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ABSTRACT 

We investigate the Taylor-Couette flow of a rotating ferrofluid under the influence of symmetry breaking transverse 
magnetic field in counter-rotating small-aspect-ratio setup. We find only changing the magnetic field strength can drive 
the dynamics from time-periodic limit-cycle solution to time-independent steady fixed-point solution and vice versa. 
Thereby both solutions exist in symmetry related offering mode-two symmetry with left- or right-winding characteris-
tics due to finite transverse magnetic field. Furthermore the time-periodic limit-cycle solutions offer alternately strobo-
scoping both helical left- and right-winding contributions of mode-two symmetry. The Navier-Stokes equations are 
solved with a second order time splitting method combined with spatial discretization of hybrid finite difference and 
Galerkin method. 
 
Keywords: Taylor-Couette Flow; Ferrofluids; Reynolds Number; Symmetry Breaking; Rotating System and 

Boundary Layer 

1. Introduction 

Since first study by G. I. Taylor [1], the flow between 
two concentric differentially rotating cylinders, the so- 
called Taylor-Couette flow, has been investigated using 
either theoretical, experimental and numerical appro- 
aches and has played a central role in the development of 
hydrodynamic stability theory [2-5]. 

Especially in last decades, this simple geometry has 
become refocused as there has been much increased in-
terest in flows of complexer like magnetic fluids, e.g. 
ferrofluids [6] which are often used in laboratory experi- 
ments to study geophysical flows [7,8]. 

Ferrofluids [6] are manufactured fluids consisting of 
dispersions of magnetized nanoparticles in a variety of 
liquid carriers and are stabilized against agglomeration 
by the addition of a surfactant monolayer onto the parti-
cles. In the absence of an applied magnetic field, the 
magnetic nanoparticles are randomly orientated, the fluid 
has zero net magnetization, and the presence of the 
nanoparticles provides a typically small alteration to the 
fluids viscosity and density. When a sufficiently strong 
magnetic field is applied, the ferrofluid flows toward 
regions of the magnetic field and properties of the fluid 
such as the viscosity are altered [6,9], and the hydro- 
dynamics of the system can be significantly changed  

[10-21]. Till this day most of these works only consid-
ered the influence of magnetic fields onto steady, time- 
independent flows. Thus there is a lack of, either nu-
merical or experimental, researches for consequences of 
magnetic fields onto time-dependent flows. 

Likewise numerous numerical, theoretical and experi- 
mental investigations have shown that the effects of 
physical end-walls are evident [22-26] even in very long 
Taylor-Couette systems (large aspect ratio, Γ) and have a 
significant influence on the flow dynamics. The presence 
of end-walls, even in the limit of being infinitely far apart 
completely destroys the axial translation invariance in the 
idealized theory [22,23] and results in imperfect bifur- 
cation. With only inner cylinder rotating and outer cy- 
linder at rest, the flow dynamics for small systems Γ ≈ 1 
is dominated by the competition between several so- 
called normal and anomalous mode solutions leading to 
very rich dynamics [22-24,27,28]. For very short systems 
only one or two Taylor cells are present in the annulus 
[29,30]. 

In the present paper, we elucidate the influence of a 
symmetry breaking transverse magnetic field onto the 
hydrodynamics of counter-rotating ferrofluid with special 
respect to time-dependent flow. Without magnetic fields 
such flows have been studied mainly for co-rotating cy-  
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linders with the focus on nonlinear-pattern formation 
[31,32] with an emphasis on magneto-hydrodynamical 
phenomena with respect to astrophysical application [33- 
35] or even in turbulent flows [36,37]. Thus it is well 
known that axial magnetic fields can drive turbulence via 
the magneto-rotational instability [38,39]. 

This paper is subdivided as follows. Following the in- 
troduction, Section 2 describes the mathematical for- 
mulation of the problem. Hereafter Section 3 shortly in- 
troduces flow state in absence of magnetic field which 
we have chosen as initial state for further investigation of 
the magnetic field modifications. Sections 4 and 5 pre-
sent the main results as the bifurcation scenario with 
variation of the magnetic field strength and the spatio- 
temporal behavior of the flows. Finally, Section 6 con- 
cludes the main results. 

