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Abstract 
A numerical study is presented for the fully developed two-dimensional laminar flow of viscous 
incompressible fluid through a curved square duct for the constant curvature δ = 0.1. In this paper, 
a spectral-based computational algorithm is employed as the principal tool for the simulations, 
while a Chebyshev polynomial and collocation method as secondary tools. Numerical calculations 
are carried out over a wide range of the pressure gradient parameter, the Dean number, 100 ≤ Dn ≤ 
3000 for the Grashof number, Gr, ranging from 100 to 2000. The outer wall of the duct is treated 
heated while the inner wall cooled, the top and bottom walls being adiabatic. The main concern of 
the present study is to find out the unsteady flow behavior i.e. whether the unsteady flow is 
steady-state, periodic, multi-periodic or chaotic, if Dn or Gr is increased. It is found that the un- 
steady flow is periodic for Dn = 1000 at Gr = 100 and 500 and at Dn = 2000, Gr = 2000 but 
steady-state otherwise. It is also found that for large values of Dn, for example Dn = 3000, the 
unsteady flow undergoes in the scenario “periodic→chaotic→periodic”, if Gr is increased. Typical 
contours of secondary flow patterns and temperature profiles are also obtained, and it is found 
that the unsteady flow consists of single-, two-, three- and four-vortex solutions. The present study 
also shows that there is a strong interaction between the heating-induced buoyancy force and the 
centrifugal force in a curved square passage that stimulates fluid mixing and consequently en- 
hance heat transfer in the fluid. 
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1. Introduction 
Fluid flow and heat transfer in curved ducts have been studied for a long time because of their fundamental 
importance in engineering and industrial applications. Today, the flows in curved non-circular ducts are of 
increasing importance in micro-fluidics, where lithographic methods typically produce channels of square or 
rectangular cross-section. These channels are extensively used in many engineering applications, such as in 
turbo-machinery, refrigeration, air conditioning systems, heat exchangers, rocket engine, internal combustion 
engines and blade-to-blade passages in modern gas turbines. In a curved duct, centrifugal forces are developed 
in the flow due to channel curvature causing a counter rotating vortex motion applied on the axial flow through 
the channel. This creates characteristics spiraling fluid flow in the curved passage known as secondary flow. At 
a certain critical flow condition and beyond, additional pairs of counter rotating vortices appear on the outer 
concave wall of curved fluid passages which are known as Dean vortices, in recognition of the pioneering work 
in this field by Dean [1]. After that, many theoretical and experimental investigations have been done; for 
instance, the articles by Berger et al. [2], Nandakumar and Masliyah [3], and Ito [4] may be referenced.  

One of the interesting phenomena of the flow through a curved duct is the bifurcation of the flow because 
generally there exist many steady solutions due to channel curvature. Studies of the flow through a curved duct 
have been made, experimentally or numerically, for various shapes of the cross section by many authors. 
However, an extensive treatment of the bifurcation structure of the flow through a curved duct of rectangular 
cross section was presented by Winters [5], Daskopoulos and Lenhoff [6] and Mondal [7].  

Unsteady flows by time evolution calculation of curved duct flows was first initiated by Yanase and 
Nishiyama [8] for a rectangular cross section. In that study they investigated unsteady solutions for the case 
where dual solutions exist. The time-dependent behavior of the flow in a curved rectangular duct of large aspect 
ratio was investigated, in detail, by Yanase et al. [9] numerically. They performed time-evolution calculations of 
the unsteady solutions with and without symmetry condition and found that periodic oscillations appear with 
symmetry condition while aperiodic time variation without symmetry condition. Wang and Yang [10] [11] 
performed numerical as well as experimental investigation on fully developed periodic oscillation in a curved 
square duct. Flow visualization in the range of Dean numbers from 50 to 500 was carried out in their experiment. 
Recently, Yanase et al. [12] performed numerical investigation of isothermal and non-isothermal flows through 
a curved rectangular duct and addressed the time-dependent behavior of the unsteady solutions. In the succeeding 
paper, Yanase et al. [13] extended their work for moderate Grashof numbers and studied the effects of secon-dary 
flows on convective heat transfer. Recently, Mondal et al. [14] [15] performed numerical prediction of the 
unsteady solutions by time-evolution calculations for the flow through a curved square duct and discussed the 
transitional behavior of the unsteady solutions.  

