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Abstract 
In the framework of the spectral element method, a comparison is carried out on turbulent first- 
and second-order statistics generated by large eddy simulation (LES), under-resolved (UDNS) and 
fully resolved direct numerical simulation (DNS). The LES is based on classical models like the dy-
namic Smagorinsky approach or the approximate deconvolution method. Two test problems are 
solved: the lid-driven cubical cavity and the differentially heated cavity. With the DNS data as 
benchmark solutions, it is shown that the numerical results produced by the UDNS calculation are 
of the same accuracy, even in some cases of better quality, as the LES computations. The conclu-
sion advocates the use of UDNS and calls for improvement of the available algorithms. 
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1. Introduction 
The numerical simulation of turbulent flows still remains a major challenge, especially at high values of the 
Reynolds number. While direct numerical simulation (DNS) is feasible at the expense of large computational 
resources for moderate Reynolds numbers of the order ( )510O , developed turbulence in the range 
( )6 710 -10O  is presently still out of reach and needs exascale computers. Over the last decades, large eddy 

simulation (LES) (cf. e.g. [1]-[3]) has become the efficient tool to tackle those flows, even in industrial 
applications. 
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In a LES, the dynamics of the gross structures of the flow is computed by integrating the filtered Navier- 
Stokes (NS) equations, while the fine structures of the flow that cannot be resolved by the computational grid 
are modeled. To obtain the LES equations, a low-pass filter built through a convolution operator is applied to the 
NS equations. In the context of high-order methods like the spectral element method (SEM) [4], the LES im-
plementation favors a complete disconnection between the LES model and the filtering procedure. For example, 
the dynamic Smagorinsky model [5] [6] may be chosen and the modal [7] or nodal [8] filters represent one of 
the basic features of the numerical procedure. This approach was successfully carried out by Blackburn and 
Schmidt [9] and Bosshard et al. [10]. 

A fundamental issue of LES consists in checking the convergence of the model used with respect to some 
reference benchmark like experimental results or DNS data. Here the two DNS test cases are the lid-driven cav-
ity (LDC) problem [11] [12] and the differentially heated cavity (DHC) [13]. Both problems were solved by a 
Chebyshev spectral method with discretizations resolving all spatial scales till the Kolmogorov scale. LES 
computations for the LDC are reported in [14] [15] while for the DHC they are detailed in [10]. The LES com-
putations were compared with the DNS results; they showed excellent agreement for first-order statistics and 
very good concordance for the second-order statistics. Furthermore, in [10], a grid convergence study is per-
formed showing that when the number of LES grid points increases the LES results get closer and closer to the 
DNS results. 

In this paper we want to examine another viewpoint of comparison between UDNS and LES. Namely, we will 
examine the question: Can a UDNS with a coarse grid yield comparable results with the LES calculations? 
Phrased another way, do we need an LES model if we can achieve through a UDNS the same results? 

The paper is organized as follows. Section 2 presents the two test cases: the LDC and DHC problems. In 
Section 3 the filtered equations are given with the various LES models used in this study. The spectral element 
method is briefly summarized in Section 4 with the space and time discretizations and the associated filters. 
Section 5 treats the LDC results, while the DHC is the subject of Section 6. Conclusions are drawn in Section 7.  

2. Test Cases Description  
We will describe the geometrical features of the test problems and the associated mathematical models.  

2.1. The lid-Driven Cavity  
The first numerical test treats the lid-driven cubical cavity as shown in Figure 1. No-slip walls are imposed. The 
top wall is driven by a regularized velocity profile, tangential to the surface. This profile is expressed by a high- 
order polynomial that avoids the presence of discontinuities along the lid edges and the upper corners, namely  

( )
218 18

1 , , 1 1 ,x zu x y h z U
h h

       = = − −              
                      (1) 

where U is the maximum wall velocity. Figure 1 shows the set-up of the lid-driven cavity [ ]3,h h−  with a side 
length of 2h and the origin of the coordinate system located at the cavity center. The lid-driven cavity flow 
involves multiple counter-rotating recirculation flow regions and a rich variety of flow physics. The simulations 
are run at a Reynolds number of 12,000 that corresponds to a locally-turbulent regime [12] [14]. 

