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ABSTRACT 

A parametric study to investigate the effects of magnetic field and radiation on a mixed convective flow past an infinite 
vertical porous plate with constant suction velocity when the free stream varies periodically with time about a steady 
mean is presented. A uniform magnetic field is applied normal to the plate. The Rosseland approximation is used to 
describe the radiative heat flux in the energy equation and the resultant set of non-dimensional equations are solved 
analytically by adopting regular perturbation technique. The profiles of velocity, temperature, skin-friction and nusselt 
number are demonstrated graphically for various values of the parameters involved in the problem and the results are 
physically interpreted. 
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1. Introduction 

The problems of interaction of free and forced convec- 
tion with thermal radiation of viscous incompressible 
MHD unsteady flow past infinite vertical plates with 
mass transfer are being studied nowadays due to many 
applications of such problems in Astrophysics, Geo- 
physical and different Engineering fields. The heating of 
rooms and buildings by use of radiators is an example of 
heat transfer by free convection. The study of MHD is 
quite important in the field of aeronautics, especially in 
missile aerodynamics, since the temperature that occurs 
in such flight speeds are sufficient to dissociate or even 
ionize the air appreciably. For example, when a high 
speed missile re-enters the earth’s atmosphere, a very 
large amount of heat is generated due to the friction of air 
molecules and this viscous heating may some times be so 
considerable as to ionize the air near the stagnation point. 
This ionized gas or plasma interacts with the magnetic 
field and alter the heat transfer and friction characteris- 
tics. In addition to this, some fluids can also emit and 
absorb thermal radiation. In such a situation, the study of 
the effect of the magnetic field on the flow characteristics 
becomes more interesting as the fluid is not only electri- 
cal conductor but also capable of emitting and absorbing 
thermal radiation. This type of investigation is carried out 
because of its importance in space and temperature re- 

lated problems. 
MHD is the science of motion of electrically conduct- 

ing fluid in presence of magnetic field. There are nu- 
merous examples of application of MHD principles, in- 
cluding MHD generators, MHD pumps and MHD flow 
meters etc. The dynamo and motor is a classical example 
of MHD principle. MHD principles also find its applica- 
tion in medicine and biology. The present form of MHD 
is due to the pioneer contribution of several authors like 
Alfven [1], Cowling [2], Crammer and Pai [3], Shercliff 
[4] and Ferraro and Pulmption [5]. Model studies on 
MHD free and forced convection with heat and mass 
transfer problems have been carried out by many of the 
authors due to their application in many branches of sci- 
ence and technology. Some of them are Ahmed [6], El- 
bashbeshy [7] and Singh and Singh [8]. Gregantopoulos 
et al. [9] studied two-dimensional unsteady free convec- 
tion and mass transfer flow of an incompressible viscous 
dissipative and electrically conducting fluid past an infi- 
nite vertical porous plate. 

Radiation is a process of heat transfer through elec- 
tromagnetic waves. Radiative convective flows are en- 
countered in countless industrial and environment proc- 
ess. For e.g. heating and cooling chambers, fossil fuel 
combustion energy processes, evaporation from large 
open water reservoirs, astrophysical flows etc. Radiative 
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heat and mass transfer play an important role in manu- 
facturing industries for the design of reliable equiponent. 
If the temperature of the surrounding field is rather high, 
radiation effect plays an important role in space related 
technology. The effect of radiation on various convective 
flows under different conditions has been studied by 
many researchers including Hussain and Takhar [10], 
Ahmed and Sarmah [11], Rajesh and Varma [12] and 
Ahmed et al. [13]. As the present authors are aware till 
now no attempt has been made to study the magnetic 
field effect on an oscillatory mixed convective flow past 
an infinite vertical porous plate with radiation following 
the technique adopted by Mansour [14]. Such an attempt 
has been made in the present paper. 