One of the most important applications of curved duct flow is to enhance the thermal exchange between two 
sidewalls, because it is possible that the secondary flow may convey heat and then increases heat flux between 
two sidewalls. Chandratilleke and Nursubyakto [16] presented numerical calculations to describe the secondary 
flow characteristics in the flow through curved ducts of aspect ratios ranging from 1 to 8 that were heated on the 
outer wall, where they studied for small Dean numbers and compared the numerical results with their experi-
mental data. Yanase et al. [13] studied time-dependent behavior of the unsteady solutions for curved rectangular 
duct flow and showed that secondary flows enhance heat transfer in the flow. Mondal et al. [17] performed nu-
merical prediction of the unsteady solutions by time-evolution calculations of the thermal flow through a curved 
square duct and studied convective heat transfer in the flow. Recently Norouzi et al. [18] [19] investigated fully 
developed flow and heat transfer of viscoelastic materials in curved square ducts under constant heat flux. Very 
recently, Chandratilleke and Narayanaswamy [20] numerically studied vortex structure-based analysis of lami-
nar flow and thermal characteristics in curved square and rectangular ducts. To the best of the authors’ know-
ledge, however, there has not yet been done any substantial work studying the transitional behavior of the un-
steady solutions for thermal flows through a curved square duct for combined effects of large Grashof number 
and large Dean number, which has very practical applications in fluids engineering, for example, in internal 
combustion engine, gas turbines etc. Thus from the scientific as well as engineering point of view it is quite in-
teresting to study the unsteady flow behavior in the presence of strong buoyancy and centrifugal forces. Keeping 
this issue in mind, in this paper, a comprehensive numerical study is presented for fully developed two-dimen- 
sional (2D) flow of viscous incompressible fluid through a curved square duct and studied effects of secondary 
flows on convective heat transfer in the flow. 
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2. Mathematical Formulations 
Consider an incompressible viscous fluid streaming through a curved duct with square cross section whose 
width or height is 2d. The coordinate system is shown in Figure 1. It is assumed that the temperature of the out-
er wall is 0T T+ ∆  and that of the inner wall is 0T T− ∆ , where 0T∆ > . The x, y, and z axes are taken to be in 
the horizontal, vertical, and axial directions, respectively. It is assumed that the flow is uniform in the axial di-
rection, and that it is driven by a constant pressure gradient G along the center-line of the duct, i.e. the main flow 
in the axial direction as shown in Figure 1. The variables are non-dimensionalized by using the representative 
length d and the representative velocity 0U v d= . 

We introduce the non-dimensional variables defined as 

0 0 0

2, , , , ,u v x y zu v w w x y z
U U U d d d

δ′ ′ ′ ′ ′
′= = = = = =  

0
2
0

, , , ,
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T d L zU
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ρ
′ ′ ′∂′= = = = = −

′∆ ∂
, 

where, u, v and w are the non-dimensional velocity components in the x, y and z directions, respectively; t is the 
non-dimensional time, P the non-dimensional pressure, δ  the non-dimensional curvature, and temperature is 
non-dimensionalized by T∆ . Henceforth, all the variables are nondimensionalized if not specified. The stream 
function ψ  is introduced in the x- and y-directions as 
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1 1

u v
x y x x

ψ ψ
δ δ

∂ ∂
= = −

+ ∂ + ∂
                              (1) 

Then the basic equations for ,wψ  and T  are derived from the Navier-Stokes equations and the energy 
equation under the Boussinesq approximation as, 
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Figure 1. Coordinate system of the curved square duct.                               
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The Dean number Dn, the Grashof number Gr, and the Prandtl number Pr, which appear in Equations (2) to 
(4) are defined as 

3 3

2

2 , , PrGd d g TdDn Gr
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= = =                          (6) 

The rigid boundary conditions for w  and ψ  are used as 
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            (7) 

and the temperature T  is assumed to be constant on the walls as 

( ) ( ) ( )1, 1, 1, 1, , 1T y T y T x x= − = − ± = .                          (8) 

In the present study, Dn and Gr vary while Pr and δ  are fixed as Pr = 7.0 (water) and curvature 0.1.δ =  