The mathematical model is given by the Navier-Stokes equations for a viscous Newtonian incompressible 
fluid  

( )1 , , ,
Re

p t I
t

∂
+ ⋅∇ = −∇ + ∆ + ∀ ∈Ω×

∂
u u u u f x                      (2) 

( )0 , , ,t I∇ ⋅ = ∀ ∈Ω×u x                               (3) 

where u  is the velocity field, p the reduced pressure (normalized by the constant fluid density), f  is the body 
force per unit mass and Re  is the Reynolds number  

Re ,UL
ν

=                                       (4) 
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Figure 1. The lid-driven cavity.                 

 
expressed in terms of the characteristic length 2L h= , the characteristic velocity U, and the constant kinematic 
viscosity ν . The symbol Ω  denotes the computational domain. The evolution of the system is studied in the 
time interval [ ]0 ,I t T= . The governing Equations (2)-(3) are supplemented with appropriate no-slip boundary 
conditions for the fluid velocity u . As the problem is time-dependent, a given divergence-free velocity field is 
required as initial condition in the internal fluid domain.  

2.2. The Differentially Heated Cavity  
In this case the geometry is a cube where all walls are fixed. The flow is generated by a temperature difference 
between the hot left side wall and the cold right side wall. All other walls are insulated. Figure 2 displays the 
problem set-up and the geometry. The cavity is given in non-dimensional coordinates by [ ]30,1  with the origin 
of the coordinate system located in the lower left corner of the cavity. 

With the Boussinesq approximation the fluid is considered as incompressible. The mathematical model 
includes the advection-diffusion temperature equation. Therefore the buoyancy term in the momentum equations 
incorporates the influence of the temperature field. The non-dimensional Boussinesq equations read  

2 ,Prp PrT
t Ra

∂
+ ⋅∇ = −∇ + ∇ −

∂
u gu u u

g
                          (5) 

0,∇ ⋅ =u                                        (6) 

21 ,T T T
t Ra

∂
+ ⋅∇ = ∇

∂
u                                  (7) 

where T is the temperature, the air Prandtl number 0.71Pr =  and the Rayleigh number is defined as  
3

,g TLRa β
να
∆

=                                     (8) 

with g  the gravity, β  the fluid thermal expansion coefficient, T∆  the temperature difference between the 
two lateral walls, L the height of the cavity and α  the thermal diffusivity, respectively. 

For high Rayleigh numbers of ( )910O Ra = , the flow shows a main convective rotating core with two 
recirculating pockets located in the corner regions and hook-like structures. These structures present high 
curvature time-averaged streamlines located between the recirculation pocket and the primary counterflow 
outside the vertical boundary layer. A full description of these phenomena is given in [10] [13] [16]. 

3. The Filtered Boussinesq Equations and LES Models  
3.1. Filtered Boussinesq Equations  
In this section we present the LES Boussinesq equations to get acquainted with the filtering procedure and the 
LES modeling. For the LDC case, the LES NS equations are an isothermal subset of the Boussinesq equations as 
the model does no longer contain the buoyancy term in the momentum equations and the temperature equation. 

Filtering the Navier-Stokes and temperature equations, we obtain the filtered Boussinesq equations  

( )
2

, 1, 2,3 ,iji i i
i j

j i j j j

u u gp Pru u PrT i
t x x x x xRa

τ∂∂ ∂∂ ∂
+ = − + − − =

∂ ∂ ∂ ∂ ∂ ∂ g
                  (9) 
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Figure 2. The differentially heated cavity.                              
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( )
21 ,j

j
j j j j

hT Tu T
t x x x xRa

∂∂ ∂ ∂
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∂ ∂ ∂ ∂ ∂
                             (11) 

with the subgrid scale (SGS) tensor ijτ   

,ij i j i ju u u uτ = −                                      (12) 

and the subgrid scale heat flux:  

= .j j jh u T u T−                                       (13) 

The filtered variables denoted by an overbar are computed as a convolution with a filter kernel G. If we filter 
the variable φ  we have  

( ) ( ) ( ), : , , d .t G t G tφ φ φ
Ω

′ ′= −∫x x x x x                             (14) 

The filters will be presented in section 4.2. 

