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Abstract 
A numerical study of heat transfer problem by natural convection of a fluid inside a square cavity 
with two inner bodies is presented. This subject is of great interest in the engineering area, mainly 
in applications involving development of heat exchangers and cooling or heating systems of bodies 
by natural convection mechanism. Two cases have been studied. The inner bodies are square in 
case 1 and circular in case 2. In both cases, the bodies are solid and thermally conductive, the cav-
ity lower and upper horizontal surfaces are isothermal with high temperature Th and low temper-
ature Tc, respectively. Both vertical surfaces are adiabatic. A FORTRAN code using Finite Element 
Method (FEM) is developed to simulate the problem and solve the governing equations. The dis-
tributions of stream function, ψ, dimensionless temperature, θ, and vorticity, ω, are determined. 
Heat transfer is evaluated by analyzing the behavior of the average Nusselt number. The Grashof 
number and thermal diffusivity ratio are considered in range from 2 × 104 to 105 and from 0.1 to 
100, respectively. The fluid is air with Prandtl number fixed in 0.733. 
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1. Introduction 
The natural convection study in cavities with inner bodies has been of great interest nowadays due to several en-
gineering applications. It can be useful for heat exchangers companies, electronic components cooling, heating 
or cooling of food products, chemical process equipment, environment control systems and others. The advance- 
ment in knowledge of computational in fluid dynamics (CFD) capability has contributed for more sophisticated 
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equipment development with highest performance levels [1]. 
A numerical study of natural convection inside a square cavity with inner bodies is presented in this paper. A 

FORTRAN algorithm code has been developed to solve the governing equations using the finite element method 
(FEM). The unstructured mesh developed has triangular elements and the fluid flow is laminar, two-dimensional, 
in transient or steady regime. FEM is chosen for this study due to its capacity in solving governing equations for 
complex geometries domain with efficiency and easiness of use, which is considered a great advantage of this 
method. 

Natural convection in cavities is of great interest in engineering applications, such as heat exchangers design, 
electronic equipment cooling, solar energy utilization, food processing and many others. There are many articles 
in literature involving this subject. A natural convection study [2] in closed square cavity is performed consi-
dering the cavity vertical surfaces partially isothermal and partially adiabatic and horizontal surfaces are adia-
batics. The SIMPLEC method is applied and the results are presented for Rayleigh number from 103 to 107 and 
Prandtl number fixed in 0.71. A numerical investigation of natural convection in an enclosed rectangular cavity 
with a heated inner horizontal cylinder is presented in [3]. The cavity surfaces are adiabatics and the fluid is la-
minar and two-dimensional. The results for Nusselt number are compared with experimental references, and the 
fluid flow and thermal behavior are presented for different Rayleigh number range. Some studies present cavi-
ties with protruding bodies. Reference [4] presented a numerical solution for natural convection in square cavity 
with protruding bodies. Galerkin method is applied using FEM. The bodies are considered heat sources and their 
locations influence inside cavity is verified. Similar numerical study considering a square cavity with inner heat 
sources was performed in [5] by control volume method. The heat sources quantity and position influence are 
investigated for Rayleigh number 103 to 107 and Grashof number 103 to 106 and the results show a comparison 
between heat transfer by conduction and convection in the study domain. Natural convection in an air filled cav-
ity with inner heat source mounted on the bottom wall is investigated in [6]. The remaining portion of the bot-
tom wall and the top wall are insulated while the vertical walls are cooled. The finite volume method is applied 
and the results present the effects of source length and nonuniformity parameter for Grashof numbers 106 to 107. 
A comprehensive bibliography on natural convection in cavities may be found in review articles [7]-[9]. 

2. Problem Description 
This paper aims with conjugate heat transfer study. Heat transfer by natural convection occurs in fluid air do-
main, Ωf, and conduction in solid domain, Ωs, in a square cavity with inner bodies of thermal conductivity Ks. 
The bottom wall is held at the uniform high temperature Th and the top wall in uniform low temperature Tc. The 
initial condition is assumed with fluid and bodies kept in average temperature ( )( )0 2h cT T T= + . The dimen-
sionless schematic of the problem is shown in Figure 1 for both cases. 
 

