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ABSTRACT 

Direct numerical simulation of a jet issuing from a nozzle having a rectangular cross-section is conducted. The vortex in 
cell (VIC) method, of which computational accuracy was heightened by the authors in a prior study, is used for the 
DNS. The aspect ratio of the nozzle cross-section is 15, and the Reynolds number based on the shorter side length of the 
nozzle exit is 6700. The turbulence statics, such as the mean velocity and the turbulence intensity, are favorably com- 
pared with the experimentally measured results. The behavior of the large-scale eddies as well as the development of 
the turbulent flow is also confirmed to agree with the measurement. These indicate that the authors’ VIC method is suc- 
cessfully employed for the DNS of rectangular jet. 
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1. Introduction 

Vortex in cell (VIC) method [1] is one of the simulation 
methods for incompressible flows. It discretizes the vor- 
ticity field into vortex elements and computes the time 
evolution of the field by tracing the convection of each 
vortex element using the Lagrangian approach. The La- 
grangian calculation markedly reduces numerical diffu- 
sion and also improves numerical stability. Thus, the 
VIC method is eminently suitable for direct numerical 
simulation (DNS) and large eddy simulation (LES) of 
turbulent flows, and various results have been reported. 
Cottet and Poncet [2] applied the VIC method for the 
wake simulation of a circular cylinder, and captured the 
streamwise vortices occurring behind the cylinder. Cocle 
et al. [3] analyzed the behavior of two vortex systems 
near a solid wall, and made clear the interaction between 
two counter-rotating vortices and the eddies induced in 
the vicinity of the wall. Chatelain et al. [4] simulated 
trailing edge vortices, and visualized the unsteady phe- 
nomena caused by disturbances. These studies are con- 
cerned with time-developing free shear flows. But the 
VIC method has not been applied to turbulent flows 
bounded by solid walls, which are closely related with 
the turbulent friction and heat transfer. 

The authors [5] performed the DNS of a turbulent  
channel flow, which is a representative example of wall 
turbulent flows. When applying the existing VIC method, 
the oscillation of the flow increased with the progress of 
the computation, and eventually the computation col- 
lapsed. This was caused by the fact that the consistency 
among the discretized equations is not ensured. This was 
also because the solenoidal condition for the vorticity is 
not fully satisfied. To overcome such problems of the 
existing VIC method, the authors [5] proposed the im- 
proved VIC method. The authors [5] also applied the 
improved VIC method to the DNS of the turbulent chan- 
nel flow. The DNS highlighted that the time evolution of 
the flow is fully computed and that the statistically steady 
turbulent flow is favorably obtained. It also demonstrated 
that the organized flow structures, such as streaks and 
streamwise vortices appearing in the near wall region, are 
successfully captured and that the turbulence statistics, 
such as the mean velocity and the Reynolds stress, agree 
well with the existing DNS results. 

Jet is frequently observed in many engineering appli- 
cations. As the jet is the representative of free shear 
flows governed by the convection of the eddies having 
various scales, the VIC method solving directly the vor- 
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ticity field promises to be usefully applied to the simula- 
tion. But the VIC method has been scarcely used for the 
jet simulation. 

The objective of this study is to search for the applica- 
bility of the authors’ VIC method [5] to the DNS of jet 
flows. The DNS of a jet issuing from a nozzle having a 
rectangular cross-section is performed by the VIC me- 
thod. The jet velocity field was experimentally inves- 
tigated by Iio et al. [6]. The aspect ratio of the nozzle 
cross-section is 15, and the Reynolds number based on 
the shorter side length of the nozzle exit is 6700. The 
DNS results, such as the mean velocity and the turbu- 
lence intensity, are favorably compared with the meas- 
ured ones. The behavior of the large-scale eddies as well 
as the development of the turbulent flow is also con- 
firmed to agree with the measurement. These indicate 
that the authors’ VIC method is successfully employed 
for the DNS of rectangular jet. 

