
Open Journal of Fluid Dynamics, 2015, 5, 311-321 
Published Online December 2015 in SciRes. http://www.scirp.org/journal/ojfd 
http://dx.doi.org/10.4236/ojfd.2015.54032  

How to cite this paper: Kopp, M., Tur, A. and Yanovsky, V. (2015) Nonlinear Vortex Structures in Obliquely Rotating Fluid. 
Open Journal of Fluid Dynamics, 5, 311-321. http://dx.doi.org/10.4236/ojfd.2015.54032   

 
 

Nonlinear Vortex Structures in Obliquely 
Rotating Fluid 
Michael Kopp1,2, Anatoly Tur3, Vladimir Yanovsky1,2 
1Institute for Single Crystals, National Academy of Sciences of Ukraine, Kharkov, Ukraine  
2V.N. Karazin Kharkiv National University 4 Svobody Sq., Kharkov, Ukraine 
3Université de Toulouse [UPS], CNRS, Institut de Recherche en Astrophysique et Planétologie,  
Toulouse Cedex, France 

 
 
Received 22 September 2015; accepted 14 December 2015; published 18 December 2015 

 
Copyright © 2015 by authors and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

    
 

 
 

Abstract 
In this paper, we find a new large scale instability which appears in obliquely rotating flow with 
the small scale turbulence, generated by external force with small Reynolds number. The external 
force has no helicity. The theory is based on the rigorous method of multi-scale asymptotic expan-
sion. Nonlinear equations for instability are obtained in the third order of the perturbation theory. 
In this article, we explain in detail the nonlinear stage of the instability and we find the nonlinear 
periodic vortices and the vortex kinks of Beltrami type. 
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1. Introduction 
It is well known that the rotating effects play an important role in many theoretical and practical applications for 
fluid mechanics [1] and are especially important for geophysics and astrophysics [2]-[4] when one has to deal 
with rotating objects such as the Earth, Jupiter, the Sun, etc. Rotating fluids could generate different wave and 
vortex motions, for example, gyroscopic waves, Rossbywaves, internal waves, located vortices and coherent 
vortex structures [4]-[7]. Among the vortex structures, the most interesting are the large scale ones since they 
carry out the efficient transport of energy and impulse. The structures which have characteristic scale much 
more than the scale of turbulence or the scale of external force which generates this turbulence are understood as 
large scale ones. In this paper we find a new large scale instability in obliquely rotating flow which is influenced 
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by the small scale external force with zero helicity. Its axis of rotation does not coincide with the Z axis. This 
force supports small scale turbulent fluctuations in fluid. The nonlinear large scale helical vortex structures such 
as Beltrami vortices or localized kinks appear as a result of the development of this instability in rotating fluid. 
This supposes that the external mall-scale force substitutes the action of small-scale turbulence. Further we con-
sider that the external force acts in the plane (X, Y). Instability occurs only when the vector of angular velocity 
of rotation Ω  is inclined relatively to the plane (X, Y), as shown in Figure 1. If the fluid is rotating around the 
axis Z strictly, then instability does not occur. The helical 2D velocity field ,x yW W  turns around the axis Z 
when Z changes in the periodic wave (Figure 2) and makes one turn in the kink (Figure 3). The found instabil-
ity belongs to the class of instabilities called hydrodynamic α-effects. For these instabilities the positive feed-
back between velocity components is typical: 

0,

0,

T x x y y

T y y x x

W W W
z

W W W
z

α

α

∂
∂ − ∆ − =

∂
∂

∂ − ∆ + =
∂

 

 

 
Figure 1. In general, the angular velocity Ω is inclined relatively to 
the plane (X, Y) in which there is an external force 0F ⊥ .                 