 
(a)                                                      (b) 

Figure 1. Dimensionless schematical cavities for both cases; (a) case 1 with square inner bodies, (b) case 2 with circular 
inner bodies.                                                                                           
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3. Mathematical Formulation and Boundary Conditions 
The finite element method is applied to solve the conservation equations for both fluid and solid domain. The air 
flow of this study is taken as two-dimensional, laminar, incompressible and under unsteady regime. The physi-
cal properties for fluid and solid are constant with exception of density in the body term of momentum equation 
for fluid and the Boussinesq approximation is invoked for fluid properties to relate density changes to tempera-
ture changes. There is not internal heat generation in the system. The governing equations for mass, momentum 
and energy are defined in dimensionless form. The dimensionless variables used in equations are introduced as 
follow: 

2
0

2 2
0

, , , , , , .
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The governing equations for fluid domain are defined in dimensionless form as follow: 
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where Prandtl and Grashof numbers are defined by: 
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For solid domain the energy equation is:  
2 2
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where D is thermal diffusivity ratio of solid to fluid defined by: 
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and thermal diffusivities are: 
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The terms ψ, θ and ω are introduced in this formulation resulting in partial differential equations (PDE) valid 
for fluid and solid domain written as: 
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Detailed mathematical procedure to achieve these PDE is described in [10]. 
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For Equations (10) to (12) are considered: 

( )t 1 a fD = Ω                                                 (13) 

( )n aa d t0s
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The initial and boundary conditions for Equations (10) to (12) in dimensionless form are given as: 
a) For 0τ =  
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For Equations (16) to (21) S1, S2, S3 and S4 are surfaces of boundary in domain Ω (see Figure 1). 
The average and local Nusselt number are defined by following relations, respectively: 
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where S can be S1 or S2 surface. 
All the symbols and alphabetical letters used in the above equations are defined in the nomenclature chart. 

4. Numerical Procedure 
The numerical solution of PDE is obtained by FEM approach using Galerkin method [11]. The results of the 
computational code are validated by comparison with results found in literature given in Table 1. The cavity 
used for code validation is a standard square cavity presented in dimensional and dimensionless forms with 
boundary conditions shown in Figure 2. 

Table 1 presents the results comparison for average Nusselt number in cold surface, Nuc, with fixed Grashof 
and Prandtl numbers. Table 2 presents similar comparison but with some different values for Grashof number 
keeping fixed Prandtl number. 
 
Table 1. Average Nusselt number in cold surface, Nuc, for Gr = 20000 and Pr = 0.733.                                     

Reference Nuc Deviation (%) Method/Mesh Elements 

Present study 2.562 - FEM/5000 

Menon [12] 2.700 −5.39 FEM/100 

Ozoe et al. [13] 2.740 −6.95 Experimental Value 

Tabarrok e Lin [14] 2.695 −5.19 FEM/200 
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Figure 2. Schematical square cavity for computational code test: (a) dimensional form, (b) dimensionless form.               
 
Table 2. Average Nusselt number in cold surface, Nuc, for Pr = 0.733 and a number of Gr.                                 

Gr Present  
study 

Figueredo et al. [15] Wong e Raithby [16] Souza [17] Brito [18] 

Nuc Deviation [%] Nuc Deviation [%] Nuc Deviation [%] Nuc Deviation [%] 

34110 3.016 2.884 4.38 2.972 1.46 2.912 3.45 3.023 −0.23 

60000 3.579 3.468 3.10 - - 3.456 3.44 3.588 −0.25 

100000 4.180 4.160 0.48 - - 4.038 3.40 4.190 −0.24 

136430 4.592 4.686 −2.05 4.510 1.79 4.440 3.31 4.602 −0.22 

341064 6.027 - - 5.920 1.78 5.945 1.36 6.033 −0.10 

  Average 2.50 Average 1.67 Average 2.99 Average 0.21 

 
According with deviation values for both tables it is noted that they are higher in Table 1 but in general, the 

results can be considered acceptable for code validation. 
Figure 3 shows the result for grid independence study for both cases 1 and 2. The average Nusselt number at 

cold surface for steady state, Nuc, versus grid elements number, NE, is presented. Three different non-uniform 
grid systems are examined for each case. Four values for Grashof number are considered (Gr = 2 × 104 to 105) 
and diffusivity ratio, D, and Prandtl number, Pr, are kept in 10 and 0.733 respectively. 

Regarding case 1, the numbers of elements for examined grids are: 2546, 4056 and 4674. For low Grashof 
number 2 × 104 the average Nusselt number convergence is observed for all set of grids but for higher Grashof 
numbers the convergence occur for grids more refined with 4056 and 4674 elements. Considering only these two 
more refined grids, the maximum difference in Nusselt number values is 0.367% for all Grashof number range. 

Different situation is observed for case 2, where convergence occur in practically all set of grids, independent 
of Grashof number. The numbers of elements for examined grids are: 1464, 2190 and 3508. In the same way, if 
considered only two more refined grids, the maximum difference in Nusselt number values is 0.778% for all 
Grashof number range. 

