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Abstract 
Numerical simulations are used to investigate the self-sustained oscillating flows past 
an open cavity. The two-dimensional incompressible Navier-Stokes equations are 
solved directly by using the finite difference method for cavities with an upstream 
laminar boundary layer. A series of simulations are performed for a variety of cavity 
length-to-depth ratio. The results show the switching among some flow modes in-
cluding non-oscillation mode, shear layer mode and wake mode. The variation of the 
Strouhal number is in favorable agreement with available experimental data. The re-
sults of flow fields in the cavity reveal the relationship between the cavity shear layer 
oscillation modes and recirculating vortices in the cavity. 
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1. Introduction 

Flows over open cavities occur in a wide variety of aerospace and engineering applica-
tions, for example, the landing systems of aircrafts, sunroofs and windows of automo-
biles, and spaces between bullet train cars. A schematic of the cavity model and the cav-
ity flow is illustrated in Figure 1 where the length and the depth of the cavity are L and 
D, respectively. Cavity flow is of interest, because the presence of cavity causes self- 
sustained oscillations of the separated shear layer by a complex feedback mechanism, 
despite its geometrical simplicity. Rockwell and Naudascher [1] classified the flow- 
induced cavity oscillations and the feedback mechanism into fluid-dynamic and fluid- 
resonant. Incompressible flows such as low-Mach number air flows, low-speed water 
flows over an open cavity are classified as fluid-dynamic oscillations. For this condition, 
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Figure 1. Schematic of the computational domain 
and the coordinates. 

 
the acoustic wavelength is much longer than the length of the cavity, so that pressure 
fluctuations propagate instantaneously to the upstream leading edge of the cavity. The 
feedback mechanism can be regarded as purely hydrodynamic. The self-sustaining cav-
ity oscillations in compressible flows at high Mach numbers are classified as fluid- 
resonant oscillations. The acoustic wavelength is of the same order of magnitude as the 
cavity length. The acoustic pressure disturbances radiate and propagate toward the up-
stream edge with acoustic speed and there is an acoustic delay. The flow-acoustic re-
sonance arises from this feedback loop. This feedback mechanism can regard as acous-
tic.  

It is well known that the primary frequency of shear layer oscillations varies with 
cavity length. Many experimental studies have been carried out to reveal the characte-
ristics of the frequency variation (Sarohia [2], Knisely and Rockwell [3], Gharib [4], 
Gharib and Roshko [5]). The general feature of the variation of dominant frequency 
represented by the Strouhal number St with the length-to-depth ratio L/D is shown in 
Figure 2. A minimum length-to-depth ratio is required for the onset of self-sustained 
oscillations. When the ratio exceeds some value, the “shear layer mode” appears, there 
the flow oscillation is found. In this mode, first, the Strouhal number decreases as L/D. 
However, the Strouhal number jumps to higher value at the critical length-to-depth ra-
tio. This critical ratio divides the shear layer mode into two modes, and these modes at 
the lower and the higher length-to-depth ratio are called mode II and mode III, respec-
tively. With a further increase of the cavity length, another mode has been observed. 
Gharib and Roshko [5] used the term “wake mode” to describe this mode, since the 
flow is characterized by large scale vortex shedding from the cavity to the freestream 
region, which looks like the wake behind a bluff body. 

Unlike the experimental studies, the numerical studies of mode switching among the 
mode II and mode III and the wake mode so far have been limited to few papers. Row-
ley et al. [6] investigated the shear layer mode and wake mode in the two-dimensional  
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Figure 2. Schematic of Strouhal number variation and the defi-
nition of the cavity oscilation modes. 

 
subsonic flow for L/D = 1, 2, 3, 4, 5 using the two-dimensional direct numerical simula-
tion. Rubio et al. [7] investigated the two different modes in subsonic flow for L/D = 2, 
3, 4 using the two-dimensional large eddy simulation. However, no detailed numerical 
analysis has been reported the mode switching for the incompressible cavity flow. 