2. Vortex in Cell Method 

2.1. Vorticity Equation and Orthogonal 
Decomposition of Velocity 

For an incompressible flow, the vorticity equation is gi- 
ven by  

    2

t


      


u u
            (1) 

where u is the velocity and   u  is the vorticity. 
According to the Helmholtz theorem, the velocity u  

is the sum of the curl of a vector potential ψ  and the 
gradient of a scalar potential  : 

  u                   (2) 

when ψ  is postulated to be solenoidal or 0  , the 
curl of Equation (2) yields the vector Poisson equation 
for ψ : 

2                       (3) 

Substituting Equation (2) into the continuity equation 
and rewriting the resultant equation, the Laplace equation 
for   is obtained: 

2 0                      (4) 

Once ψ  and   have been computed from Equa- 
tions (3) and (4) respectively, the velocity u  is calcu- 
lated from Equation (2). The vorticity   in Equation (3) 
is estimated from Equation (1). The vortex in cell (VIC) 
method discretizes the vorticity field into vortex elements, 
and calculates the distribution of   by tracing the con- 
vection of each vortex element. 

It is postulated that the position vector and vorticity for  

the vortex element p are  , ,p p p px y zx  and p , 

respectively. The Lagrangian form of the vorticity equa- 

tion, Equation (1), is written as [7]: 

 d

d
p

pt


x
u x                          (5) 

      2d

d
p

p p pt
   u x x x


       (6) 

When the position and vorticity of a vortex element 
are known at time t , the values at t t   are computed 
from the Lagrangian calculations of Equations (5) and 
(6). In the VIC method, the flow field is divided into 
computational grid cells to define ψ ,   and   on the 
grids. If   is defined at a position  , ,g g g gx y zx , 
the vorticity   is assigned to gx , or a vortex element 
with vorticity   is redistributed onto gx  

vN
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p
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W W W
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where x , y  and z  are the grid widths, and vN  
is the number of vortex elements. For the redistribution 
function W , various forms are presented [7]. To sup- 
press the numerical dissipation, a high-order scheme, 
which preserves the three first moments of the distribu- 
tion, twice continuously differentiable and symmetric, is 
employed for W : 
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     (8) 

Equation (8) was used for the simulations of time-de- 
veloping free shear flows [2-4]. The DNS of a turbulent 
channel flow was also successfully performed with Equa- 
tion (8) by the authors [5]. 

2.2. Discretization by Staggered Grid 

For incompressible flow simulations, the MAC and 
SMAC methods solve the Poisson equation, which is 
derived from the equation for pressure gradient and the 
continuity equation. These methods employ a staggered 
grid to ensure consistency among the discretized equa- 
tions, and to prevent the numerical oscillation of the so- 
lution. The staggered grid would appear to be indispen- 
sable for discretizing the Poisson equation for ψ  and 
the Laplace equation for  , which are derived in the 
VIC method. However, staggered grids are not readily 
accommodated in the existing VIC method. 

The authors proposed a VIC method using a staggered 
grid in their prior study [5]. Figure 1 shows the ar- 
rangement of the variables in the grid. The scalar poten- 
tial   and velocity u  are defined at the center and 
sides of a grid cell, respectively. The vorticity   and 
the vector potential ψ  are defined on the edges. 
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Figure 1. Staggered grid. 

2.3. Correction of Vorticity Field 

In the VIC method, the vorticity field is discretized into 
vortex elements, and the field is expressed by superim- 
posing the vorticity distributions around each vortex ele- 
ment. The superposition is performed by Equation (7). 
The resulting vorticity field r  does not necessarily sa- 
tisfy the solenoidal condition [7]. Denoting the vorticity 
satisfying this condition by  s  u , r  is repre- 
sented as [3] 

r sF                     (9) 

where F is a scalar function. Equation (9) corresponds to 
the Helmholtz decomposition of r . 

Taking the divergence of Equation (9), the Poisson 
equation for F is obtained: 

2
rF                   (10) 

Calculating F from Equation (10) and substituting into 
Equation (9) gives the recalculated vorticity s  [3]. 
This correction for vorticity needs to solve the Poisson 
equation, which increases the computational time. To 
reduce this additional cost, the authors [5] have proposed 
a simplified correction method. 