2. System and Theoretical Description 

Consider an incompressible, isothermal, homogeneous, 
mono-dispersed ferrofluid with kinematic viscosity ν and 
density ρ within the annular gap of a Taylor-Couette sys-
tem, consisting of two concentric, independently rotating 
cylinders (c.f. Figure 1). The inner and outer cylinders of 
radii R₁ and R₂ rotate at angular speeds ω₁ and ω₂, re-
spectively. The top and bottom end-walls are stationary. 
They are a distance Γd apart, where Γ is the non-dimen- 
sional aspect ratio and 2 1  is the gap width. The 
system is described using a cylindrical polar coordinate 
system  with a velocity field . 

d R R 

 , ,r z   , ,u v w
Either the radius ratio of the cylinders is hold fixed to 

1 2 0.5R R   and the aspect ratio to Γ = 1. We consider 
homogeneous external fields in transverse x-direction of 
strength Hx where cosx r  . Using the gap-width d as 
the length scale, the diffusion time 2d   as the time 
scale, scaling pressure with 2 2d , and the magnetic 
field H and the magnetization M with (ρ/μ0)

0.5ν/d (μ0 is 
the magnetic constant, i.e. magnetic permeability of free 
space), the non-dimensional governing equations are 

 
  

2

1 2 ,

0.

t u u u p

u

    

    

 

M H M H 



     (1) 

On the cylinder surfaces, we consider no-slip boun- 
dary conditions  and    1 1, , 0, ,0u r z Re 

 ,0Re , , 0,u r z 2 2 , where the inner and outer Rey- 
nolds numbers are 1 1 1Re

 

Figure 1. Schematics of the Taylor-Couette system. 
 
magnetization of the ferrofluid. Using the equilibrium 
magnetization of an unperturbed state with homogene- 
ously magnetized ferrofluid at rest with the mean mag- 
netic moments orientated in the direction of the magnetic 
field, lead to e M H  (with abbreviation eq for equi- 
librium). The magnetic susceptibility of the ferrofluid, χ, 
can be determined by Langevin’s formula [40]. The fer- 
rofluid we consider in this paper correspond to APG933 
[41] with χ = 0.9. Using the near-equilibrium approxima- 
tion of Niklas [14,15] (small eM M  and small re- 
laxation times 1  , where 2u Ω  is the vor- 
ticity (Ω gives the absolute value) and τ is the magnetic 
relaxation time), as already presented in [10,19]. 

Ω ,2
e n= c HM M             (2) 

where  2
0Ω 12

nc H 6       is the Niklas coef- 
ficient, μ is the dynamic viscosity, and Φ is the volume 
fraction of the magnetic material. 

Using Equation (2) the magnetization can be elimi- 
nated from Equation (1), resulting in the ferrohydrody- 
namic equation of motion [14]: 

 
 

2

2 / 2 ,

m

n

t u u u p

c

    

        H F H F
     (3) 

where  ΩF H  and  is the dynamic pressure 
incorporating all magnetic terms which can be written as 
gradients. Here, we assume that the internal magnetic 
field is equal to the external imposed magnetic field. It is 
known as a leading order approximation [19] but is suffi- 
ciently good for our here focused numerical investiga- 
tions of time-dependent ferrofluid flows. Then Equation 
(3) simplifies to 

mp

 
   

2

2 2 22 Ω

m

x

t u u u p

s u H H H u

    

           
  (4) 

r d   and 2 2 2Re r d  , 
where 1 1r R d  and 2 2r R d  are the non-dimen- 
sional inner and outer cylinder radii, respectively. In this 
paper we will hold the differentially rotations of the 
cy-linders fixed to  and 2  which 
gives a rotation ratio 

1 350Re  500Re  
2 1 1.Re Re 429  . Equation (1) is 

solved together with an equation that describes the  

In this approach, the magnetic field and all the mag- 
netic properties of the ferrofluid influence the velocity 
field only via the magnetic field parameter 

   2 2 22 2 2 ,x x ns H c              (5) 

Copyright © 2013 SciRes.                                                                                OJFD 



S. ALTMEYER 

Copyright © 2013 SciRes.                                                                                OJFD 

118 



Hence we will either use lc0 for the axisymmetric time- 
periodic limit-cycle solution with m = 0 symmetry in 
absence of a magnetic field and lc₂ for the limit-cycle 
solution with finite applied magnetic field which shows 
m = 2 symmetry. The same arguments also hold for the 
steady time-independent fixed point solutions fp2 and fp0 
with and without a magnetic field respectively. 

