ ≤ ⇒ =
    ≤ ≤ ⇒ = −       



             (20) 

A second fundamental reason for the inadequacy of Ostwald Waele’s power 
law is that it has a linear range of viscosity at low shear rate on the log-log dia-
gram when this law is expressed in terms of viscosity. However, the fluid is 
rheo-fluidifying, and therefore characterized by the decrease of the apparent vis-
cosity when the shear rate increases. This assumes that this Ostwald power law is 
valid only within a certain range of shear rates. The Tile model satisfactorily 
represents the evolution of the viscosity as a function of the shear rate. Using the  
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                       (a)                                        (b) 

 
(c) 

Figure 7. Velocity profiles according to the Ostwald power law for the rheo-fluidifying 
material in an air gap R1/R2 = 0.99: (a) n = 0.2; (b) n = 0.5 for the rheo-fluidifying fluids 
and (c) n = 1 for the Bingham fluid. In all three cases, the material presents a plateau of 
velocity profiles before varying linearly in the radial space up to R2. 
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Figure 8. Velocity profiles according to the Ostwald power law for the rheo-fluidifying 
material in an air gap R1/R2 = 0.99: n = 0.2. (a) Fully sheared fluid ω = 0.9 (rd/s); (b) Par-
tially sheared fluid ω = 0.02 (rd/s). 
 

 
Figure 9. Ostwald power law shear rate curves for R1/R2 = 0.99. (a) Totally sheared fluid ω = 
0.9 (rd/s); (b) Partially sheared fluid ω = 0.02 (rd/s). 
 
values of n, cr , cγ  in the equation of the truncated model, we obtain the linear 
curves of Figure 10 as for Newtonian fluids [23]. 
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Figure 10. Velocity profiles according to the truncated power law for the rheo-fluidifying 
material in an air gap R1/R2 = 0.99. (a) rc = 1.5 (mm); n = 0.2; 0.38γ =  (s−1); (b) rc = 1.5 
(mm); n = 0.5; 0.38γ =  (s−1); (c) rc = 1.5 (mm); n = 1; 0.38γ =  (s−1). In all three cases, 
the material has a Newtonian velocity profile. The dimensionless values of the speeds are 
counted positively. 

4. Conclusion 

In this paper, we have presented the basic method for identifying the flow curve 
of a shear fluid in a Coutte cell and then the searching for the most appropriate 
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procedure for the determination of the rheological quantities that relate to this 
fluid. This method is simple and efficient through the results obtained numeri-
cally, but one can get rid of certain limitations related to the size of the air gap 
[41] which causes a flow not the identity of the material related to its properties, 
a priori choice of a law of behavior, flow regime in the air gap, and preliminary 
assessment of the flow threshold. Thus, the characterization of the polyethylene 
oxide solution was made possible by converting the macroscopic data (angular 
velocity and Reynolds number) into rheological data (behavior law), based on an 
analysis of the numerical results of velocity profiles obtained in the Couette 
geometry. The velocity profiles obtained show that the flow is a non-Newtonian 
behavior. There is non-zero shear throughout the air gap for higher frequency 
values ( )0.8 radian scω ω≥ = , corresponding to the higher Reynolds numbers 

( )454 10e ecR R −≥ = ×  and localized shear around the inner cylinder for lower 
values of 0.6 rd. scω ω< = , corresponding to the lower Reynolds numbers 

33 10e ecR R −< = × . This situation causes a shear band, hence a variation in shear 
rate and viscosity. This shows that the suitable model for the polyethylene oxide 
solution is the one which depends on the concentration and the shear rate, but 
in all cases, it remains as a threshold rheo-fluidifier-fluid. 

References 
[1] Koblan, W.E., Benchebane, A., Bekkour, K. and Allgaier, A. (2007) Rheology of So-

lutions of Polyethylene Oxide (PEO) at Different Molecular Weights. 42nd Annual 
Symposium of the French Group of Rheology-Rheology of Evolutionary Systems, 
Clermont-Ferrand, Janvier 2007, 361-367. 