The uncorrected vorticity, r , is linked to r  through 
Equation (3). Taking the divergence of Equation (3) and 
substituting Equation (10) into the resultant equation, the 
following relations are obtained: 
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 
             (11) 

Unlike the assumption for the solenoidal condition of 
 , the following equation for a non-solenoidal vorticity 

is derived from Equation (11). 

r F                   (12) 

Using r  to calculate r  from Equation (3), and 
determining r  from Equation (4), the curl of ru  trans- 
forms as follows: 
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        (13) 

Equation (13) demonstrates that the curl of the veloc- 
ity ru  calculated from r  yields a vorticity s  that 
satisfies the solenoidal condition. If the vorticity is re- 
calculated by Equation (13), or the vorticity is corrected 
immediately after calculating the velocity by Equation 
(2), the discretization error in the vorticity is completely 
removed and the flow dynamics are accurately simulated 
without solving the Poisson equation, Equation (10). It 
should be noted that the staggered grid is required for 
rendering the transformation in Equation (13) applicable 
to the corresponding discretized equations. 

2.4. Simulation Procedure 

Given the flow at time t , the flow at t t   is simu- 
lated by the following procedure: 

1) Calculate the change in the strength of each vortex 
element defined on the grid, or calculate the vorticity 

p  from Equation (6). 
2) Calculate the convection of each vortex element, or 

calculate the position px  from Equation (5).  
3) Redistribute the vortex element onto the grids, or 

calculate the vorticity   on the grids by Equation (7). 
4) Calculate the vector potential   from Equation (3). 
5) Calculate the scalar potential   from Equation (4). 
6) Calculate the velocity u  from Equation (2). 
7) Correct the vorticity, or calculate the corrected vor- 

ticity from the curl of u . 

3. Simulation Conditions 

The DNS of an incompressible jet issuing from a nozzle 
having a rectangular cross-section is performed. The jet 
velocity field was experimentally investigated by Iio et al. 
[6]. The computational domain is shown in Figure 2. 
The shorter side length of the nozzle exit is w , and the 
longer side length is 15w . The x -axis is along the jet 
centerline, while the y - and z -axes are parallel to the 
shorter and longer sides of the nozzle exit respectively. 
The computational domain consists of a cubic region of 
40 40 40w w w  . It is resolved into uniform grid cells of 
400 400 400  . Consequently, the shorter and longer 
sides of the nozzle exit are divided by 10 and 150 cells 
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Figure 2. Rectangular nozzle and computational domain. 
 
respectively. The jet velocity at the nozzle exit is 0U , 
and the Reynolds number based on w  and 0U  is 6700. 
Table 1 summarizes the simulation conditions. 

The boundary conditions are given as follows: Within 
the nozzle exit, a uniform and constant velocity 0U  is 
imposed. 
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          (14) 

The non-slip condition is adopted on the wall at 0x  , 
on which the nozzle exit is mounted. 
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The velocity gradient is set at zero on the other bound- 
aries. For example, the following conditions are imposed 
at 20y w  . 
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         (16) 

The time increment t  is  0100w U . A fully de- 
veloped flow was obtained at a time of 0200w U . The 
time-averaged velocity and the turbulence intensity were 
acquired in the period from 0250w U  to 0550w U . 

4. Results and Discussion 

4.1. Instantaneous Flow Fields 

The instantaneous distribution for the absolute value of  

Table 1. Simulation conditions. 

Direction x y z 

Nozzle size - w 15w 

Domain length 40w 40w 40w 

Grid cell number 400 400 400 

Grid width w/10 w/10 w/10 

Nozzle outlet velocity U0 0 0 

Reynolds number wU0/v 6700 

Time increment Δt w/(100U0) 

 
the velocity u  for the fully developed jet is shown in 
Figure 3. The distribution on the central cross-sections 
of the jet is presented. Figure 3(a) shows the result on 
the x-y cross-section at z = 0 parallel to the shorter side of 
the nozzle exit. The potential core disappears at x/w ≒ 
2.6, as mentioned later. Thus, the jet spreads in the lateral 
direction downstream of the disappearing point, indicat- 
ing the momentum diffusion in the direction. The distri- 
bution on the x-z cross-section parallel to the longer side 
is shown in Figure 3(b). It should be noted that the jet 
width becomes slightly narrower as the streamwise dis- 
tance increases. 