3.2. Subgrid-Scale Field and Reynolds Decomposition  
By the filtering operation (14), any variable is decomposed into a resolved part φ  and the subgrid-scale field 
φ′   

.φ φ φ′= +                                          (15) 

The decomposition of a statistically stationary flow field φ  in its ensemble average φ  and a fluctuating 
part φ φ−  is known as the Reynolds decomposition. 

In a LES, in general only the filtered flow solution φ  is known but not the subgrid-scale field φ′ . We 
define the notation φ◊  for the fluctuating part of a filtered field  

.φ φ φ◊ = −                                        (16) 

In the following, we assume that the turbulent flow has reached a statistically steady state, and the Reynolds 
average is computed as a time average  

( )
0

1lim d .
T

T
t t

T
φ φ

→∞
= ∫                                    (17) 

3.3. LES Models  
The additional variables ijτ  and jh  in Equations (12)-(13) need to be modeled.  
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3.3.1. Dynamic Smagorinsky Model  
The subgrid scale tensor uses the dynamic Smagorinsky model [5] [6]  

1 12 , ,
3 2

ji
ij kk ij sgs ij ij

j i

uuS S
x x

τ τ δ ν
 ∂∂

− = − = +  ∂ ∂ 
                         (18) 

where the SGS viscosity is computed by the relation  

( )1 22 2 .sgs d ij ijC S Sν = ∆                                    (19) 

Here the quantity ∆  is related to the mesh size. The reader is referred to [10] for a detailed description of the 
filter width in the SEM framework. 

The subgrid heat flux is modelled by a subgrid diffusivity  

,j sgs
j

Th
x

κ
∂

= −
∂

                                        (20) 

where the SGS diffusivity is evaluated as  

,sgs
sgs

sgsPr
ν

κ =                                          (21) 

and is based on a Reynolds analogy assumption. 
The Smagorinsky constant dC  in Equation (19) and the subgrid Prandtl number sgsPr  in (21) will be cal- 

culated with the help of the dynamic procedure that uses a coarser test filter denoted by  . Usually the ratio of 
the length-scale ∆  associated with the test-filter and the grid length-scale ∆  is chosen as two (cfr. [10]). The  
process allows for the adaption of these parameters to the characteristics of the local flow. The assumption be-
hind this approach rests on a scale-similarity hypothesis which considers that the behavior of the smallest re-
solved scales is similar to the modeled subgrid scales. The application of the test filter to the filtered Boussinesq 
equations produces twice filtered equations. The Germano identities allow the evaluation of the difference be-
tween the residual stress tensor and the residual heat flux resulting from the double-filtered quantities, namely 

,ijT H , and the filtered subgrid scale variables, i.e.  ,ij hτ   

 ( )  ( ) ( )


: ,

ij ij

ij i j i j i j i j i j i j

T

L u u u u u u u u u u u u

τ

= − = − − −
 

 

 ( )  ( ) ( ): .
H h

T T T T T T= − = − − −c u u u u u u
 



 

We note that ijL  and c  are composed of explicit terms that are readily computed. The subgrid heat flux 
models for once and twice filtered temperature equation are defined by the relationships  

( ) ( )
, .

sgssgs

sgs sgs

h T H T
Pr Pr

νν ∆∆
= − ∇ = − ∇



  

3.3.2. Approximate Deconvolution Method  
The approximate deconvolution method (ADM) defilters the filtered fields. Following the lead of Stolz et al. [17] 
[18], we suppose that the inverse of G in Equation (14) exists and can be evaluated through a finite series in u . 
Therefore the velocity field resulting from the ADM is written as  

* 1 ,aG−=u u                                       (22) 

where 1
aG−  is an approximation of the exact inverse 1G− . An explicit series approximation is due to van Cittert  
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( )1

0
,

N n
a

n
G I G−

=

= −∑                                    (23) 

where I is the identity operator. 
Typical deconvolutions to third or fifth order are given by  