[2] Ortiz, M., De Kee, D. and Carreau, P.J. (1994) Rheology of Concentrated 
Poly(ethylene oxide) Solutions. Journal of Rheology, 38, 519-539.  
https://doi.org/10.1122/1.550472 

[3] Rossi, S., Luckham, P.F., Zhu, S., Briscoe, B.J. and Tadros, T.F. (1997) Influence on 
Low Molecular Weight Polymers in the Rheology of Bentonite Suspensions. Oil & 
Gas Science and Technology, 52, 199-206. https://doi.org/10.2516/ogst:1997019 

[4] Koblan, W.E., Benchebane, A., Bekkour, K. and Allgaier, A. (2009) Using the Cross 
Model for the Rheological Characterization of Polymer Solutions. 44th Annual 
Colloquium of the French Group of Rheology, Strasbourg, 4-6 November 2009, 
261-264. 

[5] Gauri, V. and Koelling, K.W. (1997) Extentional Rheology of Concentrated 
Poly(ethylene). Rheologica Acta, 36, 555-567. https://doi.org/10.1007/BF00368133 

[6] Kalashnikov, V.N. (1994) Shear-rate Dependent Viscosity of Dilute Polymer Solu-
tions. Journal of Rheology, 38, 1385-1403. https://doi.org/10.1122/1.550550 

[7] Powell, R.L. and Schwarz, W.H.J. (1979) Nonlinear Dynamic Viscoelasticity. Jour-
nal of Rheology, 23, 323-352. https://doi.org/10.1122/1.549518 

[8] Briscoe, B., Luckham, P. and Zhu, S. (1998) Rheological Properties of Poly(ethylene 
oxide) Aqueous Solutions. Journal of Applied Polymer Science, 70, 419-429.  
https://doi.org/10.1002/(SICI)1097-4628(19981017)70:3<419::AID-APP1>3.0.CO;2-
Q 

[9] Coussot, P., Raynaud, J.S., Bertrand, F., Moucheront, P., Guilbaud, J.P., Huynh, 
H.T., Jarny, S. and Lesueur, D. (2002) Coeistence of Liquid and Solid Phases in 

https://doi.org/10.4236/ojfd.2017.74044
https://doi.org/10.1122/1.550472
https://doi.org/10.2516/ogst:1997019
https://doi.org/10.1007/BF00368133
https://doi.org/10.1122/1.550550
https://doi.org/10.1122/1.549518
https://doi.org/10.1002/(SICI)1097-4628(19981017)70:3%3C419::AID-APP1%3E3.0.CO;2-Q
https://doi.org/10.1002/(SICI)1097-4628(19981017)70:3%3C419::AID-APP1%3E3.0.CO;2-Q


N. Ngarmoundou et al. 
 

 

DOI: 10.4236/ojfd.2017.74044 693 Open Journal of Fluid Dynamics 
 

Flowing Soft-Glassy Materials. Physical Review Letters, 88, Article ID: 218301.  
https://doi.org/10.1103/PhysRevLett.88.218301 

[10] Niedzwiedz, K. (2008) Chain Dynamics and Viscoelastic Properties of 
Poly(ethylene-oxide). Macromolecules, 2008, 4866-4872.  
https://doi.org/10.1021/ma800446n 

[11] Guyon, E., Hulin, J.P. and Petit, L. (2001) Physical Hydrodynamics. EDP 
Sciences/CNRS Editions 2001. 

[12] Couarraze, G. and Grossiord, J.L. (2000) Introduction to Rheology. 3rd Edition, 
Lavoisier.  

[13] Riahi, M., Ouazzani, T. and Skali, L.S. (2017) Rheological Characterization of an 
Aqueous Solution of Polyethylene Oxide in Different Concentrations. 13th Con-
gress of Mechanics, Meknes-Morocco, 11-14 April 2017, 129297. 

[14] Berret, J.F. (2006) Rhéology of Worwlike Micelles: Equilibrium Properties and 
Shear-Banding Transitions. In: Weiss, R.G. and Terech, P., Eds., Molecular Gels: 
Materials with Self-Assembled Fibrillar Networks, The Journal of Physical Chemi-
stry, Vol. 6, 667-720. 

[15] Porte, G., Berret, J.F. and Harden, J. (1997) Inhomogenous Flows of Complex Flu-
ids: Méchanical Instability versus Non Equilibrium Phase Transition. The European 
Physical Journal E, 7, 459-472.  