Note that this is the only parameter that will be 
changed in this paper, all others will be hold fixed. 

Equation (4) (including the continuity equation) is 
solved with our numerical method G1D3 [10,19], which 
combines finite-differences in (r, z) with Fourier spectral 
decomposition in θ and (explicit) 2nd order time splitting. 
The variables are written as 

    
max

max

, , , , , exp ,
m

m
m m

f r z t f r z t im 


     (6) 

where f denotes one of  . For the parameter 
regimes studied here, 

, , ,u v w p
max 8m   provides adequate ac- 

curacy and uniform grids with spacing 0.05r z    
and time-steps 1 3800t   are used. For diagnostic 
purposes, the complex mode amplitudes  ,mf r t  ob-
tained from a Fourier decomposition in the axial direc-
tion 

    , , , expm n mn f r z t f r t inkz        (7) 

where k is the axial wavenumber, are evaluated. The Na-
vier-Stokes equations together with the boundary condi-
tions for the finite-length Taylor-Couette system with 
(classical) fluid confined by end-walls are in variant to 
rotations about the axis and reflection about the axial 
mid-height. But with ferrofluid in the annulus and im- 
posed transverse magnetic field  0xs   these symme- 
tries are broken and thus the flow is inherently full 
three-dimensional [10,19,20]. Interactions of the mag- 
netic terms in the ferro-hydrodynamic equation result in 
either an axial downward or upward directed force [42] 
on the side where the magnetic field enters the bulk, i.e. 

0 
 π 

, and an inverse directed force on the opposite side 
 where the field exits the annulus respectively. 

d d d

Figure 2 presents spatio-temporal snapshots over one 
period τ of our referenced time-periodic (initial) limit- 
cycle solution lc₀ in absence of a magnetic field. It shows 
isosurfaces of either the angular momentum rv and of the 
azimuthal vorticity η respectively. Lc0 is axisymmetric 
(only m = 0 mode contribution, c.f. Equation (7)) but 
obviously not reflection symmetric. But there are two 
symmetries related coexisting limit-cycle solutions that 
bifurcate out of two steady also non-reflection symmetric 
states that are symmetry related to each other in similar 
way. This is the so-called anomalous mode solution [30]. 
In literature one finds different meanings of this expres-
sion. It can describe a flow state with 1) different (mostly 
odd) number of vortices in the annulus or 2) different 
flow directions (mostly combined with 1)) near the axial 
boundaries—the lids. This is classical invert directed 
(normal mode flow) but also flows with either one or 
even both outward directed flow exist—the anomalous 
mode solution. Finally it is also common 3) to describe 
flows with different size of vortices, i.e. normally in very 
short systems (as considered here) where one vortex 
dominates the dynamics and the minor vortex just plays a 
subsidiary role [29]. Hence the only symmetry relation of 
these anomalous modes is the time-translation with pe-
riod τ .This also holds for the herefrom bifurcation limit- 
cycle solution—an existing inverted flow pattern (c.f. on- 
line available material movie1.avi and movie2.avi). 3. Initial State and Notation 

Following we will short present main characteristics of 
that time-periodic flow in absence of a magnetic field 
which we have chosen as initial state for discussion of 
modifications due to the presence of finite transverse 
magnetic field. 

4. Bifurcation Scenario 

As global measure of the flow we use the modal kinetic 
energy 

In order to distinguish the different solutions with and 
without applied magnetic field we will use the following 
short abbreviations characterizing the different flows. 