In both cases, for the rest of calculation in this study, the non-uniform grid with 4674 and 3508 elements were 
chosen for case 1 and case 2, respectively, for better accuracy in the results. 

5. Results and Discussion 
The numerical solution was performed in transient and steady regime. The results of heat transfer by natural 
convection for both cases are showed in follow items. The Prandtl number is fixed in 0.733 for every numerical  
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Figure 3. Average Nusselt number at cold surface, Nuc, versus grid elements number, NE: (a) case 1 and (b) case 2.                
 
solution presented in this study. 

Figure 4 presents the average Nusselt number at cold surface, Nuc, versus Grashof number, Gr. The influence 
of parameter diffusivity ratio, D, is analyzed for four distinct values: 0.1, 1, 10 and 100. The result is presented 
for steady state regime and in this situation, the average Nusselt number at cold surface is equal the average 
Nusselt number at hot surface. For both cases is noted that for a specific Grashof number, increasing the value of 
D increases the average Nusselt number. For smaller values of D (0.1 and 1) the difference in average Nusselt 
number is more expressive than for higher values of D (10 and 100). For a fixed value of Grashof, the results 
have no significant variation with utilization of high values of D. Analyzing in Figure 4 the Grashof number in-
fluence for both cases, as expected, increasing Grashof number increases the average Nusselt number. The in-
creasing in Grashof number results in higher velocities in fluid flow and more efficient heat exchange between 
fluid and cavity surface. Consequently, this situation improves the conductive heat transfer coefficient and in-
crease average Nusselt number at cavity surface. 

There is a good approximation in Nusselt values for case 1 and case 2, except for Gr = 5 × 104 where the dif-
ference is more notable with little advantage for case 2. These values approximation show that the difference in 
solid bodies geometry (square and circular) has no significant influence in final results for average Nusselt 
number, according with the cavity configuration (size and bodies position) and thermal parameters involved in 
this study. 

Figure 5 presents the average Nusselt number at cold surface, Nuc, versus dimensionless time, τ. The average 
Nusselt number behavior with the time is presented for Grashof numbers 2 × 104, 5 × 104, 7.5 × 104 and 105 with 
D kept in value 10. The average Nusselt number is higher at initial dimensionless time due to high temperature 
gradients between fluid and cold surface. It decreases drastically in the beginning and following reach the steady 
regime. 

In case 1, for Gr = 2 × 104 and τ > 1 the average Nusselt number tends to stabilization and steady regime. For 
Gr = 50 × 104 the average Nusselt number presents a stabilization in time 1 to 6, increases the value in time 6 to 
8 and finally reach the steady regime. This increase observed between time 6 and 8 is due to the modification in 
fluid flow pattern, which presents four convective cells and change to two big ones. This situation occurs in a 
minor time value for higher Grashof numbers (5 × 104 and 105). This fluid flow behavior is illustrated with more 
detail in Figure 9 and Figure 10. 

The main differences between results for case 1 and 2 in Figure 5 are: 1) case 2 presents result for average 
Nusselt number practically equal case 1 for Grashof number 2 × 104 but they are greater for Grashof number 5 × 
104 to 105 and 2) in despite of the general behavior of average Nusselt number for case 2 is similar of case 1, the 
transition in fluid flow pattern from four to two convective cells occur in different values of τ. 

At fixed value of Grashof number equal 7.5 × 104, Figure 6 presents the average Nusselt number at cold sur-
face, Nuc, versus dimensionless time, τ. The average Nusselt number behavior with the time is presented for dif-
fusivity ratio values 0.1, 1, 10 and 100. For both cases 1 and 2 the curves stabilization is noted in time around 
4.5, following to steady regime. It is noted that increase in D values do not represent expressive changes in be-
havior of average Nusselt number with time. Comparing Figure 5 and Figure 6, it is noted in steady regime that  
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Figure 4. Average Nusselt number at cold surface, Nuc, versus Grashof number, Gr: (a) case 1 and (b) case 2.                   
 

 
Figure 5. Average Nusselt number at cold surface, Nuc, versus dimensionless time, τ: (a) case 1 and (b) case 2.                   
 

 
Figure 6. Average Nusselt number at cold surface, Nuc, versus dimensionless time, τ: (a) case 1 and (b) case 2.                       
 
average Nusselt number is more affected by Grashof number variation than by diffusivities ratio variation. 