 

 
Figure 2. Nonlinear helical Beltramiwave, which corresponds to the 
closed trajectory in the phase plane ( 1 0.1C = , 2 0.1C = ). The spiral 
is oriented along Z axis and inclined relatively to the axis of rotation.                 
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Figure 3. Localized solution (kink), which corresponds to the 
separatrice in the phase plane ( 1 0.1C = , 2 0.1C = ).                 

 
and leads to the instability. α-effect origins from magnetic hydrodynamics where it engenders the increase of 
large scale magnetic fields (see for example, [8]). Later it was extended to ordinary hydrodynamics. Several 
examples of hydrodynamics α-effect [9]-[16] are known for today. From this point of view, in this study we 
found a new example of the α-effect. The theory of this instability is based on a rigorous method of multi-scale 
development, which was proposed by Frisch, She and Sulem for the theory of the AKA effect [14]. This method 
allows finding the equations for large scale perturbations in the form of secular equations of the asymptotic 
theory, to calculate the Reynolds stress tensor and to find the instabilities. The small parameter of asymptotical 
development is the number of Reynolds , 1.R R ≤  Our paper is organized as follows: in Section 2 we formulate 
the problem and the main equations in rotating system coordinates; in Section 3 we discuss the concept of mul-
ti-scale development and we give the secular equations. In Section 4 we calculate the velocity field of zero ap-
proximation. In Section 5 we describe the calculation of the Reynolds stress and find the large scale instability. 
In Section 6 we discuss the saturation of the instability and find the nonlinear stationary vortex structures. The 
results obtained are discussed in the conclusions given in Section 7. 

2. The Main Equations and Formulation of the Problem 
Let us examine the equations of motion for non-compressible rotating fluid with the external force 0F  in ro-
tating coordinates system: 

( )
0

0
12 P

t
ν

ρ
∂

+ ∇ + × = − ∇ + ∆ +
∂
V V V V V FΩ                          (1) 

0div =V                                         (2) 

The external force 0F  is divergence-free. Here Ω  is angular velocity of fluid rotation, ν  is viscosity and 
0ρ  is constant fluid density. Let us designate the characteristic amplitude of force as f0, and its characteristic 

space and time scale as λ0 and t0 respectively. 

Then 0 0 0
0 0

, tf
tλ

 
=  

 

xF F . We will designate the characteristic amplitude of velocity, generated by external  

force as v0. Further we choose the dimensionless variables ( ), ,t x V : 

0
0

0 0 0 0 0 0

, , , , ,t Pt P
t v f Pλ ρ

→ → → → →
Fx Vx V F  

2 2
0 0 0 0 0

0 0 0 02
0 0

, , , .
v v ft P f vλ ν ν λ

ν λ νλ
= = = =  
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Then, in dimensionless variables the equation (1) takes the form: 

( ) 0 ,R P
t

∂
+ ⋅∇ + × = −∇ + ∆ +

∂
V V V D V V F                       (3) 

0 0 ,
vR D Taλ
ν

= = . Where R and 
2 4

0
2

4Ta λ
ν
Ω

=
 

are respectively the Reynolds number and the Taylor  

number on scale 0λ . Further we will consider the Reynolds number as small 1R ≤  and will construct on this 
small parameter the asymptotical development. Concerning the parameter D, we do not choose any range of 
values for the moment. Let us examine the following formulation of the problem. We consider the external force 
as being of small scale and of high frequency. This force leads to small scale fluctuations in velocity. After av-
eraging, these rapidly oscillating fluctuations vanish. Nevertheless, due to small nonlinear interactions in some 
orders of perturbation theory, nonzero terms can occur after averaging. This means that they are not oscillatory, 
that is to say, they are large scale. From a formal point of view, these terms are secular, i.e., they create the con-
ditions for the solvability of large-scale asymptotic development. So, the purpose of this paper is to find and 
study the solvability equations, i.e., the equations for the large scale perturbations. Let us denote the small scale 
variables by ( )0 0 0,x t= x , and the large scale ones by ( ),X T= X . The small scale partial derivative operation  

00

,i tx
∂ ∂

∂∂
, and the large scale ones ,

T
∂ ∂
∂ ∂X

 are written, respectively, as , ,i t i∂ ∂ ∇  and T∂ . To construct a 

multi-scale asymptotic development we follow the method which is proposed in [8]. 