2π

0 0

:
orΓ

m m m
m ri

E E u u r r z                   (8) 

 

 
(a)                    (b)                   (c)                    (d)                  (e) 

Figure 2. Isosurfaces of rv = 300 (top row) and η = ±300 (bottom row) at times t as indicated over one period (τ ≈ 0.050212) 
for lc0 at sₓ = 0 (see also online available material movie1.avi and movie2.avi). (a) t = 0; (b) t = τ/4; (c) t = τ/2; (d) t = 3τ/4; (e) t 
= τ. 
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here  is the m-th (complex conjugated) Fourier w m mu u 

f the vmode o elocity field. Due to time-dependence of 
the solutions lc0 and lc2 we will further use the (long-) 
time-averaged energy E . Likewise or local measure we 
also use either Fourier odes of the radial velocity at 
mid-height and mid-gap 

 m

 2,0, 2,mn mnu u d t   (c.f. Equation (7)) and sooner 
the azimuthal vorticity at two points symmetri- cally dis-
placed about mid-plane on the inner cylinder, 

 1,0, 4,r t    and  1,0,3 4,r t    . 
the vaFigure 3 shows riation with sₓ of time-averaged 

modal kinetic global energy E  and for either 0m   
and 2m   modes the peak-to- eak amplitudes ∆u  
∆u₂₁ t er with its corresponding long-time averaged 
values u01 and u21 respectively. Note that for 0.553xs

p 01 and
ogeth

  
(below the bifurcation threshold of the lc2) the  
time-independent. Starting without a magnetic field (left 
in Figure 3) the initial state is an axisymmetric time- 
periodic limit-cycle solution lc0 (c.f. Figure 2) with only 

0m   mode component. All other azimuthal modes are 
cal zero. Any finite transverse field component, 

independent its strength sₓ destroys this symmetry [10,11,  
 

 flow fp2 is

identi

 

Figure 3. Variation with sₓ of time-averaged kinetic mod  al
energy E  (a) and different amplitudes ((b), (c)) at mid- 
gap for 0, lc2 and fp2. Shown are either the peak-to-peak 
amplitudes 

2m   

lc
mnu  and its long time-averaged values mnu , 

respectively, or (b) axisymmetric (m = 0) contribu ion 
( 01u , 

 f t

01u ) and (c) mode-two (m = 2) contribution ( 21u , 

21u int uced due to finite transverse magnetic field . 

ation (7)). Vertical dotted lines indicate the bifurcation 

)

Equ

 rod

threshold of lc2. 

19] stimulating 

 (c.f

contribution. Increasing sₓ results 
in enlarging this 2m   contribution, which is compen- 
sated by decreasing the axisymmetric  contribu- 

onoto
re i

s again with sₓ. Th crease and later de- 
crease in 

0m 
tion. 

While ∆u01 m nously decreases with sₓ ∆u21 
firstly increases (up to 0.36xs  ) befo t also de- 
crease e initially in

 side enf
∆u21 results from the contrary competition that 

larger sₓ on the one hand orce the 2m   con- 
tribution but simultaneously destabilize the supercritical 
solution lc2. Finally both vanish at the bifurcation point 

0.553xs   of lc2 (see dotted lines in Figur  Near 
this bifurcation point, both peak-to-peak amplitudes ∆u01 
and ∆u21 follow a square-root-law indicating the super- 

racter of the Hopf bifurcation. Aside the long- 
time averaged amplitude 

e 3).

critical cha

21u  increases monotonously 
with sₓ, independent of the time-characteristics of the 
solutions. This increase in 21u  is compensated by a mo- 
notonous decrease 01u . 

For 0.553xs   only fp2 remains in the system. This 
solution corresponds to the malous mode solution [29] 
in absence of a ma eti

ano
gn c field. Here it is modified in- 

cluding 2 strong m   contribution. Hence this solution 
does not have the axisymmetry of classical anomalous 
mode solution. Instead it has 2m   symmetry (c.f. 
Figure 4) due to  sx. 

The global energy 
 finite

E  in the system monotonously 
increases with field strength sₓ. Th  it first follows a 
squared law for lc2 

ereby
until the bifurcation point 

 0.553x   and below this boundary it grows almost 
linearly for fp2. Physically the increased energy results 
from the enlarged complexity in the bulk due to genera- 

2

s

tion of m

 

  symmetry. 
Figure 5 presents the corresponding period of oscilla- 

tion τ for lc₂ and lc₀. Starting at the bifurcation point at 
0.5xs (a  Figure 5) the period τ be- 53  

co
lmost right in

mes finite at onset of lc₂ and decreases with decreasing 

xs  whereby the range of variations are relatively small 
 on ordinate). This behavior is quite similar to 

the bifurcation of classical limit-cycle solution lc0 out of 
sic state in absence of magnetic fields [28]. 
We want to mention that there are some experiments 

[11,43] (but for significant longer system length Γ, larger 
than 28) that observed a kind of hysteresis 

(c.f. values

ba

around the 
onset of supercritical flows. I.e. the critical field strength 
for the appearing of solutions out of basic state by in- 
creasing the field is different (i.e. larger) then that one 
where the supercritical flows vanish with decreasing field 
strength. 