( ) ( )( ) ( ) ( )1 3 2 4* 4 6 ,= + − −u u u u u  

( ) ( )( ) ( ) ( )( ) ( ) ( )1 5 2 4 3 6* 5 11 14 ,= + − + + −u u u u u u u                       (24) 

with the notation ( )ku  indicating that the velocity field is filtered k times. 
The subgrid scale tensor is computed as  

* * * *.ij i j i ju u u uτ = −                                   (25) 

3.3.3. ADM-DMS Model  
Because the approximate deconvolution method does not take account of interactions from the computational 
grid unresolved scales, it needs to be supplemented with a dissipative term. Stolz et al. used an empirical 
relaxation term to stabilize the computation. Another possibility is to combine the ADM model with a subgrid- 
viscosity model. The subgrid scale tensor is modeled by the relation  

* * * * 2 .ij i j i j sgs iju u u u Sτ ν= − −                              (26) 

The ADM-DMS was introduced by Bouffanais in his thesis [19] and in Habisreutinger et al. [15]. The mixed 
scale (MS) model computes a weighted geometric average of the models based on the large scales and those 
based on the energy at the cutoff, denoted by cq , as proposed by Loc and Sagaut [3]. In [15] the ADM was 
coupled with the full MS model leading to the equation  

( )
1

1* * * * 22 ,ij i j i j d ij c iju u u u C S q S
γ

γγ
τ

−
+ 

= − − ∆  
 

                     (27) 

( )( )1 ,
2cq = − −u u u u                                (28) 

0.5.γ =                                     (29) 

The ADM-DMS method with 1γ =  was applied to the DHC in [20].  

4. Spectral Element Method  
4.1. Space and Time Discretizations  
The spectral element method (SEM) decomposes the computational domain into x y zE E E× ×  macro-elements 
where iE  denotes the number of elements in the i-th direction. The space discretization of the velocity u  and 
temperature T fields is performed using Lagrange-Legendre approximation polynomials defined on a Gauss- 
Lobatto-Legendre (GLL) grid, built as a tensor product of one-dimensional grid points that are the roots of the 
relation  

( ) ( )21 0,NLξ ξ′− =                                (30) 

where ( )NL ξ  is the Legendre polynomial of degree N and 1 1ξ− ≤ ≤ +  is the reference or parent element. 
In order to avoid spurious pressure modes, the pressure p is staggered and approximated on a Gauss-Legendre 

(GL) grid based on points that are the roots of the equation  

( ) 0.NL ξ =                                   (31) 
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From the functional point of view velocity and pressure are in 2N NIP IP −−  spaces of polynomial degree N 
and 2N − , respectively. 

The discrete equations are designed using the weak formulation of the Galerkin method. The continuous inte-
grals of the weak formulation are approximated by Gauss-Legendre numerical quadratures. With the notations 
borrowed from the monograph [4], the semi-discrete problem corresponding to the Boussinesq equations (9)-(11) 
generates a set of non-linear algebraic-differential equations  

( ) Td ,
d

Pr p
t Ra
+ + − =

uM Ku C u u D Mf                       (32) 

0,− =Du                                    (33) 

( )d 1 ,
d
T T T g
t Ra
+ + =M K C u M                             (34) 

where M  is the diagonal mass matrix, K  the stiffness matrix, TD  the discrete gradient, ( )C u  the non- 
linear convection operator and D  the discrete divergence (transpose of TD ). The source term f  includes 
the subgrid tensor and the buoyancy term, while g  contains the subgrid heat flux. 

The time integration scheme rests upon an implicit treatment of the transient Stokes operator and the linear 
diffusive terms in order to avoid the stringent stability restrictions. This is performed by an Euler backward 
scheme of order two (Euler2). The non-linear terms are treated explicitly by extrapolation in time (EXT2). The 
global scheme Euler2/EXT2 has no splitting error and is globally of second order accuracy. A real advantage of 
SEM comes from the minimal numerical dissipation and dispersion. However the explicit treatment of the 
advection term imposes a CFL  condition on the time step  

, ,
max max , , const.

u v w

u t v t w t
CFL

x y z
 ∆ ∆ ∆ 

= ≤ 
∆ ∆ ∆ 

 

The spectral element method is implemented in the toolbox Speculoos [21] that is available as an open source 
software in [22].  

