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ABSTRACT 

We present simulation results of flows in the finite Knudsen range, which is in the slip and transition flow regime. Our 
implementations are based on the Lattice Boltzmann method and are accomplished within the Peano framework. We 
validate our code by solving two- and three-dimensional channel flow problems and compare our results with respective 
experiments from other research groups. We further apply our Lattice Boltzmann solver to the geometrical setup of a 
microreactor consisting of differently sized channels and a reactor chamber. Here, we apply static adaptive grids to fur-
ther reduce computational costs. We further investigate the influence of using a simple BGK collision kernel in coarse 
grid regions which are further away from the slip boundaries. Our results are in good agreement with theory and 
non-adaptive simulations, demonstrating the validity and the capabilities of our adaptive simulation software for flow 
problems at finite Knudsen numbers. 
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1. Introduction 

The investigation of microflows and rarefied gases is a 
crucial step in the development of many micro-electro- 
mechanical systems. The respective devices—micro-ac- 
tuators, -jets, -sensors or -pumps—find application in a 
multitude of different fields ranging from medicine and 
biotechnology to safety technology and home electronics. 
As improvements in manufacturing technology yield a 
further miniaturisation of these objects, simulation me- 
thods need to be provided to allow for flow studies on the 
microscale. Simulations on the molecular level are still 
too expensive for setups which are relevant for real- 
world applications, so that macro- or mesoscopic me- 
thods are required. It has been shown by several groups 
that standard continuum descriptions such as the incom-
pressible Navier-Stokes equations are not valid anymore 
in several microflow scenarios (see amongst others [1]), 
due to the molecular length scales reaching the same size 
as the characteristic length scale of the underlying flow 
problem. This effect implies a non-vanishing, but finite 
Knudsen number Kn which is defined as 

Kn
H


                  (1) 

and relates the molecular mean free path λ to the charac-
teristic length scale H of the flow problem. Table 1 lists 
the different flow regimes, depending on the Knudsen 
number. Different methods have been proposed over the 

last years to extend existing continuum approaches to the 
finite Knudsen regime, i.e. to the slip and transition flow 
regime [2-8]. In this context, the Lattice Boltzmann 
method (LBM) has attracted particular attention, due to 
its kinetic origin and implementational simplicity. How-
ever, only few publications address the application of the 
LB approach to practical problems [9], such as [10]. 

In the present contribution, we present the extension of 
our existing adaptive LBM implementation within the 
Peano framework [11] to the slip and transition flow re-
gime. The methods are based on the models proposed in 
[2] and [6], respectively. 

We shortly review the methodology of the LBM and 
its extensions and give a short overview of the existing 
LBM application within the Peano framework in Section 
2. We validate our implementation for two- and three- 
dimensional channel flow scenarios in Section 3, com-
paring our results with those of other research groups. 
Within the same section, we present numerical results for 
 
Table 1. Different flow regimes can be characterised via the 
Knudsen number [12]. 

Continuum flow Kn < 10−2 

Slip flow 10−2 < Kn < 10−1 

Transition flow 10−1 < Kn < 10 

Free molecular flow Kn > 10 
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flow simulations in a microreactor, given by a complex 
network of differently sized ducts and a reaction chamber. 
We use static adaptive grids to allow for a fine resolution 
of the small ducts and a coarser representation of the 
reactor chamber. We point out the advantage of using 
adaptive grids for the respective scenario types with re-
spect to both accuracy and computational efficiency. 
Finally, we draw a short conclusion and give an outlook 
to future work in Section 4. 

2. Theory 

2.1. The Lattice Boltzmann Method 

The Lattice Boltzmann method (LBM) is derived from 
the Boltzmann equation by breaking down the velocity 
space to a finite set of lattice velocities c D

i  , 
, where D denotes the dimension of space. 