3. The Multi-Scale Asymptotic Development 
Let us search the solution to equations (2) and (3) in following form: 

( ) ( ) ( ) 2 3
1 0 0 1 2 3

1, ,t X x R R R
R −= + + + + +V x W v v v v                       (4) 

( ) ( ) ( ) ( ) ( ) ( )( ) 2 3
3 2 1 0 0 1 1 2 33 2

1 1 1, .P t P X P X P X P x R P P X R P R P
RR R− − −= + + + + + + + +x         (5) 

We introduce the slow variables 2
0R=X x  and 4

0T R t=  which lead to the following expressions for the 
spatial and temporal derivatives: 

2 ,i ii R
x
∂

= ∂ + ∇
∂

                                      (6) 

4 ,t TR
t
∂
= ∂ + ∂

∂
                                      (7) 

2
2 42 .jj j j jjj j R R

x x
∂

= ∂ + ∂ ∇ + ∂
∂ ∂

                                (8) 

Using initial notation, the system of equations can be written as: 

( ) ( )( )
( ) ( )

4 2

2 2 4
02 ,

i i j j k
t T j j ijk

i i
j j jj j j jj

R V R R V V D V

R P R R V F

ε∂ + ∂ + ∂ + ∇ +

= ∂ + ∇ + ∂ + ∂ ∇ + ∇ +
                        (9) 

( )2 0.i
i iR V∂ + ∇ =                                       (10) 

Substituting these expressions into the initial equations (2) and (3) and then gathering together the terms of 
the same order, we obtain the equations of the multi-scale asymptotic development and write down the obtained 
equations up to order 3R  including. In the order 3R−  there is only one equation: 

( )3 3 30 .iP P P X− − −∂ = ⇒ =                                    (11) 
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In order 2R−  we have the equation: 

( )2 2 20 .iP P P X− − −∂ = ⇒ =                                (12) 

In order 1R−  we get a system of equations: 

( )1 1 1 1 3 1 1,
i i j k i j

t jj ijk i i jW W D W P P W Wε− − − − − − −∂ − ∂ + = − ∂ +∇ − ∂                    (13) 

1 0.i
iW−∂ =                                       (14) 

The system of equations (13) and (14) gives secular terms 

3 1,j k
i ijkP D Wε− −−∇ =                                   (15) 

which corresponds to a geostrophic equilibrium equation. In zero order 0R , we have the following system of 
equations: 

( ) ( )0 0 1 0 0 1 0 0 2 0 ,i i i j i j j k i
t jj j ijk i iv v W v v W D v P P Fε− − −∂ − ∂ + ∂ + + = − ∂ +∇ +                (16) 

0 0.i
iv∂ =                                       (17) 

These equations give the following secular equation: 

2 20 Const.P P− −∇ = ⇒ =                                 (18) 

Let us consider the equations of the first approximation R: 

( )
( ) ( )

1 1 1 1 1 1 1 0 0

1 1 1 1 ,

i i j k i j i j i j
t jj ijk j

i j
j i i

v v D v W v v W v v

W W P P

ε − −

− − −

∂ − ∂ + + ∂ + +

= −∇ − ∂ +∇
                     (19) 

1 1 0.i i
i iV W−∂ +∇ =                                   (20) 

Secular equations follow from this system of equations: 

1 0,i
iW−∇ =                                      (21) 

( )1 1 1,i j
j iW W P− − −∇ = −∇                                  (22) 

Secular equations (21) and (22) are satisfied by choosing the following geometry for the velocity field (Bel-
trami field): 

( ) ( )( ) ( )1 1 1 1, ,0 ; ;x yW Z W Z T T Z− − − −= =W                           (23) 

1 10 Const.P P− −∇ = ⇒ =  

In the second order 2R , we obtain the equations: 