4.2. Filtering  
Two types of filters may be used in the SEM methodology.  

4.2.1. Nodal Filtering  
The nodal filter due to Fischer and Mullen [8] acts in physical space. Introducing , , 0, ,N jh j N= 

 the set of 
Lagrange-Legendre interpolant polynomials of degree N based on the GLL grid nodes , , 0, ,N k k Nξ = 

, the 
rectangular interpolation matrix operator M

NI  of size ( ) ( )1 1M N+ × +  is such that  

( ) ( ), , .M
N N j M iij

I h ξ=                                   (35) 

Therefore, the matrix operator of order M  

,N M
M M NI IΠ =                                     (36) 

interpolates on the GLL grid of degree M a function defined on the GLL grid of degree N and transfers the data 
back to the original grid. This process eliminates the highest modes of the polynomial representation. A one- 
dimensional representation of the filter is given by the relation  

( )1 ,N
M Nu I uα α = Π + −                                 (37) 

with 0 1α≤ ≤ . In all calculations reported in the sequel, 0.05α = .  

4.2.2. Modal Filter  
Here the variable is filtered in the spectral Legendre space that is built on the hierarchical basis (cf. [7])  
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0 1
1 1, ,

2 2
ξ ξ

φ φ
− +

= =  

( ) ( )2 , 2 .j j jL L j Nφ ξ ξ−= − ≤ ≤  

In the spectral space a low-pass filter is easily implemented and allows to prune the high-wave number 
spurious modes. A fully detailed description is yielded in [10]. 

For the ADM-DMS model, the modal filter was used on a polynomial space of degree 8. Figure 3 shows the 
transfer function that was used by Habisreutinger et al. [15]. When the filter is applied to a flow field, every 
mode determined from the polynomial basis is multiplied by the corresponding value of the transfer function. 
Because the filter transfer function is nowhere zero and due to the finite dimensional polynomial space, it is 
possible to compute an exact filter inverse. This exact filter inverse and the approximate deconvolutions of third 
and fifth order are also shown in Figure 3. We note that the approximate deconvolution of fifth order is very 
close to the exact filter inverse.  

5. Under-Resolved DNS of the Lid-Driven Cavity Problem  
The ADM-DMS model was first applied to the lid-driven cavity problem as reported in [15]. LES simulations of 
the same problem with the dynamic Smagorinsky model and a mixed model proposed by Zang et al. [23] can be 
found in reference [14]. Here, we perform an under-resolved DNS (UDNS) of the lid-driven cavity problem. 
The spectral element resolution is the same as in the LES computations of Bouffanais, but no model is used. A 
detailed description of this flow problem is given in [12] [14]. Table 1 presents the values of the numerical 
parameters for the DNS and UDNS calculations. 

For a quantitative comparison between the UDNS and the DNS, we plot first-order statistics in the mid-plane 
0z h = , namely 1u  on the vertical centerline 0x h =  and 2u  on the horizontal centerline 0y h =  in 

Figure 4. These are the same statistics given in the references [14] [15] [19]. The mean fields along the center- 
lines of the UDNS shown in Figure 4 virtually match the DNS solution. 
 

 
Figure 3. Transfer function of filter (red, solid line), 
approximate deconvolution of fifth order (blue, dashed 
line), approximate deconvolution of third order (cyan 
dashed line) and exact filter inverse (green, dash-dotted 
line).                                                  

 
Table 1. Numerical parameters of DNS and UDNS computations for the lid-driven cavity.                              