The main objective of the present investigation is to 
study the MHD effects on the unsteady mixed convective 
mass transfer flow past an infinite vertical porous plate 
with constant suction, where the plate temperature oscil- 
lates with the same frequency as that of variable suction 
velocity. It is assumed that the plate is embedded in a 
uniform porous medium and moves with a constant ve- 
locity in the direction of the flow in presence of a trans- 
verse magnetic field. This work is an extension to the work 
done by Mansour [14] to consider the effect of MHD. 

2. Mathematical Analysis 

We now consider an MHD conducting flow of a viscous 
incompressible electrically conducting fluid past an infi- 
nite vertical porous plate with constant suction under the 
influence of a uniform transverse magnetic field. Our 
investigation is restricted to the following assumptions: 
 The polarization effects are assumed to be negligible 

and hence the electric field is also negligible. 
 The suction velocity is constant. 
 The variations of all fluid properties other than the 

variations of density except in so far as they give rise 
to a body force are ignored completely. 

 All the physical variables are functions of y  and 
t  only as the plate are infinite. 

 It is assumed that the variation of expansion co-effi- 
cient is negligibly small and the pressure and influ- 
ence of the pressure on the density are negligible. 

 The free stream oscillates about a steady mean. 
We introduce a co-ordinate system  , ,x y z    with X- 

axis vertically upwards along the plate, Y-axis perpen- 
dicular to the plate and directed into the fluid region and 
Z-axis along the width of the plate as shown in Figure 1. 
Let the components of velocity along with X and Y axes 
should be u  and v . Let these velocity components 
are chosen in the upward direction along the plate and 
normal to the plate respectively. 

Under these assumptions, the equations that describe 
the physical situation are given by 
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Figure 1. Physical model of the problem. 
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All the physical quantities involved in the above equa- 
tions are defined in the nomenclature. 

The boundary conditions are: 

   0

0,   at  0

1 e ,   as  

w
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As there is a constant suction velocity 0v  at the plate, 
Equation (1) yields 

0v v                      (6) 

where 0v  is a scale of suction velocity which is non- 
zero positive constant. The negative sign indicates that 
the suction is towards plate. 

Outside the boundary layer, Equation (2) gives 
2
01 d

d

B Up U
U

x t K
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 
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In order to write the governing equations and the 
boundary conditions in dimensional form, the following 
non-dimensional quantities are introduced: 
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In view of the Equations (6)-(8), the Equations (2)-(4) 
reduce to the following dimensional form: 
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The corresponding boundary conditions are: 
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3. Method of Solution 

Equations (9) and (10) are coupled non-linear partial 
differential and these cannot be solved in closed-form. 
However, these equations can be reduced to a set of or- 
dinary differential equations, which can be solved ana- 
lytically. This can be done by representing the velocity, 
temperature and concentration of the fluid in the neigh- 
bourhood of the plate as 
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Substituting (12) in Equations (9) and (10), equating 
the harmonic terms and neglecting the higher order terms 
of  20  , we obtain  
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where primes denotes ordinary differentiation with re- 
spect to y. 

The corresponding boundary conditions can be written 
as 
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If we assume the radiation parameter R to be small, we 
expand the velocity and temperature as  
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Substituting (18) in Equations (13)-(16), we obtain the 
following set of equations for the mean flow: 
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with the boundary conditions 
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The solutions of zeroth and first order of velocity and 
temperture are: 



N. AHMED, S. SINHA 

Open Access                                                                                           OJFD 

274 

 




 

 
 

3

3

2

2 1

Pr
0 6 5

Pr 4Pr
15 14 9

3Pr 2Pr Pr
10 11 12

1

3Pr 2Pr
11 8 9 10

Pr
0

Pr 4Pr 3Pr
2

2 2Pr 3 Pr

1 e e

e e e

e e e

1 e

e e e e

e

4
e e 2 e

9

4
4 e Pr e

3

A y y

A y y y

y y y

m y

m y m y y y

y

y y y
T

y y
T T

u y A A

R A A A

A A A y

u y

R A A A A

y

R A C

C yC





 