3. Numerical Calculations  
3.1. Method of Numerical Calculation 
In order to solve the Equations (2) to (4) numerically the spectral method is used. This is the method which is 
thought to be the best numerical method to solve the Navier-Stokes equations as well as the energy equation 
(Gottlieb and Orazag, [21]). By this method the variables are expanded in a series of functions consisting of the 
Chebyshev polynomials. That is, the expansion functions         
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where M  and N  are the truncation numbers in the x  and y  directions respectively. In this study, for 
necessary accuracy of the solutions, we use M = 20 and N = 20. In order to calculate the unsteady solutions, the 
Crank-Nicolson and Adams-Bashforth methods together with the function expansion (10) and the collocation 
methods are applied. 
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3.2. Resistance Coefficient 
The resistant coefficient λ  is used as the representative quantity of the flow state. It is also called the hydraulic 
resistance coefficient, and is generally used in fluids engineering, defined as  

* * 2*1 2
* *

1 ,
2h

P P w
z d

λ ρ
−

=
∆

                                 (11) 

where, quantities with an asterisk (*) denote dimensional ones,  stands for the mean over the cross section 
of the duct and *

hd  is the hydraulic diameter. The main axial velocity w∗  is calculated by  
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= ∫ ∫                            (12) 

Since ( ) *
* *

1 2 z
P P G− ∆ = , λ  is related to the mean non-dimensional axial velocity w  as    

2

4 2 ,Dn
w
δλ =                                      (13) 

where, *2 .w d w vδ=  In the present study, λ  is used to perform time evolution of the unsteady 
solutions. 

4. Results and Discussion  
4.1. Time Evolution of the Unsteady Solutions 
Time evolution of the resistance coefficient λ are performed for 100Dn =  and 100 2000Gr≤ ≤  as shown in 
Figure 2(a). It is found that the flow is a steady-state solution for 100Dn =  and 100 2000.Gr≤ ≤  To draw  

 

 
Figure 2. (a) Time-dependent flow for 100Dn =  and 100 2000Gr≤ ≤ ; (b) Secondary flow 
patterns (top) and temperature profiles (bottom) for 100Dn =  and 100 2000Gr≤ ≤ .                                                             
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the contours for the stream lines of the secondary flow patterns ( )ψ  and temperature profiles (T), we use the 
increments 0.6ψ∆ =  and ∆T = 0.25 respectively. The same increments of ψ  and T are used for all the fig-
ures in this study, unless specified. The right-hand side of each duct box of ψ  and T is in the outside direction 
of the duct curvature. In the figures of the stream lines, solid lines ( )0ψ ≥  show that the secondary flow is in 
the counter clockwise direction while the dotted lines ( )0ψ <  in the clockwise direction. Similarly, in the fig-
ures of the isotherms (temperature profiles), solid lines are those for 0T ≥  and dotted ones for T < 0. Since the 
flow is steady-state, single contours of the secondary flow patterns and temperature profiles are shown in Figure 
2(b), where it is seen that the unsteady flow is an asymmetric single- and two-vortex solution. It is found that as 
Gr increases, the two-vortex solution ceases to be a single-vortex solution which covers the whole cross-section 
of the duct. We also investigated time-dependent solutions for 500Dn = and 100 2000Gr≤ ≤  and obtained 
same type of flow behavior as obtained for 100Dn = . The results are shown in Figure 3, where we find that 
the unsteady flow is an asymmetric two-vortex steady-state solution. 

Then, we investigated time-dependent solutions of λ for 1000Dn =  and 100 2000Gr≤ ≤ . The results are 
shown in Figure 4(a). As seen in Figure 4(a), the time-dependent flow is a periodic solution for 100Gr =  and 

500Gr =  but steady-state solution for 1000 2000Gr≤ ≤ . In order to see the flow oscillations more clearly, 
we explicitly show time variations of λ for 100=Gr  in Figure 4(b), where periodic flows are clearly observed. 
Contours of secondary flow patterns and temperature profiles are shown in Figure 4(c) for 23.45 25.40t≤ ≤ . It 
is found that the periodic flow for 100Gr =  oscillates between asymmetric four-vortex solution. Figure 5(a) 
explicitly shows time evolution of λ for 1000Dn =  and 500Gr = , where it is seen that the flow oscillates pe-
riodically. Corresponding secondary flow patterns and temperature profiles are shown in Figure 5(b) for
42.08 42.30t≤ ≤ . As seen in Figure 5(b), the periodic oscillation for 500Gr =  oscillates between asymme-
tric two-vortex solutions. Since the unsteady flow is a steady-state solution for 100 2000Gr≤ ≤ , typical con-
tours of the secondary flow patterns and temperature profiles are shown in Figure 5(c) for Gr = 1000, 1500 and 
2000. In Figure 5(c), we see that the steady-state flow for Dn = 1000 and Gr = 1000, 1500 and 2000 are  
 