 Re  Elements Polynomial degree Time step Ave. time 

  x y zE E E× ×  x y zN N N= =  t∆   

DNS 12000 1 128 32.5 10−×  1000 

UDNS 12000 8 8 8× ×  8 310−  319 
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(a)                                                        (b) 

Figure 4. In the mid-plane 0z h = , DNS (red, solid line) and UDNS (blue, dashed line). (a) 1u  on the line 0x h = , (b) 

2u  on the line 0y h = .                                                                                 

 
Now we plot second-order statistics in the mid-plane 0z h =  on the vertical centerline 0x h =  and on the 

horizontal centerline 0y h =  in Figure 5. In the Figures 5 (a)-(f) three components of the Reynolds stress are 
shown. The UDNS produces correct second order statistics with only minor differences compared to the DNS. 
Especially in figures (a), (b) and (e), the UDNS overpredicts the values of the peak and in (d) the value of the 
peak is underpredicted. Note that for the case (e), the statistical values are of small amplitude ( )410O − .  

The comments made about the transfer function in section 4.2.2 raise the question, if it would be a good idea 
to use the exact filter inverse to model the subgrid-scale tensor (12). Such a model could be readily implemented. 
But since no information is lost, the filtering can be considered as a change of variables and according to 
Domaradzki et al. [24] [25] is fundamentally equivalent to an under-resolved DNS. In view of the new UDNS 
results presented here, in our opinion it remains an open question if ADM is beneficial with the modal filter and 
how exactly an ADM-based model should be implemented in this context.  

6. Under-Resolved DNS of the Differentially Heated Cavity  
In order to better understand the efficiency and performance of the LES models, we carried out two under- 
resolved direct numerical simulations (UDNS) of the DHC. These simulations used the same computational 
parameters as the LES simulations published in [10], but with no model for the subgrid-scale variables. The 
computational parameters of the UDNS and the DNS are shown in Table 2. 

We evaluate the number of grid points for the case UDNS1000 in one direction as the product of the number 
of elements in one direction times the polynomial degree (The number of grid points in a direction within one 
element is equal the polynomial degree plus one, but values at the element boundaries need to be counted only 
once). Therefore, the total number of grid points for the case UDNS1000 is 512,000. For the DNS, the total 
number of grid points is 4,826,809 or a factor 9.4 larger. The two cases, UDNS512 and UDNS1000, correspond 
to the two LES computations (cf. [10]) denoted previously as LES512 and LES1000 with 512 elements and 
1000 elements, respectively. The polynomial degree is 8 in both cases. With respect to the finest spectral ele-
ment mesh, the UDNS1000 represents only 11% of the DNS grid points. Due to the coarse under-resolution, the 
UDNS512 simulation becomes unstable as spurious energy is built up in the highest Legendre modes. Surpri-
singly, the case UDNS1000 is not only stable, but the flow statistics are also rather accurate and even more ac-
curate than the LES simulations presented in [10]. 

In Figure 6 we show the decomposition of the computational domain in spectral elements. The first element 
is chosen to cover the thin boundary layers at the walls and the interior elements follow a geometric progression 
of ratio 1.3. In spanwise direction, the flow is close to be two-dimensional with predominant three-dimensional 
effects close to the spanwise end walls. The sizes of the interior elements are chosen to be uniform except near  
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(a)                                                        (b) 

 
(c)                                                        (d) 

 
(e)                                                        (f) 

Figure 5. In the mid-plane 0z h = , DNS (red, solid line) and UDNS (blue, dashed line). (a) 
1 2

1 1u u◊ ◊  on the line 0y h = , 

(b) 
1 2

1 1u u◊ ◊  on the line 0x h = , … figure continued on page 12.                                                  
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(a)                                          (b) 

Figure 6. Spectral element decomposition with 10 × 10 × 10 elements. (a) View in any plane 
normal to y, (b) view in any plane normal to x or z.                                                  

 
Table 2. Numerical parameters of DNS and UDNS simulations for differentially heated cavity.                            

 Ra  Elements Polynomial degree Time step Sampl. freq. Ave. time 

  x y zE E E× ×  x y zN N N= =  t∆    

DNS 109 1 169 35 10−×  20 470 

UDNS512 109 8 8 8× ×  8 32 10−×  10 unstable 

UDNS1000 109 10 10 10× ×  8 32 10−×  10 200 

 
the walls (cfr. Figure 6(b)). A detailed discussion of the issue on how to choose the spectral element discretiza-
tion was given in [10]. 