  

  



   



  

 

  

  

  

 

      



  


  


   1 3Pr 2Pr
1 5 3 4e e em y y yy R A A A      

 

The solutions for velocity and temperature distribu- 
tions are: 
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Skin-friction: 
The non-dimensional form of skin-friction at the plate 

are given by: 
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Nusselt number: 
The non dimensional form of the rate of heat transfer 

in terms of Nusselt number at the plate are given by: 
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4. Results and Discussion 

In order to get the physical insight in to the problem, we 
have carried out numerical calculations for non-dimen- 
sional velocity field, temperature field, nusselt number 
and skin-friction have been carried out by assigning spe- 
cific values to the different parameters involved in the 
problem, viz, Hartmann number M, Grashof number 
Gr , Prandtl number Pr, Porosity parameter K, Radia- 
tion conduction parameter R and Temperature difference 
parameter TC . The effects of these values are demon- 
strated through different graphs and the results are inter- 
preated physically. 

The Figures 2-4 depict the variation of velocity field 
u  against y under the effect of Hartmann number M, 
Porosity parameter K and radiation conduction parame- 
ter R. Figure 2 illustrates that the fluid velocity decreases 
with the increase in magnetic intensity. In other words 
the imposition of the transverse magnetic field tends to 
retard the fluid flow. This phenomenon has an excellent 
agreement with the physical fact that the Lorentz force 
generated in the present flow model due to interaction of 
the transverse magnetic field and the fluid velocity acts 
as a resistive force to the fluid flow which serves to de- 
celerate the flow. Figures 3 and 4 demonstrate the effect 
of Porosity number K and radiation conduction parame- 
ter R on velocity field. It is simulated from the figures 
that an increase in Porosity parameter K and radiation 
conduction parameter R leads to a decrease in fluid ve- 
locity. i.e. the fluid motion is decelerated for increasing 
the permeability of the medium and for low thermal 
conductivity. 

The Figures 5-7 exhibit the variation of temperature 
field   against y under the influence of temperature dif- 
ference parameter TC , radiation-conduction parameter R 
and Prandtl number Pr. Figures 5 and 6 present the vari-
ation of Temperature difference parameter TC  and Ra- 
diation conduction parameter R on temperature field. It is 
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Figure 2. Velocity profile versus y for Gr = 5, Pr = 0.71, R = 
0.1, Ct = 0.01, K = 1, ε = 0.01, ωt = π/2. 
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Figure 3. Velocity profile versus y for Gr = 5, Pr = 0.71, R = 
0.1, Ct = 0.01, M = 1, ε = 0.01, ωt = π/2. 
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Figure 4. Velocity profile versus y for Gr = 5, Pr = 0.71, K = 
1, Ct = 0.01, M = 1, ε = 0.01, ωt = π/2. 
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Figure 5. Temperature profile versus y for R = 0.1, Pr = 0.71, 
ε = 0.01, ωt = π/2. 
 
observed from both the figures that there is a steady drop 
in temperature due to small temperature difference and 
low thermal conductivity. Figure 7 indicates that the fluid 
temperature decreases with the increase in Prandtl num-
ber. i.e. thermal diffusivity reduces the fluid temperature.  
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Figure 6. Temperature profile versus y for Ct = 0.01, Pr = 
0.71, ε = 0.01, ωt = π/2. 
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Figure 7. Temperature profile versus y for R = 0.1, Ct = 0.01, 
ε = 0.01, ωt = π/2. 
 
This result is in a good agreement to the fact that the 
thickness of the thermal boundary layer may be pre-
vented with the increasing Prandtl number. 