Populations of molecules i

1, ,i   Q
f  that are associated with 

each lattice velocity collide in each cell Dx  at time 
 and are propagated to the respective neighbour 

cells following the update rule: 
t 

     
   

*

*

, ,

c d , d ,

eq
i i i

i i i

f x t f x t f f

f x t t t f x t

   

  
        (2) 

where *
if  denotes the post-collision state of the distri-

butions, eq
if  the equilibrium state [14] and dt the time 

step. The molecular interaction is described by the 
collision operator  Different models for  .eqf f  

 eqf f   have been previously proposed; in the fol-
lowing, we will consider the single-relaxation-time (BGK) 
model [15] and the multiple-relaxation-time (MRT) 
scheme [16-18]. The BGK collision operator is given by 

  1 BGK eq eqf f f f


               (3) 

where   is the relaxation time of the fluid; the relaxa-
tion time is uniquely defined by the kinematic viscosity 
  of the fluid,   21 3 1 2 dc t    with : d dc x t  
and lattice spacing dx . Due to its simplicity and its 
low computational costs, the BGK approximation is 
most commonly used for macroscopic flow considera- 
tions. The multiple-relaxation-time scheme carries out 
the relaxation of the moments instead of relaxing the 
non-equilibrium parts eq

i if f  directly. It is described 
by 

  1 MRT eq eqf f M SM f f     .      (4) 

The matrix Q QM   refers to the transformation 
matrix from the velocity to the moment space, and 

 is a diagonal matrix containing the relaxation 
parameters for the single moments. It has been shown 
[16] that the MRT collision operator is approximate 15% 
computationally more expensive than BGK methods and 

has better stability properties [18]. 

Q QS 

2.2. Extension to Finite Knudsen Numbers 

Based on kinetic theory, the LBM provides a natural ac-
cess to microscale modeling, and different extensions 
have been proposed over the last years to extend the 
method to the range of finite Knudsen numbers. 

Niu et al. [19] extended the entropic model from An-
sumali and Karlin to the finite Knudsen range, introduc-
ing a relation between the Knudsen number and the re-
laxation time   and adopting the respective diffuse 
boundary condition to include velocity slip. Works into 
similar directions have been published at about the same 
time by Tang et al. [3]. Sbragaglia and Succi presented a 
new formulation of kinetic boundary conditions for flows 
at finite Knudsen numbers in [20]; therefore, they pro-
posed models based on slip, reflection and accomodation 
coefficients. Toschi and Succi proposed a stochastic han-
dling of finite Knudsen number flows within the context 
of Lattice Boltzmann simulations in [4]. Virtual wall 
collisions of the Lattice Boltzmann particles are incorpo-
rated into the Lattice Boltzmann model, yielding satis-
factory results for flow regimes up to Knudsen numbers 
~30. Zhang et al. report a successful qualitative Knudsen 
minimum prediction in [21]. Their results show good 
agreement for Knudsen numbers up to ~0.4 and only 
differ for higher numbers, due to numerical errors in-
duced by the increasing value of the BGK-relaxation- 
time  . In order to suppress artificial slip effects near 
walls, Verhaeghe et al. [6] propose a MRT-based model, 
including a particular tuning of the relaxation parameters. 
Their results show excellent agreement in the slip flow 
regime, however, they point out deficiencies of the slip 
flow model for higher Knudsen numbers. A respective 
extension to the transition flow regime has been devel-
oped recently by Li et al. [2]. Another approach to rare-
fied gas modeling using Lattice Boltzmann methods is 
reported in [22,23] where—based on the Hermite projec-
tion method—higher-order Lattice Boltzmann models are 
constructed and yield promising results for both slip and 
transition flow regime. 

Though a variety of models has been published over 
the last years, only few models have been extended to 
practical use cases, such as simulations in complex ge-
ometries [24] or three-dimensional scenarios [25]. 

In the following, we shortly describe the models that 
our implementations are based on; see [2,6,26] for de-
tailed discussions. We subsequently describe a simple 
bounce-back based extension for geometrical setups of 
branched duct structures; all our discussions apply anal-
ogously to two- and three-dimensional scenarios. 