In Figure 7(a) and Figure 7(b), we compare in the mid-plane 0.5y =  the profile of the mean values of the 
velocity component 3u  and the temperature T  along the line 0.1z = , for DNS in red, UDNS in blue and 
LES with the dynamic Smagorinsky model with subgrid Prandtl number in green. These profiles cross the 
turbulent recirculation pocket. 

The comparison for the velocity component 1u  in Figure 8 is done in the mid-plane along the line 
0.01z = . This is selected because for higher z-values the absolute value of this velocity component becomes 

very small. These are the same flow statistics that were presented for the LES simulations in [4]. The agreement 
with DNS data is very good and the maximal pointwise error is 0.0088  along these lines. 

In Figure 9 we show the normal stresses 1 1u u◊ ◊ , 2 2u u◊ ◊ , 3 3u u◊ ◊  and the temperature variance T T◊ ◊  
in the mid-plane 0.5y =  along the line 0.1z = . The normal stresses 1 1u u◊ ◊ , 3 3u u◊ ◊  and the temperature 
variance T T◊ ◊  are accurately predicted with pointwise maximal errors of 59.4 10−× , 42.5 10−×  and 

41.6 10−× , respectively. For the normal stress 2 2u u◊ ◊ , the relative difference between DNS and UDNS1000 is 
higher, but this is only because this normal stress is about one order of magnitude smaller. It is also interesting 
to note that the accuracy close to the wall is very high, which is a sign that the sudden increase of the spectral 
element size has no negative impact on the accuracy. Compared to the LES simulations with the dynamic 
Smagorinsky model and subgrid Prandtl number, we conclude that a UDNS with at least 1000 elements provides 
the same accuracy. 

7. Conclusions  
The UDNS was done with a Legendre spectral element code presented in [21], while the DNS results were 
produced with a Chebyshev spectral method described in [12] [13]. 

Although it is unclear how the accuracy of two different numerical methods can be compared, there is no 
doubt that the resolution of UDNS1000 is coarser than the one in the DNS. It is not possible to perform a  
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(a)                                                      (b) 

Figure 7. Average 3u  and T  profiles in the mid-plane 0.5y =  along the line 0.1z = .                             

 

 
Figure 8. Average 1u  profile in the mid-plane 0.5y =  along the line 0.01z = . DNS in red, UDNS in blue.                   

 

 
(a)                                                    (b) 
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(c)                                                   (d) 

Figure 9. Comparison of DNS (solid, red line) with UDNS (dashed, blue line) in mid-plane 0.5y =  along the line 0.1z = : 

(a) Normal stress 1 1u u◊ ◊ , (b) normal stress 2 2u u◊ ◊ , (c) normal stress 3 3u u◊ ◊ , (d) temperature variance T T◊ ◊ .                   

 
simulation with significantly less grid points using the Chebyshev spectral program as the computation blows up 
after a while due to the under-resolution. In our opinion, the high accuracy of the SEM UDNS is linked to the 
fact that a higher order method with domain decomposition is used. It seems that the Chebyshev spectral method 
is more sensitive to the under-resolution than the Legendre spectral element method, especially as the grid points 
scale like 2N −  near the walls and as 1N −  in the center of the grid. Furthermore, the Chebyshev collocation 
method is a global method. Therefore any under-resolution in a part of the domain is affecting the flow solution 
everywhere. In the spectral element computation, we use a very weak filter of Fischer and Mullen ( 0.05α = ) 
[8], introduced in Section 4.2.1. This weak filtering procedure is implemented to stabilize the spectral element 
computations to get rid of the spurious energy that builds up in the highest wavenumber modes. One possible 
explanation for the accurate results of the UDNS is that on a coarse grid and for an under-resolved flow, this 
stabilizing procedure acts as an implicit LES. 

The improvement of the available algorithms should involve more stable time schemes in order to avoid the 
stringent CFL condition of the explicit treatment of the non-linear terms. That could be achieved by explicit 
schemes with a larger stability region or by resorting to implicit schemes. 
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