( )
( ) ( )

2 2 0 1 2 2 1 0 1 1 0 2

1 0 0 1 2 0

2

,

i i i i j i j i j i j j k
t jj j j j ijk

i j i j
j i i

v v v W v v W v v v v D v

W v v W P P

ε− −

− −

∂ − ∂ − ∂ ∇ + ∂ + + + +

= −∇ + − ∂ +∇
                 (24) 

2 0 0.i iv v∂ +∇ =                                      (25) 

It is easy to see that there are no secular terms in this order. 
Let us come now to the most important order 3R . In this order we obtain the equations: 

( ) ( )
( ) ( )

3 1 3 1 1 1 1 1 1 0 0

1 3 3 1 0 2 2 0 1 1 3 3 1

2

,

i i i i i i j i j i j
t T jj j j jj j

i j i j i j i j i j j k
j ijk i i

v W v v W W v v W v v

W v v W v v v v v v D v P Pε

− − − −

− −

∂ + ∂ − ∂ + ∂ ∇ +∇ +∇ + +

+∂ + + + + + = − ∂ +∇
                (26) 

3 1 0.i iv v∂ +∇ =  
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From this we get the main secular equation: 

( )1 1 0 0 1,i i k i
T k iW W v v P− −∂ − ∆ +∇ = −∇                            (27) 

There is also an equation to find the pressure 3P− : 

3 1.
j k

i ijkP D Wε− −−∇ =                                  (28) 

4. The Velocity Field in Zero Approximation 
It is clear that the most important is the equation (27). In order to obtain these equations in closed form, we need 
to calculate the Reynolds stress ( )0 0

k i
k v v∇ . First of all, we have to calculate the fields of the zero approximation 

0
kv . From the asymptotic development in zero order we have: 

0 0 1 0 0 0 0 ,i i k i j k i
t jj k ijk iv v W v D v P Fε−∂ − ∂ + ∂ + = −∂ +                        (29) 

Let us introduce the operator 0D : 



0 .k
t jj kD W≡ ∂ − ∂ + ∂                                  (30) 

Using 0D , we rewrite equation (29) in the form: 



0 0 0 0 0 ,i j k i
ijk iD v D v P Fε+ = −∂ +                               (31) 

Pressure P0 can be found from condition 0.div =V  

[ ] 0
0 2

i
i v

P
×

=
∂

D ∂
                                   (32) 

Let us introduce the designations for the operators: 

[ ]
2

i
ij jP

×
= ∂

∂

D ∂
                                   (33) 

and for velocities: 0 0 0 0 0 0, , .x y zv u v v v w= = =  Then excluding pressure from (31), we obtain the system of equa-
tions to find the velocity field of zero approximation: 

 ( ) ( ) ( )
( )  ( ) ( )
( ) ( )  ( )

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

,

,

.

x
xx yx z zx y

y
xy z yy zy x

z
xz y yz x zz

D P u P D v P D w F

P D u D P v P D w F

P D u P D v D P w F

+ + − + + =

+ + + + − =

− + + + + =

                      (34) 

In order to solve this system of equations we have to set the force in the explicit form. Let us choose now the 
external force in the rotating system of coordinates in the following form: 

 
( )

( ) ( )
0 0 0 2 1 1 1 0 2 2 0

1 0 2 0

0, Cos Cos ; , ,

1,0,0 , 0,1,0 .

zF f t t

k k

ϕ ϕ ϕ ω ϕ ω⊥= = + = − = −

= =

F i j k x k x

k k
 

It is obvious that divergence and helicity of this force us equal to zero: 0 0.rot =F F  Thus, the external force 
is given in the plane (x, y), which is orthogonal to the projection of angular velocity Ω . 