[16] Spenley, N.A., Cates, M.E. and Meleiah, T.C. (1993) Nonlinear Rheology of Worm-
likes Micelles. Physical Review Letters, 71, 939-942.  
https://doi.org/10.1103/PhysRevLett.71.939 

[17] Chedadi, I., Saramito, P. and Graner, F. (2012) Steady Couette Flows of Elastovis-
coplastic Fluids Are Non-Unique. Journal of Rheology, 56, 213-239.  
https://doi.org/10.1122/1.3675605 

[18] Barnes, H.A. (1999) The Yield Stress Everything Flows. Journal of Non-Newtonian 
Fluids Mechanics, 81, 133-178. 

[19] Cheng, D.C.H. (1985) Yield Stress, a Time Defendant Property and How to Meas-
ure It. Rheologica Acta, 25, 542-554. https://doi.org/10.1007/BF01774406 

[20] Picard, G. (2004) Heterogeneity of Threshold Fluid Flow: Phenomenological Ap-
proach and Elastoplastic Modeling. PhD Thesis, University of Paris VII, De-
nis-Dederot, Paris. 

[21] Schurz, J. (1990) The Yield Stress—An Ampirical Reality. Rheological Acta, 29, 
170-171. https://doi.org/10.1007/BF01332384 

[22] Perge, C. (2013) French Congress of Mechanics Bordeaux, 26 to 30 August 2013, 
Bordeaux.  

[23] Huang, N. (2005) Rheology of Granular Pastes. PhD Thesis, University Paris 6, Par-
is. 

[24] Fall, A. (2008) Rheophysics of Complex Fluids: Flow and Blocking of Concentrated 
Suspensions. PhD Thesis, The University of Paris 7, Paris. 

[25] Lami, S. (2015) Rheology and Flow of Suspension of Nano-Fibers Cellulose Fiber 
MRI Investigation in a Couette Device. 12th Congress of Mechanics, Casablan-
ca-Morocco, 21-24 April 2015, 712-757.  

[26] Rigal, C. (2012) Behavior of Complex Fluids under Flow: Experimental Approach 
by Nuclear Magnetic Resonance and Optical Techniques and Numerical Simula-
tions. PhD Thesis, The University of Lorraine, Lorraine. 

[27] Ovarlez, G. (2009) Phenomenology and Physical Origin of Shear-Localization and 

https://doi.org/10.4236/ojfd.2017.74044
https://doi.org/10.1103/PhysRevLett.88.218301
https://doi.org/10.1021/ma800446n
https://doi.org/10.1103/PhysRevLett.71.939
https://doi.org/10.1122/1.3675605
https://doi.org/10.1007/BF01774406
https://doi.org/10.1007/BF01332384


N. Ngarmoundou et al. 
 

 

DOI: 10.4236/ojfd.2017.74044 694 Open Journal of Fluid Dynamics 
 

Shear-Banding in Complex Fluids. Rheologica Acta, 18, 831-844.  
https://hal.archives-ouvertes.fr/hal-00454772  
https://doi.org/10.1007/s00397-008-0344-6 

[28] Guillemin, J.P. (2008) Rheology of Concentrated Suspensions of Recyclable Energy 
Materials: Modeling of the Casting Time. PhD Thesis, The National School of 
Mines of Saint Etienne, Sait Etienne. 

[29] Ovarlez, G. (2011) Rheological Characterization of Threshold Fluids. Rhéol, 20, 
28-43. 

[30] Salmon, J.B., Manneville, S., Colin, A. and Molino, F. (2003) Velocity Proles in 
Shear-Banding Wormlike Micelles. Physical Review Letters, 90, Article ID: 228303.  
https://doi.org/10.1103/PhysRevLett.90.228303 

[31] Bécu, L., Manneville, S. and Colin, A. (2004) Spatio-Temporal Dynamics of Worm-
like Micelles under Shear. Physical Review Letters, 93, Article ID: 018301.  
https://doi.org/10.1103/PhysRevLett.93.018301  

[32] Fardin, M.A. (2009) Taylor-Like Vortices in Shear Banding Flow of Giant Micelles. 
Physical Review Letters, 103, Article ID: 028302.  
https://doi.org/10.1103/PhysRevLett.103.028302 

[33] Pakdel, P. and McKinley, G.H. (1996) Dynamics of Complex Fluids: Proceedings of 
the Second Royal Society-Unilever. Physical Review Letters, 77, 2459-2462.  
https://doi.org/10.1103/PhysRevLett.77.2459 