In this paper, we investigate numerically the mode switching in the two-dimensional 
incompressible flow over a rectangular open cavity. We perform the two-dimensional 
incompressible Navier-Stokes direct numerical simulations using the finite difference 
method. We also reveal the relationship between the cavity shear layer oscillations and 
recirculating vortices in the cavity. 

2. Numerical Method 
2.1. Numerical Implementation  

Schematic of the computation domain is shown in Figure 1. The governing equations 
are the two-dimensional, unsteady, incompressible Navier-Stokes equations and the 
equation of continuity in Cartesian coordinates (x, y). The origin is at the most up-
stream point on the wall. The velocity components are (u, v) in the directions (x, y). All 
variables are nondimensionalized using the cavity depth D and the free-stream velocity 
U. These equations are integrated in time using the P2 pressure correction method by 
Armfield and Street [8]. The momentum equations are discretized using the second 
order Adams-Bashforth method for the convective terms and the Crank-Nicolson me-
thod for the diffusive terms. These equations are solved by the fractional step method to 
enforce the solenoidal condition. The pressure correction term is used with the Kim 
and Moin type boundary condition [9] in order to reduce the projection error and re-
cover the second-order accuracy in time. The resulting linear algebraic systems are 
solved by the biconjugate gradient stabilized method. Nonuniform staggered grid sys-
tems, which cluster node points in the boundary layer, the shear layer, the cavity bot-
tom, and the cavity edges, are used for the spatial descretization. The second order fully 
conservative finite difference scheme by Morinishi et al. [10] is used for the convective 
terms and the second order central difference scheme was used for the other terms.  



T. Yoshida, T. Watanabe 
 

364 

In Figure 1, the computational domain extends to 5D upstream of the cavity leading 
edge, 7D downstream of the trailing edge and 9D in the normal direction above the 
cavity. This dimension of the computational domain is similar to that used in the 
two-dimensional simulations by Rowley et al. [6]. The laminar Blasius boundary layer 
is specified in the inflow boundary. A free-slip condition is applied to the top boundary 
and the no-slip boundary condition is applied to the wall. At the outflow boundary, we 
use the Sommerfeld radiation condition, which is also called the convective outflow 
condition. The convective velocity in this condition is set equal to the free-stream ve-
locity U. This boundary condition allows vortices to smoothly pass across the computa-
tional domain. The Reynolds number based on the free-stream velocity U and the cavi-
ty depth is 6000. The boundary layer momentum thickness θ at the inflow boundary is 
set to 0.00268. This value of the momentum thickness results in the momentum thick-
ness at the upstream edge of the cavity to be 0.0322 for L/D = 2.0. The Reynolds num-
ber estimated from the momentum thickness of 0.0322 and the free-stream velocity is 
193, which is similar to 190 used in the experiment by Knisely and Rockwell [3]. 

2.2. Grid Refinement Study 

The computational results are validated by performing systematic grid refinement stu-
dies to ensure that the results are independence of grid resolution. The case of L/D = 
2.0 is calculated with five grids shown in Table 1. Figure 3 shows time variations of the  
 
Table 1. Grid points of deferent grids. 

 Grid points in the cavity Total grid points 

Grid 1 56 19×  111 50×  

Grid 2 113 38×  223 100×  

Grid3 225 75×  445 200×  

Grid 4 338 113×  668 300×  

Grid 5 450 150×  890 400×  

 

 
Figure 3. Effect of the grid resolution on the time 
variations of the y velocity component v at x = 6.9, 
y = 0.0 and L/D = 2.0. 
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y velocity component v near the downstream edge of cavity (x = 6.9, y = 0.0). The re-
sults of grids finer than Grid 3 are almost identical.  

Figure 4 shows the spectra of v during periodic oscillations. The most dominant 
peak and other harmonic peaks predicted by the grids finer than Grid 3 are in very 
good agreement. From these tests, the results obtained on the grids finer than Grid 3 
are independent of grid size. We employ Grid 3 for sufficient accuracy. 