The vorticity components z  and y  at the same 
instant as Figure 3 distribute as plotted in Figure 4, 
where the distributions on the jet central cross-sections 
are presented. The shear layers originate from the shorter 
and longer sides of the nozzle exit, and the turbulent flow 
rapidly develops just after the collapse of the shear lay- 
ers. 

Figure 5(a) shows the velocity on the jet central cross- 
section parallel to the shorter side of the nozzle exit, 
where the distribution near the nozzle is plotted. To make 
the distribution more understandable, the velocity 00.5U  
is subtracted. On the shear layers originating from the 
longer sides of the nozzle exit, large-scale eddies occur at 
x/w ≧ 2.2. The eddies are non-axisymmetric around the 
jet centerline. They change into eddies having various 
scales as the streamwise distance increases. Figure 5(b) 
presents the flow field visualized experimentally by illu- 
minating an alcohol mist with a laser light sheet [6]. The 
image clearly visualizes the occurrence of some large- 
scale eddies on the shear layers as well as the rapid 
change of the flow into turbulence. It is confirmed that 
the DNS successfully resolves the flow development 
including the occurrence and collapse of large-scale ed- 
dies. 

4.2. Time-Averaged Velocity 

When the time-averaged velocity is calculated, the com- 
ponent in the jet axial direction U  distributes on the jet  
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(a)                                  (b) 

Figure 3. Instantaneous velocity distribution of fully-developed jet. (a) x-y cross-section at z = 0; (b) x-z cross-section at y = 0. 
 

 
(a)                                  (b) 

Figure 4. Instantaneous vorticity distribution of fully-developed jet. (a) ωz on x-y cross-section at z = 0; (b) ωy on x-z 
cross-section at y = 0. 
 
central cross-sections as shown in Figure 6. On the x-y 
cross-section parallel to the shorter side of the nozzle exit, 
the jet diffuses more in the lateral direction at x/w ≧ 3 as 
the streamwise distance increases. On the x-z cross-sec- 
tion parallel to the longer side, however, the jet width 
becomes narrower at x/w ≧ 3 in the downstream direc- 
tion. 

Figure 7 compares the time-averaged velocity com- 
ponent U  obtained by the DNS with the measured re- 
sult of Iio et al. [6]. A constant temperature hot-wire 
anemometer was employed for the measurement. It is 
found that the time-averaged flow features, such as the 
behavior of the potential core and the change in the jet 
width, are favorably grasped by the DNS. 

The time-averaged velocity component U  distributes 

on the y-z cross-sections as shown in Figure 8. The sec- 
tions are parallel to the nozzle exit. Figure 8(a) presents 
the DNS result. With increasing streamwise (x) distance, 
the jet spreads more in the y-direction. But it contracts 
gradually in the z-direction. These distributions agree 
well with the measurements depicted in Figure 8(b). 

The time-averaged velocity on the jet centerline mU  
changes as a function of the distance from the nozzle as 
shown in Figure 9. The potential core exist until x/w = 
2.6, where the velocity decreases markedly. Comparing 
with the measured result [6], the disappearing point of 
the potential core locates slightly upstream, and the ve- 
locity decay is smaller. It is considered that the decay of 
the centerline velocity is markedly affected by the ap- 
pearance and collapse of the large-scale eddies [8]. The    
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(a)                                  (b) 

Figure 5. Flow field visualized on x-y cross-section at z = 0. (a) DNS; (b) Experiment. 
 