[34] Ovarlez, G., Rodts, S., Château, X. and Coussot, P. (2009) Phenomenology and 
Physical Origin of Shear-Localization and Shear-Banding in Complex Fluids. Rheo-
logica Acta, 48, 831-844. https://doi.org/10.1007/s00397-008-0344-6 

[35] Fardin, M.A. (2009) Complex Fluid under Shear: Some Instabilities with Zero Rey-
nolds Number. Physical Review Letters, 103, Article ID: 028302.  
https://doi.org/10.1103/PhysRevLett.103.028302 

[36] Coussot, P. (2005) Rheometry of Pastes, Suspensions and Granular Materials. John 
Wiley & Sons, Hoboken. https://doi.org/10.1002/0471720577 

[37] Coussot, P. (2002-2004) Mechanical Characteristics and Origin of Wall Slip in Pasty 
Biosolids. Rheologica Acta, 43, 168-174. 

[38] Gilbreth, S., Sullivan, S. and Dennin, M. (2006) Flow Transition in Two-Dimensional 
Foams. Physical Review E, 74, Article ID: 031401.  
http://www.physics.uci.edu/~dennin/preprints/gsd06.pdf  
https://doi.org/10.1103/PhysRevE.74.051406 

[39] Weaire, D., Barry, J.D. and Hutzler, S. (2010) The Continuum Theory of Shear Lo-
calization in Two-Dimensional Foam. Journal of Physics: Condensed Matter, 22, 
Article ID: 193101. https://doi.org/10.1088/0953-8984/22/19/193101 

[40] Coussot, P., Nguyen, Q.D., Huynh, H.T. and Bonn, D. (2002) Avalanche Behavior 
in Yield Stress Fluids. Physical Review Letters, 88, Article ID: 175501.  
https://doi.org/10.1103/PhysRevLett.88.175501 

[41] Groupe Français de Rhéologie (1993) Les cahiers de rhéologie. Vol. 11, numéro 1. 

https://doi.org/10.4236/ojfd.2017.74044
https://hal.archives-ouvertes.fr/hal-00454772
https://doi.org/10.1007/s00397-008-0344-6
https://doi.org/10.1103/PhysRevLett.90.228303
https://doi.org/10.1103/PhysRevLett.93.018301
https://doi.org/10.1103/PhysRevLett.103.028302
https://doi.org/10.1103/PhysRevLett.77.2459
https://doi.org/10.1007/s00397-008-0344-6
https://doi.org/10.1103/PhysRevLett.103.028302
https://doi.org/10.1002/0471720577
http://www.physics.uci.edu/%7Edennin/preprints/gsd06.pdf
https://doi.org/10.1103/PhysRevE.74.051406
https://doi.org/10.1088/0953-8984/22/19/193101
https://doi.org/10.1103/PhysRevLett.88.175501


N. Ngarmoundou et al. 
 

 

DOI: 10.4236/ojfd.2017.74044 695 Open Journal of Fluid Dynamics 
 

Nomenclature 

r: virtual cylinder position (mm) 

cr : flow and rest area interface (mm) 

iR : radius of the virtual cylinder (mm) 

1R : radius of the inner cylinder (mm) 

2R : radius of the outer cylinder (mm) 
K: consistency (N sec2/m2) 
n: flow index 

zV : axial component of the speed (mm/s) 

rV : radial component of velocity (mm/s) 

( ),rV θ : tangential component of velocity (mm/s) 

0V : maximum tangential velocity expressed as a function of angular velocity 
(mm/s) 
M: couple (Nm) 

eR : Reynolds number 

Greek Letters 

γ : shear rate (s−1) 

cγ : critical shear rate (s−1) 
τ: shear stress Pa 

cτ : Critical shear stress (Pa) 
ω: rotation speed (rd./s) 

cω : critical rotation speed (rd./s) 

iσ : shear stress at the virtual cylinder (Pa) 
η: viscosity (Pa·s) 
μ: kinematic viscosity (m2/s) 
ρ: density (g/cm−3) 

Acronyms 

PEO: polyethylene oxide 

Indices 

C: critical point 
1-2: index at point 1, respectively 2 
i: virtual point index 
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