This behavior can be explained regarding the axial 
wavenumber k. Accompanied with the variation of field- 
strength xs  the axial wavenumber k in the flow can also 
ch

 
ange as there is a competition between different 

lengthscales at the inner boundary layer which are pre- 
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(a)                          (b)                       (c)                         (d) 

Figure 4. Isosurfaces of rv and η for fp  at sₓ = 0.6 for full and m = 2 contribution as indicated; isolevel shown at rv 00, 
[max] = [600], rv(m in, max] = [−250, 

2

 = 2) = 5, [max] = [90], η = ±300, [min, max] = [−500, 500] and η(m = 2) = 180 & −60), [m
 = 3

350]. (a) rv; (b) rv(m = 2); (c) η; (d) η(m = 2). 
 

 

Figure 5. Variation of periodicity length τ with sₓ for lc0 and 
lc2 (c.f. Figure 3). 

trifugal instability due to variation of 
e . Usually flows with different k have different onsets. 

Here
ed for the bifurcation of stationary 

tim

s 

s either u01 
al densities 

 
ferred by the cen
R 1

But due to the shortness of our here chosen system 
 1   such kind of effects don’t play a role and there- 
fore can be ignored. 

 we want to mention that so far these hysteresis 
have just been observ

e-independent flows. The existence of such effects for 
the bifurcation of time-dependent flows either time-pe- 
riodic or only quasiperiodic is a still open question that 
should motivate future experimental work. 

5. Spatio-Temporal Characteristic

Figure 6 shows time series of flow amplitude
and u  and their corresponding power spectr21

(PSDs) for lc0 with  0xs   and lc2  0.4xs   respec- 
tively. The inset in the Figure 6(a) illustrates the meas- 
ure of peak-to-peak de ∆ and ponding 
period length τ (c.f. Figure 5). Analog to the small varia- 
tion τ the PSD also offers minor variations with 

 amplitu  its corres

xs  even 
while the flow loses its axisymmetry due to finite xs . 
The frequencies are only slightly shifted to sma r val- 
ues with increasing sₓ. 

It is well known that magnetic fields with finite trans- 
verse component break

lle

 the axisymmetry due to mode- 
two coupling [11,25,28]. Hence the flow develops two 
local pinned “bulges” (i.e. 2m   symmetry) in azimuth 
as visible in the isosurface plots of rv and η (c.f. Figure 
7(c)). The only remaining s try for lc0 and lc2 is the 
time-periodicity. 

Note that we also checked the 2m   contribution to 
be the only non-zer

ymme

o component. Starting with random 
pe eserturbations over all other modes th  will die out by 
time. 

 

Figure 6. Time series ((a), (b)) of radial flow amplitudes u01, 
u21 and its corresponding PSD ((c), (d)) for lc0 at sₓ = 0 and 
lc2 at sₓ = 0.4. Horizontal dashed lines in ((a), (b)) indicate 
long-time averaged values and the inset in (a) illustrates the 

cially in the  contribution: 1) 
ven while the dominant jet os  about mid-plane 

measure of ∆ and τ. 
 
Comparing the time-dependent flows with and without 
applied magnetic field one finds significant different 
characteristics espe  2m 

cillating

y the

E
only slightly differs the 2m   contribution show a 
strong time-dependence. It illustrates a kind of strobo- 
scoping over one period whereb  pattern remains 
localized phase-pinned and non-rotating. 2) The latter 
stroboscoping in the 2m   contribution shows a peri- 
odic, alternating change between left- and right-winding 
shape (c.f. Figures 7(b) and (d)) over one period. This 
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Figure 7. Isosurfaces of rv ((a), (b)) and η ((c), (d)) for lc2 at sₓ = 0.4 at different times t as indicated over one period (τ ≈ 
0.051914); ((a), (c)) show full solution (isolevel shown at rv = 300, [max] = [800], η = ±300, [min, max] = [−600, 600]) and 
((b),(d)) m = 2 contributions (isolevel shown at rv = 50, [max] = [250], η = 180 & −60, [min, max] = [−300, 400]) (see online 