The effects of Prandtl number Pr, radiation-conduc- 
tion parameter R and temperature difference parameter 

TC  on the co-efficient of rate of heat transfer in terms of 
Nusselt number have been displayed in Figures 8-10. It 
is found from the Figures 8 and 9 that the magnitude of 
the rate of heat transfer is considerably increased with the 
increase in Prandtl number Pr and Radiation-conduction 
parameter R. i.e. the energy flux is rised due to increasing 
the permeability of the medium as well as low thermal 
conductivity. Figure 10 predicts that the energy flux 
from the plate to the fluid in terms of Nusselt number get 
increased with the increase in Temperature difference 
parameter TC . 

The Figures 11-14 correspond to the co-efficient of 
skin-friction   against radiation conduction parameter 
R under the influence of magnetic parameter M, Porosity 
parameter K, temperature difference parameter TC  and 
Grashof number Gr. In the Figures 11, 12 and 14 it is  
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Figure 8. Nusslet number versus t for R = 0.1, Ct = 0.01, ε = 
0.01, ω = 1. 
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Figure 9. Nusslet number versus t for Pr = 0.71, Ct = 0.01, ε 
= 0.01, ω = 1. 
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Figure 10. Nusslet number versus t for Pr = 0.71, R = 0.1, ε 
= 0.01, ω = 1. 
 
observed that an increase in Magnetic parameter M, Po- 
rosity parameter K and Grashof number Gr tends to raise 
the viscous drag whereas viscous drag falls with the in- 
crease in Temperature difference parameter TC  in Fig- 
ure 13. 
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Figure 11. Co-efficient of skin friction versus R for Ct = 0.01, 
Pr = 0.71, K = 1, Gr = 5, ε = 0.01, ω = 1, t = 11/7. 
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Figure 12. Co-efficient of skin friction versus R for Ct = 0.01, 
Pr = 0.71, M = 1, Gr = 5, ε = 0.01, ω = 1, t = 11/7. 
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Figure 13. Co-efficient of skin friction versus R for K = 1, Pr 
= 0.71, M = 1, Gr = 5, ε = 0.01, ω = 1, t = 11/7. 

4. Conclusions 

Our investigation of the problem setup leads to the fol- 
lowing conclusions: 
 The fluid motion is decelerated under the action of 

tranverse magnetic field, Porosity parameter and ra- 
diation conduction parameter. 
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Figure 14. Co-efficient of skin friction versus R for K = 0.01, 
Pr = 0.71, M = 1, Ct = 5, ε = 0.01, ω = 1, t = 11/7. 

 
 Temperature falls due to small temperature difference 

and low thermal conductivity. 
 The energy flux rises due to increasing the permeabil- 

ity of the medium as well as low thermal conductiv- 
ity. 

 Magnetic parameter raises the viscous drag on the 
plate but it falls with the increase in temperature dif- 
ference parameter. 
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Nomenclature 

B0 = Strength of the applied magnetic field; CT = Tem- 
perature difference parameter; Gr = Thermal Grashof 
number; g = Acceleration due to gravit; KT = Thermal 
conductivity; k = Mean absorption co-efficient; K = 
Porosity parameter; M = Local Hartmann number; Nu = 
Nusselt number; Pr   Prandtl number; pʹ = Pressure; qr 
= Radiative heat flux term; R = Radiation-conduction 
parameter; Tʹ = Dimensional temperature; wT    Dimen- 
sional temperature at the plat; T   Dimensional tem- 
perature in the free stream; U    Dimensional free 

stream velocity; 0U   Mean stream velocity; U = Non- 
Dimensional fluid velocity;  ,u v    Components of the 
fluid velocity; tʹ = time; (xʹ, yʹ, zʹ) = Cartesian coordinates 

Greek Symbols 

ρ = Density of the fluid; υ = Kinematic viscosity; α = 
Thermal diffusivity; ω = Frequency parameter; θ = Di- 
mensionless temperature; σʹ =; tephan-Boltzmann con- 
stant; σ = Electrical conductivity; β = Co-efficient of 
volume expansion for heat transfer; ε = Small reference 
parameter. 
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