 
Figure 3. (a) Time-dependent flow for 500Dn =  and 100 2000Gr≤ ≤ ; (b) Secondary flow 
patterns (top) and temperature profiles (bottom) for 500Dn =  and 100 2000Gr≤ ≤ .                                                             
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Figure 4. (a) Time-dependent flow for 1000Dn =  and 100 2000Gr≤ ≤ ; (b) time evolution of λ for 1000Dn =  and 

100Gr = ; (c) secondary flow patterns (top) and temperature profiles (bottom) for 1000Dn =  and 100Gr = .                                                       
 
asymmetric two-vortex solution. 

We then performed time evolution of λ for Dn = 1500 and 100 2000Gr≤ ≤ . The result is shown in Figure 
6(a). As seen in Figure 6(a), the time-dependent flow for 1500Dn =  is a steady-state solution for all 
100 2000.Gr≤ ≤  Secondary flow patterns and temperature profiles, depicted in Figure 6(b) for 1500Dn = , 
shows that the flow is an asymmetric two-vortex solution. The temperature profile is consistent with the second-
ary vortices. The result of the time-dependent solution of λ for 2000Dn =  and 100 2000Gr≤ ≤  is shown in 
Figure 7(a). As seen in Figure 7(a), the time-dependent flow for 2000Dn =  is a steady-state solution for 
100 1500Gr≤ ≤  but periodic oscillating flow for 2000Gr = . The time-periodic flow for 2000Gr =  is indi-
vidually shown in Figure 7(b) for a clear view. Figure 7(c) shows typical contours of secondary flow patterns 
and temperature profiles for the steady-state solutions at 100 1500Gr≤ ≤  and Figure 7(d) shows those for 

2000Gr = , for one period of oscillation at time 20.68 21.01t≤ ≤ , and we find that both the time-periodic and 
steady-state solutions are asymmetric two-vortex solutions. Then we show the results of the time-dependent so-
lutions for 2500Dn =  and 100 2000Gr≤ ≤  in Figure 8(a). As seen in Figure 8(a), the time-dependent flow 
for 2500Dn =  is a steady-state solution for 100 1000Gr≤ ≤  but periodic oscillating flow for 1500Gr =  
and multi-periodic (or transitional chaos) flow for 2000.Gr =  Figures 8(b)-(d) respectively show those of the 
time-dependent solutions for the steady-state solutions at Gr = 100, 500 and 1000. Since the flow is steady-state 
at 100,500Gr =  and 1000, a single contour of each of the secondary flow patterns and temperature profiles is 
shown in Figures 8(b)-(d) respectively. Figure 9(a) and Figure 9(b) respectively show time-dependent solu-
tions for 1500Gr =  and 2000 at 2500.Dn =  As seen in Figure 9(a) and Figure 9(b), the unsteady flow is a 
time-periodic for 1500Gr =  but multi-periodic (sometimes called transitional chaos, (Mondal et al. [14]) for 

2000.Gr =  Typical contours of secondary flow patterns and temperature distributions for 1500Gr =  and 
2000 are shown in Figure 9(c) and Figure 9(d) respectively, where we see that the periodic or multi-periodic  
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(a) 

 
(b) 

 
(c) 

Figure 5. (a) Time-dependent flow for 1000Dn =  and Gr = 500 at time 40 46t≤ ≤ ; (b) 
secondary flow patterns (top) and temperature profiles (bottom); (c) single contours of second-
ary flow patterns (top) and temperature profiles (bottom) for Gr = 1000, 1500 and 2000 at 

1000Dn = .                                                                             
 
flows are asymmetric two-vortex solution. 