n 
s contribution. But note that the isolevels for 

n Figu
tern is str

ngth . Even 
w

Figure

available material movie3.avi, movie4.avi, movie5.avi, and movie6.avi), respectively. Note that even while the solution is 
time-periodic the m = 2 contribution do not rotate. It just illustrates a stroboscoping behavior of left- and right-winding cha- 
racteristics to appear and vanish again over one period. 
 
differs from the shape of fp2 which offers only one (do- 
minant) helicity (left- or right-winding) characteristics i
it 2m   
 2m   in Figure 7 are different and therefore can 

just give a qualitative indentation. 
I re 4 isosurfaces of fp2 are presented. The pat- 

ongly deformed with visible m = 2 symmetry 
due to the relative large field stre 0.6xs 

in pa

hile the surface plot of rv only show small modulations 
the wavy-like deformation of vortices is obvious. But 
interestingly the m = 2 contribution rticular 
 2m   do not show any significant helical shape in 

contrast to the latter discussed pattern for lc2 (c.f. Figure 
7). 

 8 shows phase portraits of lc0, lc2 and fp2 on 
 ,    for various xs  as indicated. Dotted line with 
points indicates stationa  and time-independent flows. 

ing 

ry
Starting in fp2 with 0.8xs   (top right) and decreas- 

xs  lc2 bifurcates out of the steady state fp2 at xs  
about 0.553. Different circles illustrate the evolution of 
lc viously

Stokes equations 
r 

0 and lc2 which are ob  not symmetric here. But 
note that the symmetry related solution bifurcating in the 
same way out of the corresponding flow of the opposite 
anomalous mode which parallel exists. 

6. Momentum Flux and Cross-Flow Energy 

Taking the θ component of the Navier-
and averaging over cylinders at fixed radius r the angula
momentum flux [44] can be defined as  

    3:
a r a r

J r uv r r v r            (9) 

where a(r) stands for the averaging over the surface of a 
concentric cylinder at radius r. Moreover 
mean value can be obtained from an additional average  

the longtime 

 

Figure 8. Phase portraits for lc0, lc2 and fp2 on (η−,−η+) at 
different sₓ as indicated. 
 
over time. For visual propose we will separate the mo- 
mentum flux into its both contributions 

 :
a r

Jdif r uv r  and 3  : r a r
Jadv r v uv r  

(c.f. Equation (10)) cha

3  

racterizing diffuse and advective 

we only use the 
CCF-normalized quant

part respectively. Additional we will also normalize the 
momentum flux with the corresponding CCF angular 
momentum flux Jᶜᶠᶠ for 0s  . Hence x

ities :N cffJ J J ,  
:N cffJ dif Jdif J  and :N cffJ adv Jadv J . 

s axis

The spacetime plots in Figure 9 show either the full 
angular momentum flux Jᴺ and separate its both com- 
ponents Jᴺdif and Jᴺadv for lc0 in absence of a magnetic 
field. Note that this flow i ymmetric. In addition, the 
averaged azimuthal velocity  a r

v  is also shown. 
The full momen x Jᴺ is dominated b the diffu- tum flu y 
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Figure 9. Spacetime plot :N cffJ J J  

 both contributions 

(a) (c.f. Equation (9)) 

and its split up into the  
:N cffJ dif Jdif J ; (b) and :N cffJ adv Jadv J  (c) as ave- 

raged azimuthal velocity  v a r  (d) for lc0 at 0xs  . 

Red (yellow) indicates positive (negative) values. Contours 
are shown with .J 0 2N N NJ adv    and for J dif  

  50v a r  . 

sive contribution Jᴺdif. Thereby its both contrib s 
Jᴺdif and Jᴺadv show variations over one period just al- 
ternating to each other. While Jᴺdif varies almost har- 
monic over one p onounced 

 
ution

eriod Jᴺadv shows more pr
dynamics. 