3. Results and Discussion  
3.1. Mode Switching 

A series of two-dimensional simulations for varying the length-to-depth ratio L/D from 
1.0 to 4.0 at 0.1 interval have been conducted. The shear layer mode is characterized by 
periodic oscillations of separated shear layer. The Strouhal number is defined by St =
f Uθ , where f is the frequency of the most dominant oscillation. The Strouhal num-

ber corresponds to the frequency of the most dominant peak. Figure 5 shows the 
Strouhal number variation with cavity length, as well as experimental data obtained by 
Knisely and Rockwell [3]. The cavity length is normalized with respect to the reference 
momentum thickness at the upstream edge of cavity θ and the Strouhal number is 
based on the same θ for comparison to experimental data. No shear layer oscillation 
occur below L/D = 1.6 (L/θ = 50.0). The minimum length for initiation of self-sustained 
oscillations is L/D = 1.7 (L/θ = 52.7). The Strouhal number decreases as L/D increases. 
This variation is interrupted by a sudden jump to a higher value between L/D = 3.1 (L/θ 
= 96.2) and L/D = 3.2 (L/θ = 99.3). The oscillation regime at L/D ≤ 3.1 is called as mode 
II, while that at 3.2 ≤ L/D is named mode III. The maximum length-to-depth ratio in 
mode III is L/D = 3.6 (L/θ = 111.3). Up to this length-to-depth ratio, the present results 
obtained by the present two-dimensional simulation closely agree with the experimen-
tal data. When the length-to-depth ratio is L/D = 3.7, the oscillation mode changes to  
 

 
Figure 4. Effect of the grid resolution on the power 
spectra of the y velocity component v at x = 6.9, y = 0.0 
and L/D = 2.0. 
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Figure 5. The Strouhal number variation with cavity 
length compared to experimental data [3]. 

 
the wake mode. The numerically obtained Strouhal number at 3.7 ≤ L/D ≤ 4.0 is small-
er than that in the mode III. As will be discussed in sec. 3.2 about the difference be-
tween the mode III and the wake mode predicted in the present study, the shear layer in 
the mode III oscillats on the multiple recirculating vortices in the cavity, while the flow 
in the wake mode has a vortex that expands to nearly entire cavity and sheds from the 
cavity in a long time period. Therefore, the Strouhal number in the wake mode be-
comes very low. It might be suggested that Knisely and Rockwell [3] has shown only 
the shear layer mode and they did not well capture the wake mode. 

3.2. Features of Flow Field 

Figure 6 contrasts the instantaneous vorticity fields for L/D = 2.0 (mode II), L/D = 3.5 
(mode III) and L/D = 4.0 (wake mode). The blue contour shows the separated shear 
layer. For L/D = 2.0 in mode II, the vortex sheet of the separated shear layer rolls up 
and a large vortical structure is observed in the upstream region of the cavity trailing 
edge, as shown in Figure 6(a). There are two waves in the cavity shear layer. Figure 
6(b) shows an instantaneous vorticity for L/D = 3.5 in mode III. Three waves are found 
in the cavity. The shapes of the shear layers in mode II and mode III are consistent with 
the dye visualization of Figure 6 of Gharib and Roshko [5] and the dye visualization of 
Figure 12 and Figure 13 of Knisely and Rockwell [3]. In the wake mode, the separated 
shear layer forms a large scale vortex in the cavity. This large scale vortex makes a sec-
ondary counter-rotating vortex and then sheds and ejects from the cavity. Figure 6(c) 
shows the ejection found in the wake mode flow for L/D = 4.0. Though the shear layer 
is disturbed by the ejection and the flow pattern is different from those in mode II and 
mode III, the shape of the shear layer is consistent with the dye visualization result of 
Figure 7 of Gharib and Roshko [5]. As mentioned in Knisely and Rockwell [3], the ex-
perimental flow visualization of the spanwise characteristics of the separated shear layer  
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(a) 

 
(b) 

 
(c) 

Figure 6. Instantaneous vorticity fields. (a) L/D = 2.0. (b) L/D = 
3.5. (c) L/D = 4.0. 

 
showed a strong two-dimensional coherency for a wide range of the length-to-depth ra-
tio. The experiment of Gharib and Roshko [5] were performed for an axisymmetric 
cavity mounted on a circular cylinder in an axial flow, and the flow visualization of the 
separated shear layer also showed two-dimensional characters. These facts strongly 
suggest that the mode switching concerned in this paper occurs in the two-dimensional 
space and the two-dimensional simulation is enough to investigate the flow. 