 
(a)                                  (b) 

Figure 6. Distribution of time-averaged axial velocity. (a) x-y cross-section at z = 0; (b) x-z cross-section at y = 0. 
 
behavior of the large-scale eddies depends on the veloc- 
ity and turbulence intensity distributions within the noz- 
zle exit. Some fluctuations exist in the velocity measured 
at the nozzle exit, and affect the velocity decay on the jet 
centerline through the occurrence and collapse of the 

large-scale eddies. The abovementioned discrepancy be- 
tween the DNS and the measurement may be attribut- 
able to the fact that the boundary condition at the nozzle 
exit of the DNS does not accurately reproduce the veloc- 
ity field of the corresponding experiments.  
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DNS                              Experiment 

(a) 

 
DNS                              Experiment 

(b) 

Figure 7. Comparison of time-averaged axial velocity near nozzle. (a) x-y cross-section at z = 0; (b) x-z cross-section at y = 0. 
 

The half widths along the shorter and longer sides of 
the nozzle exit, yb  and zb  respectively, change as 
shown in Figure 10. yb  becomes larger as the stream- 
wise distance increases. But zb  reduces slightly. These 
DNS results agree almost with the measured ones [6]. 

4.3. Turbulence Intensity 

Figure 11 presents the jet axial component of the turbu- 
lence intensity rmsu . The distributions on the jet central 
cross-sections are plotted. On the x-y cross-section par- 
allel to the shorter side of the nozzle exit, rmsu  is larger 
at x/w ≦ 10 on the shear layers originating from the 
longer sides of the nozzle exit. On the x-z cross-section 
parallel to the longer side, rmsu  takes the maximum 
value on the shear layers from the shorter sides. 

In Figure 12, the turbulence intensity rmsu  obtained 
by the DNS is compared with the measurement [6]. Though 

rmsu  of the DNS is larger near the nozzle as well as on 
the shear layers originating from the shorter side of the 
nozzle exit, the trend of the distribution agrees well with 
the measurement. 

The turbulence intensity on the jet centerline varies as 
shown in Figure 13. The turbulence intensity of the DNS 
hardly coincides with the measurement [6] near the noz- 
zle (x/w ≦ 4.2). This may be caused by the fact that the 
DNS ignores velocity fluctuations at the nozzle exit and 
the boundary layer on the nozzle wall, which exist in the 
corresponding experiment. But it should be noted that the 
turbulence intensity agrees well with the measurement at 
x/w ≧ 4.2 downstream of the disappearing point of the 
potential core.   
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(a)                                  (b) 

Figure 8. Comparison of time-averaged axial velocity on y-z cross-sections. (a) DNS; (b) Experiment. 
 

 

Figure 9. Axial evolution of jet centerline velocity. 

 

Figure 10. Axial evolution of jet half-width.       
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(a)                                  (b) 

Figure 11. Distribution of axial turbulence intensity. (a) x-y cross-section at z = 0; (b) x-z cross-section at y = 0. 
 

 
DNS                              Experiment 

(a) 

 
DNS                              Experiment 

(b) 

Figure 12. Comparison of axial turbulence intensity near nozzle. (a) x-y cross-section at z = 0; (b) x-z cross-section at y = 0.   
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Figure 13. Axial evolution of axial turbulence intensity on 
jet centreline. 

5. Conclusions 

The DNS of a jet issuing from a nozzle having a rectan- 
gular cross-section was performed. The aspect ratio of 
the nozzle cross-section is 15, and the Reynolds number 
based on the shorter side length of the nozzle exit is 6700. 
The VIC method, of which computational accuracy has 
been heightened by the authors in a prior study, was used 
for the DNS. Staggered grids were employed to ensure 
consistency among the discretized equations, and to pre- 
vent numerical oscillations of the solution. A correction 
method of the vorticity was used so that the resultant 
vorticity field satisfies the solenoidal condition. 

The DNS results, such as the mean velocity and the 
turbulence intensity, were favorably compared with the 
measured ones. The behavior of the large-scale eddies as 
well as the development of the turbulent flow was also 
confirmed to agree with the measurement. These indi- 
cated that the authors’ VIC method is successfully em- 
ployed for the DNS of rectangular jet. 
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