For first half of the period it is almost constant before 
it fast increases and then significantly decreases in the 
second half of each period. 

Comparing the momentum flux for lc2 at 0.4xs   (c.f 
Figure 10) with that for lc0 at 0xs   (c.f. Figure 9) one 
observes the shape in all sp e plots to quite 
si

 Jᴺdif and Jᴺadv and for the 
av

acetim be 
milar. Merely the modulations for lc2 become weaker. 
This holds for either the full angular momentum flux 

Jⁿ and its both contributions
eraged velocity  a r

v  in similar way. At the  
tion point of lc2 at

 

Figure 10. As Figure 9 but for lc2 at . Contours are 

shown with  and for  

 . 0 4xs

.0 2J JN N NJ dif adv    

  50 . v a r 

 
Even while the dominant dynamics starts at the inn

wo stre
lls to

 outward directed jet the ang tum 
flux do not s y significant modifications in this 

gion. Its variations are largest in the bulk interior over a 
re

er 
cylinder boundary layer due to the t ams along the 
inner cylinder (from both end-wa  mid-height) to 
merge in an ular momen

how an
re

lative wide radial gap (c.f. Figures 9(a) and 10(a)). 
Only the advective component that also shows the 

largest variations indicates a slightly orientation towards 
the inner boundary layer. 

The temporal evolution of radial averaged momentum 
flux N

r
J  is presented in Figure 11. Obviously the 

diffusive part N

r
J dif  dominates the full momentum 

flux. But while this is almost constant in time the minor 
advective part N

r
J adv  shows significant periodic 

timedependence effecting the full momentum flux visible 
in the modulation by time. Comparing N

r
J dif  with 

the long-time averaged momentum flux 

 

,

N

r t
J   

(horizontal dashed lines) reflects its dominance. Note 
that Figure 11 s e absolute magnitudes of the 
momentum flux ributions. Jᴺadv is negative 

bifurca-

xs  about 0.553 t ime-dependence 
of all quantities vanish. 

he t hows th
and its cont  
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 N

r
J  Figure 11. Variation with t for absolute magnitudes 

and its both contributions N

r
J dif  and  

 N

r
J adv  for lc0 at  (a) and lc2 at  (b) 

corresponding to Fi d 9. Horizontal ines 

indicate the long

 0xs 

gures 8 an

-time average 

 .0 4xs 

 dashed l

,

N
r t

J  (c.f. 

ected to

Figure 12). 

 
and therefore opposite dir  N

r
J dif  minimizing 

 
Figure he lo of mom

the complete momentum flux J.
 12 shows t ng-time average en- 

tumflux 
,

N

r t
J  (c.f. dashed lines in Figures 8-10) with  

xs  and likewise the long-tim radial average ae and zi- 
thal velocity mu

,r t
v . Both quantities decrease mo- 

notonously with xs  until reaching rcation thre- 
shold of lc2. Hereafter for fp2 the

 the bifu
 momentum flux do not 

 while 
virtually show any further variation—is more or less 
stagnated

,r t
v  shows an almost linear decrease 

for further increase of xs . 

The almost constant value 
,r t x

might be explain s in steady state fp2 ∆Jadv be- 
comes “neglectable”. Thus only small modifications in 
the diffusive component due to variation of 

NJ  for 0.553s    

ed a

xs change 

the momentum flux 
,

N

r t
J  But as for lc2 these modi- 

fications are quite small. The radial position of the 
maximal modifications maxJ  m  

ith increasing the field strength 
oves slightly outwards

w xs . T ible sligh

er and 

n in
er

he vis t 
tilting in all spacetime plots of J (c.f. circular contour 
lines, slightly tilted from bottom left to top right in Fig- 
ures 9 and 10) indicate the dynamics to start at the inner 
cylinder boundary lay from there entering into the 
bulk. 

The energy content in transverse velocity component 
at radial distance r and a stant of time can be mea- 
sured by the so-called cross-flow en gy, 

 
2 2:cf

a r
E u w              (10) 

 

,

N
r t

JFigure 12. Variation with sₓ of  (a) and v  (b). 

Again dotted lines indicate the bifurcation threshold for lc2. 
 

As before a(r) stands for areas averaged over the sur- 
face of cylinder at radius r. 