Finally, the results of the time-dependent solutions for 3000Dn =  and 100 2000Gr≤ ≤  are unitedly 
shown in Figure 10(a) and separately in the successive figures. Figure 10(b) explicitly show time-dependent 
flow for 3000Dn =  and Gr = 100 and it is found that the flow is multi-periodic rather than periodic. Then, in 
order to see the multi-periodic oscillation more clearly, a phase space of the time change of λ  for s  
and 100Gr =  is shown in Figure 10(c) in the λ γ−  plane, where d d .x yγ ψ= ∫∫  As seen in Figure 10(c),  

the time-dependent flow creates multiple orbits, which suggests that the flow is multi-periodic. Typical contours  
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Figure 6. (a) Time-dependent flow for 1500Dn =  and 100 2000Gr≤ ≤ ; (b) contours of 
secondary flow patterns (top) and temperature profiles (bottom) for 1500Dn =  and 
100 2000Gr≤ ≤ .                                                                

 
of secondary flow patterns and temperature profiles are shown in Figure 10(d), and it is found that the flow os-
cillates between asymmetric two-vortex solutions. Then we explicitly show the result of the time-dependent 
flow for 3000Dn =  and Gr = 500 in Figure 11(a). Then, to be sure whether the flow is periodic, mul-
ti-periodic or chaotic, we draw the phase space of the time-dependent flow for 3000Dn =  and Gr = 500 in 
Figure 11(b) and see that the flow is a transitional chaos (Mondal [7]). Then we draw typical contours of sec-
ondary flow patterns and temperature profiles for the transitional chaos at 3000Dn =  and Gr = 500 in Figure 
11(c). Figure 11(c) shows that the flow is an asymmetric two-vortex solution. Then we perform time-evolution 
of λ for 3000Dn =  and 1000,Gr =  and presented in Figure 12(a). As seen in Figure 12(a), the flow oscil-
lates multi-periodically. In order to see the characteristics of the multi-periodic oscillation, we draw the phase 
space of the time-dependent flow for 3000Dn =  and 1000Gr =  and presented in Figure 12(b). It is found 
that the unsteady flow creates irregular or multiple orbit which means the flow presented in Figure 12(a) is 
chaotic rather than multi-periodic. The chaotic behavior is clearly justified by Figure 12(b). Then we draw typ- 
ical contours of secondary flow patterns and temperature profiles for the chaotic oscillation at 3000Dn =  and 

1000Gr =  in Figure 12(c). As seen in Figure 12(c), the chaotic flow oscillates irregularly between the asym- 
metric two-vortex solutions. The results of the time-dependent flow for 1500Gr =  and 2000Gr =  at 

3000Dn =  are shown in Figure 13(a) and Figure 14(a) respectively. As seen in Figure 13(a) and Figure 
14(a), the unsteady flows at 1500Gr =  and 2000Gr =  are periodic solutions, which are well justified by 
drawing the phase-spaces as shown in Figure 13(b) and Figure 14(b) respectively. It is found that the two flows 
have nearly the same type of unsteady flow behavior. Typical contours of secondary flow patterns and temperature 
profiles for the periodic oscillations at 1500Gr =  and 2000Gr =  for 3000Dn =  are shown in Figure 13(c) 
and Figure 14(c) respectively, where we see that the periodic flow oscillates between asymmetric two-vortex 
solutions. The temperature distribution is well consistent with the secondary vortices, and it becomes so entan-
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gled when the secondary vortices become stronger. In this regard, it should be worth mentioning that irregular 
oscillation of the non-isothermal and isothermal flows has been observed experimentally by Wang and Yang 
[10] for a curved square duct flow and by Ligrani and Niver [22] for flow through a curved rectangular duct of 
large aspect ratio. 

 

 
Figure 7. (a) Time-dependent flow for 2000Dn =  and 100 2000Gr≤ ≤ ; (b) time evolution of λ for 2000Gr = ; (c) 
flow patterns for 100 1500Gr≤ ≤ ; (d) contours of secondary flow patterns and temperature profiles for 2000Gr = .                                                                                           
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Figure 8. (a) Time-dependent flow for 2500Dn =  and 100 2000Gr≤ ≤ ; (b) time evolution of λ for 100Gr = ; (c) time 
evolution of λ for 500Gr = ; (d) time evolution of λ for 1000Gr = ; (e) contours of secondary flow patterns and tempera-
ture profiles for Gr = 100, 500 and 1000 at 2500Dn = .                                                             
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Figure 9. (a) Time-dependent flow for 2500Dn =  and 1500Gr = ; (b) time evolution of λ for 2500Dn =  and 

2000Gr = ; (c) contours of secondary flow patterns (top) and temperature profiles (bottom) for 1500Gr = ; (d) contours of 
secondary flow patterns (top) and temperature profiles (bottom) for 2000.Gr =                                                              
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Figure 10. (a) Time-dependent flow for 3000Dn =  and 100 2000Gr≤ ≤ ; (b) time evolution of λ for 3000Dn =  and 