The distribution of dimensionless temperature, θ, and stream function, Ψ, in steady regime, is shown in Figure 7. 
Three values of Grashof number (2 × 104, 5 × 104 and 105) are considered and D value is fixed in 10. For low 
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Figure 7. Distribution of dimensionless temperature, θ, and stream function, ψ, for case 1 in steady regime.                     
 
Grashof number 2 × 104, there are four convective cells with low values of Ψ, indicating that the fluid has low 
velocity and small recirculations, which cause small deformations in the temperature field. As can be seen, the 
isotherms lines are almost horizontal lines, indicating characteristic situation of pure conduction. On the other 
hand, for Grashof numbers 5 × 104 and 105 there are two major convective cells, with the cell situated on right 
side rotating in clockwise direction and the cell on left side rotating in counterclockwise direction. The higher 
the Grashof number, there are higher speeds and higher fluid flow recirculation resulting in greater deformation 
in temperature field and thus higher heat transfer hate. 

For Figure 8 the considerations are the same made for Figure 7. However, it appears in case 2 greater fluid 
recirculation in comparison with case 1, resulting in a higher heat exchange, as evidenced by the slightly greater 
results of average Nusselt number for this case. This fluid recirculation is higher in case 2 due to circular geo-
metry of inner bodies, that is more favorable for fluid recirculation between the cylinders and walls than for case 
2, with square bodies. 



R. J. Pinto et al. 
 

 
83 

 
Figure 8. Distribution of dimensionless temperature, θ, and stream function, ψ, for case 2 in steady regime.                    
 

Different of the Figure 7 and Figure 8 where only steady regime is shown for different values of Grashof 
number, the Figure 9 and Figure 10 present the distribution of dimensionless temperature, θ, and stream func-
tion, Ψ, in function of dimensionless time, τ, for case 1 and for case 2, respectively. For these analysis are con-
sidered Gr = 105 and D = 10. The main purpose of these figures is to show the evolution in time of the tempera-
ture field and the structures of fluid flow field. It is observed in these figures a stabilization of the velocity field 
and fluid temperature from the dimensionless time τ = 5 where steady regime is reached. For τ = 0.5 there is the 
formation of eight convective cells. In the time interval 0.5 to 1.2, the four cells formed between the bodies 
reduce their size and intensity. Following the top two cells become more intense and reduce the effects on the 
two cells below. In the steady regime there are pratically two predominant major cells and two small recir- 
culations in the cavity top. 

6. Conclusions 
This study numerically investigated the heat transfer problem by natural convection in a square cavity with two  
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Figure 9. Distribution of dimensionless temperature, θ, and stream function, ψ, in dimensionless time, τ, for case 1.                 
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Figure 10. Distribution of dimensionless temperature, θ, and stream function, ψ, in dimensionless time, τ, for case 2.                
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inner bodies. Two cases have been studied: one of them with square inner bodies (case 1) and the other with 
circular inner bodies (case 2). For both cases, the bodies are solid and thermally conductive and the cavity lower 
and upper horizontal surfaces are isothermal with high temperature Th and Tc, respectively. Both vertical surfac-
es are adiabatic. A FORTRAN code using FEM is developed to solve the governing equations. The fluid is air 
with Prandtl number fixed in 0.733. 

The results show for both cases that increasing the value of diffusivity ratio, D, increases the average Nusselt 
number. This difference in average Nusselt number is more expressive for variation in low values of D (0.1 to 1) 
than for variation in higher values of D (10 and 100). 

The Grashof number has significative influence in both cases. Increasing Grashof number increases the aver-
age Nusselt number. The increasing in Grashof number results in higher velocities in fluid flow and more effi-
cient heat exchange between fluid and cavity surface, resulting in higher average Nusselt numbers. It is noted in 
steady regime that average Nusselt number is more affected by Grashof number variation than by diffusivities 
ratio variation. 

In despite of the results for average Nusselt number is near similar for both cases, it is noted that case 2 has a 
little advantage due its bodies with circular geometry. This circular condition is more favorable for fluid recir-
culation between the cylinders and walls than for fluid recirculation in case 1, with square bodies. 

The distribution of dimensionless temperature, θ, and stream function, Ψ, in function of dimensionless time, τ, 
are presented for both cases in this study. The parameters used are Gr = 105 and D = 10. The evolution in time of 
the temperature field and the structures of fluid flow field are presented. The results show that in dimensionless 
time τ = 5 pratically steady regime is stablished with two predominant major cells, one on cavity left side and 
other on right side. The cell on left presents recirculation on counterclowise direction and the cell on right side 
presents recirculation on clockwise direction. 
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