The solution for equations system (34) can be found easily in accordance with Cramer’s Rule: 

31 2
0 0 0, , .u v w ∆∆ ∆
= = =
∆ ∆ ∆

                                 (35) 

Here ∆  is the determinant of the system (34): 
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0

0

0

,
xx yx z zx y

xy z yy zy x

xz y yz x zz

D P P D P D

P D D P P D

P D P D D P

+ − +

∆ = + + −

− + +

                             (36) 

 

  

  

0

1 0 0

0

,

0

x
yx z zx y

y
yy zy x

yz x zz

F P D P D

F D P P D

P D D P

− +

∆ = + −

+ +

                              (37) 

  

 

  

0 0

2 0

0

,

0

x
xx zx y

y
xy z zy x

xz y zz

D P F P D

P D F P D

P D D P

+ +

∆ = + −

− +

                              (38) 

  

  

 

0 0

3 0 0 .

0

x
xx yx z

y
xy z yy

xz y yz x

D P P D F

P D D P F

P D P D

+ −

∆ = + +

− +

                              (39) 

Expanding the determinant, we obtain: 

 ( )  ( ) ( ) ( )
( ) ( ) ( )  ( )

0 0 0 0

0 0

1

1 ,

x
yy zz yz x zy x

y
zx y yz x yx z zz

u D P D P P D P D F

P D P D P D D P F

 = + + − + − ∆
 + + + − − + ∆

                    (40) 

( ) ( ) ( )  ( )
 ( )  ( ) ( ) ( )

0 0 0

0 0 0

1

1 ,

x
xz y zy x xy z zz

y
xx zz xz y zx y

v P D P D P D D P F

D P D P P D P D F

 = − − − + + ∆
 + + + − − + ∆

                    (41) 

( ) ( ) ( )  ( )
( ) ( )  ( ) ( )

0 0 0

0 0

1

1 .

x
xy z yz x xz y yy

y
xz y yx z xx yz x

w P D P D P D D P F

P D P D D P P D F

 = + + − − + ∆
 + − − − + + ∆

                    (42) 

 ( )  ( )  ( ) ( ) ( )
( ) ( )  ( ) ( ) ( )
( ) ( ) ( )  ( ) ( )

0 0 0

0

0 .

xx yy zz yz x zy x

yx z xy z zz xz y zy x

zx y xy z yz x yy xz y

D P D P D P P D P D

P D P D D P P D P D

P D P D P D D P P D

 ∆ = + + + − + − 
 − − + + − − − 
 + + + + − + − 

                   (43) 

In order to calculate the expressions (40)-(43) we present the external force in complex form: 

( ) ( )2 2 1 10 0
0 0e e , e e .

2 2
i i i ix yf fF Fϕ ϕ ϕ ϕ− −= + = +                         (44) 

Then all operators in formulae (40) - (42) act from the left on their eigenfunction. In particular: 

  ( )   ( )
( ) ( )

2 2 1 1

2 2 1 1

0 0 2 0 0 0 1 0

2 0 1 0

e e , , e e , ,

e e , , e e ,

i i i i

i i i i

D D k D D k

k k

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

ω ω

ω ω

= − = −

∆ = ∆ − ∆ = ∆ −
                     (45) 

To simplify the formulae, let us choose 0 0 01, 1, 1.k fω= = =  
Now let us designate: 
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 ( ) ( )  ( ) ( )0 2 0 0 1 0, 1 1 , , 1 1 .y y x xD k i w A D k i w Aω ω− = − − = − = − − =                (46) 

Before doing further calculations, we have to note that some components of tensors  ( )1ijP k  and  ( )2ijP k  
vanish. Let us write the non-zero components only: 

 ( )  ( )  ( )  ( )1 1 2 2, , , .yx z zx y xy z zy xP k D P k D P k D P k D= = − = − =                 (47) 

Taking into account the formulae (45)-(47), we can find the determinant: 

( ) ( )3 2 3 2
1 2, .x x x y y yk A D A k A D A∆ = + ∆ = +                        (48) 

In a similar way we find velocity field of zero approximation: 
2

0 2 2

e1 . .,
2

i
y

y y

A
u C C

A D

ϕ

= +
+

                             (49) 

1

0 2 2

e1 . .,
2

i
x

x x

Av C C
A D

ϕ

= +
+

                             (50) 

2 1

0 2 2 2 2

e e1 1 . ..
2 2

i i
y x

y y x x

D Dw C C
A D A D

ϕ ϕ

= − +
+ +

                        (51) 

We note that the angular velocity zD  component disappears from the expression for the velocity field of ze-
ro approximation, which is a consequence of the properties of an external force. 