Time-averaged streamlines for different values of the length-to-depth ratio are 
shown in Figure 7 to find the relationship between the mode switching and the recir-
culating vortices in the cavity. The blue lines indicate a clockwise vortex and the red 
lines indicate a counterclockwise vortex in the cavity. The flow field for non-oscillations 
cases, L/D = 1.0 and L/D = 1.6, are shown in Figure 7(a) and Figure 7(b). The stream-
lines show a clockwise recirculating vortex which occupies the inside of the cavity. For 
L/D = 1.7 in Figure 7(c), which is the minimum cavity length for the initiation of the 
self-sustained oscillations in the study, a second counterclockwise vortex appears near 
the upstream edge of cavity and self-sustained oscillations starts. In Figure 7(d) for L/D =  



T. Yoshida, T. Watanabe 
 

368 

   
(a)                                   (b) 

   
(c)                                         (d) 

   
(e)                                         (f) 

  
(g)                                         (h) 

  
(i)                                         (j) 

Figure 7. Time averaged streamlines for different values of the cavity length. (a) L/D = 1.0. (b) 
L/D = 1.6. (c) L/D = 1.7 (mode II). (d) L/D = 2.0. (e) L/D = 2.3. (f) L/D = 2.4. (g) L/D = 3.1 
(mode II). (h) L/D = 3.2 (mode III). (i) L/D = 3.6 (mode III). (j) L/D = 3.7 (wake mode). 
 
2.0, the counterclockwise vortex on the upstream side of the cavity becomes large and 
has similar scale as that of the clockwise vortex on downstream side of the cavity. The 
third clockwise thin vortex appears near the upstream edge of cavity. The third vortex 
becomes larger as the ratio is longer for L/D = 2.3 in Figure 7(e). For L/D = 2.4 in 
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Figure 7(f), the third clockwise vortex is formed on the upstream side of the cavity. 
The Strouhal number decreases continuously, therefore the oscillations are in mode II. 
There are four vortices in the cavity for L/D = 3.1, which is maximum length in mode 
II, as shown in Figure 7(g). In Figure 7(h) for L/D = 3.2, a new clockwise thin vortex 
appears near the upstream edge of the cavity and the mode of oscillations switches from 
mode II to mode III. For L/D = 3.6 in Figure 7(i), there are five vortices which are al-
ternately rotating. For L/D = 3.7 in Figure 7(j), the oscillation mode is the wake mode, 
then the large clockwise vortex appears in the cavity. The results indicate that the mode 
switching from non-oscillation occurs when the number of recirculating vortices 
changes from one to two. The mode switching from the mode II to the mode III occurs 
when the number of recirculating vortices changes from four to five. 

4. Conclusion 

Two-dimensional incompressible flows over an open cavity are numerically investi-
gated. The mode switching between non-oscillations, mode II, mode III and wake 
mode are simulated. The minimum length for initiation of self-sustained oscillations is 
L/D = 1.7. The mode switching from mode II to mode III occurs between L/D = 3.1 and 
L/D = 3.2. The Strouhal number variation is consistent with the experimental results of 
Knisely and Rockwell [3]. The mode switching from the mode III to the wake mode 
occurs between L/D = 3.6 and L/D = 3.7. The time-averaged flow fields for ratios indi-
cate that transitions from non-oscillations to mode II and from mode II to mode III 
occur when number of recirculating vortices change. 
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