100Gr = ; (c) phase space; (d) secondary flow patterns and temperature profiles for 3000Dn =  and 100Gr = .                               
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Figure 11. (a) Time-dependent flow for 3000Dn =  and 500Gr = ; (b) phase space for 3000Dn =  and 

500Gr = ; (c) secondary flow patterns (top) and temperature profiles (bottom) for 3000Dn =  and 500Gr = .                                                             
 

 
Figure 12. (a) Time-dependent flow for 3000Dn =  and 1000Gr = ; (b) phase space for 3000Dn =  and 

1000Gr = .                                                                                               
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Figure 12. (c) Secondary flow patterns (top) and temperature profiles (bottom) for 1000Gr = .                                                             

 

 
Figure 13. (a) Time-dependent flow for 3000Dn =  and 1500Gr = ; (b) phase space for 3000Dn =  and 

1000Gr = ; (c) secondary flow patterns (top) and temperature profiles (bottom) for 3000Dn =  and 1500.Gr =                                                              
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Figure 14. (a) Time-dependent flow for 3000Dn =  and 2000Gr = ; (b) phase space for 3000Dn =  and 

2000Gr = ; (c) secondary flow patterns (top) and temperature profiles (bottom) for 3000Dn =  and 2000Gr = .                                                             

4.2. Phase Diagram in the Dn-Gr Plane 
Finally, the distribution of the time-dependent solutions, obtained by the time evolution calculations of the 
curved square duct flows, is shown in Figure 15 in the Dean number versus Grashof number (Dn-Gr) plane for 
100 3000Dn≤ ≤  and 100 2000,Gr≤ ≤  where the circle indicates steady-state solutions, the cross periodic (or 
multi-periodic) solutions and the triangle chaotic solutions. As seen in Figure 15, the unsteady flow is always a 
steady-state solution for any value of Gr in the range 100 2000,Gr≤ ≤  when 100 1500Dn≤ ≤  except for 
Dn = 1000. At Dn = 1000, the flow is periodic for Gr = 100 and 500 but steady-state otherwise. For Dn = 
2000, the flow is periodic at Gr = 2000 but steady-state when Gr < 2000. As seen in Figure 15, the flow is also 
periodic/multi-periodic for Dn = 2500 at Gr = 1500 and 2000; for large Dean numbers, e.g. Dn = 3000, on the 
other hand, the unsteady flow changes in the scenario “periodic → chaotic → periodic”, if Gr in increased.  

5. Conclusion 
A numerical study is presented for the time-dependent solutions of the flow through a curved square duct of 
constant curvature 0.1δ = . Numerical calculations are carried out by using a spectral method, and covering a 
wide range of the Dean number 100 3000Dn≤ ≤  and the Grashof number 100 2000.Gr≤ ≤  A temperature 
difference is applied across the vertical sidewalls, where the outer wall is heated and the inner wall cooled. In 
order to study the non-linear behavior of the unsteady solutions, we performed time evolution calculations and it 
is found that the unsteady flow is a steady-state solution for Dn = 100, 500 and 1500 for all values of the Gr in-
vestigated in this study. However, the unsteady flow is periodic for 1000Dn =  at 100,500Gr =  and for Dn = 
2000 at Gr = 2000. The unsteady flow is also periodic/multi-periodic for Dn = 2500 at Gr = 1500 and 2000. For 
large Dean numbers, e.g. Dn = 3000, on the other hand, the unsteady flow undergoes in the scenario “period-
ic→chaotic→periodic”, if Gr is increased. Typical contours of secondary flow patterns and temperature profiles  
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Figure 15. Distribution of the time-dependent solutions in the Dean number vs. Gra-
shof number (Dn-Gr) plane for 100 3000Dn≤ ≤  and 100 2000Gr≤ ≤  ( Ο : 
steady-state solution, × : periodic solution, ∇ : chaotic solution).                                              

 
are also obtained, and it is found that periodic or multi-periodic solution oscillates between asymmetric two-, 
and four-vortex solutions, while for chaotic solution, there exist only asymmetric two-vortex solution. The tem-
perature distribution is consistent with the secondary vortices and it is found that the temperature distribution 
occurs significantly from the heated wall to the fluid as the secondary flow becomes stronger. The present study 
also shows that there is a strong interaction between the heating-induced buoyancy force and the centrifugal 
force in the curved passage which stimulates fluid mixing and thus results in thermal enhancement in the flow. 
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