5. Reynolds Stress and Large Scale Instability 
To close the equations (27) we have to calculate the Reynolds stresses 0 0w u  and 0 0w v . These terms are easily 
calculated with the help of formulae (49)-(51). As a result we obtain: 

0 0 0 02 22 2 2 2

1 1, .
2 2

y x

y y x x

D Dw u w v
A D A D

= = −
+ +

                      (52) 

Now equations (27) are closed and take form: 

22 2

22 2

1 0,
2

1 0.
2

y
T x x

y y

x
T y y

x x

D
W W

z A D

DW W
z A D

∂
∂ − ∆ + =

∂ +

∂
∂ − ∆ − =

∂ +

                          (53) 

We calculate the modules and write the equations (53) in the explicit form: 

( ) ( )

( ) ( )

22 2

22 2

1 0,
2 4 1 2

1 0
2 4 2

.
1

y
T x x

y y y y

x
T y y

x x x x

D
W W

z w D w w

DW W
z w D w w

∂
∂ − ∆ + =

∂  − + + − 
∂

∂ − ∆ − =
∂  − + + − 

                     (54) 

With small ,x yW W  we obtain the linearized equations (54): 

0,

0.

T x x y y

T y y x x

W W W
z

W W W
z

α

α

∂
∂ − ∆ − =

∂
∂

∂ − ∆ + =
∂

                               (55) 
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( )
( )

( )
( )

2 2

2 22 2

2 2
2 , 2 .

4 4

y y x x
y x

y x

D D D D

D D
α α

− −
= =

+ +
 

The system (55) describes the positive feedback between the components of velocity. We will look for the 
solution of linear system (55) in the following form: 

( ), exp .x yW W T ikZγ +                                (56) 

Substituting (56) in equation (55), we obtain the dispersion equation: 
2.x y k kγ α α= ± −                                   (57) 

The dispersion equation (57) shows the existence at 0x yα α   of the large scale instability with maximum  

growth rate max ,
4
x yα α

γ =  at the wave vector max
1 .
2 x yk α α=  As a result of the development of instability  

the large scale helical Beltrami vortices are generated in the system. When 0x yα α  , damped oscillations with  
a frequency 0 x y kω α α=  arise instead of instability. In fact the behavior of γ  depends on how is located the  

external force 0 0,x yF F  with respect to the perpendicular projections of the angular velocity of rotation and the 
values of components , .x yD D  If one of the component ,x yD D  is zero or equals to 2 , then the instability is 
absent. Instability exists in the following cases: 

2 2

2 2

2 2 2 2

2 2 2 2

1. 2, 2;

2. , 0, 2, 2;

3. 0, 0, 2, 2;

4. 0, 0, 2, 2;

5. 0, 0, 2, 2; or 2, 2;

6. 0, 0, 2, 2; or 2, 2;

x y

x y x y

x y x y

x y x y

x y y x y x

x y y x y x

D D

D D D D

D D D D

D D D D

D D D D D D

D D D D D D

 

  

   

   

     

     

 

In all other cases damped oscillations occur. 