Opposite to the angular momentum flux the cross-flow 
energy clearly indicates the region of largest modulatio

y layer  13
magne ap

 
nce of a magnetic field. As the momentum flux also the 

cr

n 
near the inner cylinder boundar (c.f. Figure ), 
independent of the presence of a tic field is plied 
or not. The temporal modifications are stronger in ab-
se

oss-flow energy becomes constant below the onset of 
fp2  0.553xs  . But other than the momentum flux the 
spacetime plot of cross-flow energy indicates two bands 
of regions where it is significant increased. A second 
dominant one also lying near the inner cylinder that co- 
incide with the region where the flow is along the inner 
boundary layer starting near the lids to merge with the 
oscillating radial outward directed jet of angular mo- 
mentum. Additionally a second weaker band of local 
incr low energy is visible arranged between 
mid-gap and quarter-half of the gap 0.5 0.75r  . 

As the 2m

eased cross-f

  contributions do not rotate the cross- 
flow energy Eᶜᶠ is almost unaffected by variations of the 
field strength as visible in the almost identical shape of 
the cross-flow energy Eᶜᶠ for lc0 at 0xs   and lc2 at 0.4 
(c.f. Figure 13). The differences mainly result from the 
increase of 2m   contributions with xs . 

7. Conclusion and Discussion 

a y c

 sy s
fields. We found the flow can be driven from time-in- 
dependent steady fixed-point solution to time-dependent,  

In this paper, we investigated nonlinear hydrodynamics 
of time-dependent flow of a rotating ferrofluid. Therefore 
we considered a setup of differenti ll ounter-rotating 
cylinders with small-aspect-ratio and wide-gap annulus 
and applied mmetry-breaking tran verse magnetic 

Copyright © 2013 SciRes.                                                                                OJFD 



S. ALTMEYER 124 

 

Figure 13. Space-time plot of the cross-flow energy, 

   , 2 2cfE r t u w a r 

concentric cylinder for 

, averaged over the surfaces of a 

each radius r for lc0 at (a) 0xs   

gh (low) 

 are (a) 

and lc2 (b)  Red (yellow) indicates hi

energy with  Maximal energies
488.97 and (b  
 
periodic limit-cycle solution and vice versa by only chan

Due to shortness of
not to

states 
dated this states also to exist in 

ponent. Even 

e, it illustrates more pronounced variations 
ov

Liquid Contained 

.0 4xs  .

 contours 
) 4

 50cfE  .
24.47 (c.f Figures 9 and 10).

- 
ging the strength of the applied magnetic field. 

 our considered setup so-called 
anomalous mode solution exists in the system for  
high Reynolds numbers. In absence of a magnetic field 
these steady are axisymmetric and exist symme- 
try-related. We eluci
magnetic fields with finite transverse com
while they also exist symmetry related there axisym- 
metry is lost due to stimulation of finite m = 2 contribu- 
tion [10,19]. This mode-two symmetry is also preserved 
and underlying the time-periodic limit-cycle solution 
bifurcating out of these anomalous modes. 

The time-independent flows show either a left-winding 
or right-winding helical shape due to the m = 2 contribu- 
tions [42] which do not rotate in azimuth—they are 
phase-pinned. Physically one observes two “bellies” one 
on that side where the magnetic field enters the annulus 
and a second one on the opposite side where it exits the 
annulus again. Instead we found time-dependent limit- 
cycle solution to include both contributions. In particular 
it shows a kind of stroboscoping over one period alter-
nating between both left- and right-winding m = 2 con- 
tribution. 

Even while the symmetries are significant modified 
due to a finite transverse magnetic field neither the an- 
gular momentum flux nor the cross-flow energy is sig- 
nificantly modified. Independent of the magnetic field 
strength the momentum flux is always dominated by its 
diffusive contribution which only shows small time-de- 
pendent variations over one period. In contrast, the minor 
advective contribution which is opposite directed to the 

diffusive on
er one period which is responsible for the time-de- 

pendence of the whole momentum flux. 
We want to finish with the interesting but so far still 

open point of existence of hysteresis also for the bifurca- 
tion scenario of time-dependent flows as it was found for 
time-independent flows. This might be the germ and mo-
tivation of further numerical and experimental works. 
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