6. Saturation of Instability and Nonlinear Vortex Structures 
It is clear that with increasing of amplitude nonlinear terms decrease and instability becomes saturated. Conse-
quently stationary nonlinear vortex structures are formed. To find these structures let us choose equations (54)  

0
T
∂

=
∂

 and integrate equations one time over Z. We obtain the system of equations: 

( ) ( )

( ) ( )

122 2

222 2

d  
d

d  .
d

1 ,
2 4 1 2

1
2 4 1 2

y
x

y y y y

x
y

x x x x

Z

Z

D
W C

w D w w

DW C
w D w w

= +
 − + + − 

= − +
 − + + − 

                      (58) 

Let’s take for this system new variables: 1 ,1 .x x y yw u w u− = − =  Then we obtain: 

( ) ( )

( ) ( )

122 2 2 4

222 2 2 4

1 ,
d

 
d 2 1 2 1

1 .
2 1 2 1

d
 

d

y

y y y y

x

x x

y x

x x

u
Z

u

D
C

D D u u

D C
D D u uZ

= −

=

+
+ + − +

+
+ + − +

                         (59) 



M. Kopp et al. 
 

 
320 

The system of equations (59) can be written in Hamiltonian form: 

d
,

d

d
.

d

x

y

y

x

u H
Z u

u H
Z u

∂
= −

∂

∂
=
∂

 

Where Hamiltonian H has the form: 

( ) ( ), , ,x x y yH h D u h D u= +                                 (60) 

with function ( ),h D u : 

( )
( ) ( )22 2 2 4

d, .
2 1 2 1

D uh D u Cu
D D u u

= +
+ + − +

∫                         (61) 

Integral in expression (61) is calculated in elementary functions [17]. Let us choose for simplicity  
1.x yD D D= = =  In this case, the function (61) is equal to [17]: 

( )
2

2 2

1 2 2 2ln arctg .
16 2 2 2

u u uh u Cu
u u u

 + +
= + + 

− + − 
                         (62) 

The sum ( ) ( )x yh u h u+  can be written down as one formula. Then Hamiltonian is equal to: 

( )
( )

( )
( )

( ) ( )
( )

2 2 2 2

1 222 2 2 2

2 2 2 2 2 2 2 21 1ln arctg
16 162 2 2 2 2 4

x x y y y x x y
x y

x x y y x y x y

u u u u u u u u
H C u C u

u u u u u u u u

+ + + + − + −
= + + +

− + − + + − −
         (63) 

It is easy to construct the phase portrait of Figure 4 for Hamiltonian (63) and specific values 1 0.1C = , 
2 0.1C = . The phase portrait shows the presence of closed trajectories in the phase plane around elliptic points 

and separatrices that connect hyperbolic points. It is obvious that the closed trajectories correspond to nonlinear 
periodic solutions. The separatrices correspond to localized solutions of kink type. 
 

 
Figure 4. Phase plane for Hamiltonian (63) ( 1 0.1C = , 2 0.1C = ). We see the 
presence of closed trajectories around the elliptic points and separatrices which 
connect the hyperbolic points. Phase portrait is typical for Hamiltonian systems.                 
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7. Conclusions and Discussion of the Results 
In this work we found new large scale instability in rotating fluid. It is supposed that the small scale vortex ex-
ternal force in rotating coordinates system acts on fluid which maintains the small velocity field fluctuations 
(small-scale turbulence with low Reynolds number , 1R R ). For the real applications this Reynolds number 
should be calculated with the help of the turbulent viscosity. The asymptotic development of motion equations 
by small Reynolds number allows obtaining motion equations for the large scale. These equations are of the hy-
drodynamic α-effect type, in which velocity components ,x yW W  are connected by the positive feedback. This 
may result in the appearance of the large scale vortex instability. This instability is responsible for the formation 
of large scale Beltrami vortices in rotating fluid with small scale external force. With further increase of ampli-
tude the instability stabilizes and passes to a stationary mode. In this mode the nonlinear stationary vortex struc-
tures are formed. The most interesting structures belong to a variety of vortex kinks. These kinks connect sta-
tionary hyperbolic points of the dynamical system (58).  

Note that in contrast to previous work on the hydrodynamic α-effect in rotating fluid, the method enables us 
to construct an asymptotic development in a natural way and to explore non-linear theory of nonlinear stationary 
vortex kinks. 
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