Stepping towards the finite Knudsen number regime, 
the dynamic viscosity   of the fluid cannot be consid-
red constant anymore, due to the strong impact of the  e 
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Figure 1. Corner cells (a), cells adjacent (b) or diagonally adjacent (c) to wall corners demand special treatment when using 
combined bounce-back specular reflection boundary conditions. 
 
walls on the micro-scale simulation. Near walls, the mo-
lecular mean free path is significantly shortened as 
molecules may collide with the walls. This yields a re-
duction of the dynamic viscosity. Several methods have 
been proposed to account for this reduction, see amongst 
others [8,26-29]. We apply the viscosity adjustment pre-
sented in [26] where a Bosanquet-type of expression is 
proposed for the effective viscosity e : 

1 Kne a

 


                  (5) 

where  produces a good approximation over a 
wide range of Knudsen numbers [30]. The Knudsen 
number Kn is given by the expression proposed by [2]: 

2a 

3π 1
Kn

2 c H


                 (6) 

where H  is the characteristic length scale of the prob-
lem. 

Besides, the no-slip condition which is used to model 
walls in most macro-scale flow simulations, is not valid 
anymore in the micro-regime. Additional slip occurs and 
needs to be incorporated into the boundary conditions, 
respectively. For simulations in the slip flow regime, we 
apply a combination of the standard bounce-back and 
diffusive reflective (BBDR) boundary condition [6]: 

       
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   (7) 

where w  denotes the velocity at the wall, n the out-
ward-pointing normal of the boundary and 

u
i  the direc-

tion opposite to direction . The parameter i   is cho-
sen according to [6] as 

out

out

3 Kn

3 Kn

Hc

Hc

 


 





              (8) 

such that the first-order slip boundary condition from [31] 

is fulfilled: 

wall

Kns

u
u H

n
 




              (9) 

In Equation (8), out  denotes the average density at 
the outlet of a channel-like scenario and  2 v v     
with tangential momentum accommodation coefficient 

v  which is considered to be unity in the following. 
Boundary conditions for transition flows are imple-
mented by an analogous linear combination between 
bounce-back and specular reflection (BBSR) conditions 
[2], resembling second-order boundary conditions: 

2
2

1 2 2
wall wall

s e e

u
u A A

n n
  

 
 

u
      (10) 

where  1 1 0.1817 vA    and 2 ; the parameter 0.8A 
π 2e e  denotes the effective mean free 

path. The respective weighting factor 
p RT  

  evolves in this 
case to be 

1

1

π
1

6
A







.             (11) 

The model extensions described above have been vali-
dated in [2] and [6] for two-dimensional channel scenar-
ios with planar boundaries. For detailed discussions on 
microscopic slip effects, see [12], as well as [13] for a 
review on slip models for gas microflows. 

Considering systems which consist of several channel- 
like structures, a special treatment of the distributions if  
is required near corners and edges of the flow domain. 
Figure 1 sketches the problematic geometries in the case 
of the BBDR conditions for a two-dimensional setup. 
Corner cells have distributions which collide with more 
than one wall, as 5f  does in Figure 1(a). Even though 

5  represents a discretisation of the velocity space and 
thus combines velocities evenly distributed around 5 , 
one cannot simply split the distribution functions equally 
up among the adjacent walls and perform a normal 

c
c
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BBDR; this would even not maintain a zero velocity 
equilibrium state. In order to overcome this deficiency 
and to be mass conservative, a bounce-back scheme will 
be applied for those distributions which collide with mul-
tiple walls. If a cell is adjacent to a wall corner, the prob-
lem arises how to deal with distributions which can be 
propagated to diagonally adjacent cells and be part of a 
wall collision at the same time, see 6f  in Figure 1(b). 
Applying both mechanisms would not be mass conserva-
tive and splitting distributions up into a streaming and a 
collision part would again destroy a zero velocity equi-
librium state. Therefore, those distributions are only 
propagated to their adjacent destinations and excluded 
from any subsequent boundary collision process. Distri-
butions which collide with a wall corner directly, as it is 
the case for 5f  in Figure 1(c), are bounced back from 
the wall. Similar issues can be encountered when using 
the BBSR boundary condition. In these cases, we also 
apply the standard bounce-back scheme to the relevant 
distribution functions. The bounce-back method typically 
models no-slip walls and does not capture the additional 
microfluidic slip. However, with the number of corner 
nodes in a simulation being of O(1) and considering the 
fact that our channel-like scenarios are dominated by 
planar boundary structures, we consider the influence of 
these nodes to be of less importance. 

Besides the combined boundary techniques and the 
viscosity adjustment, the application of the MRT colli-
sion scheme with particular sets of relaxation parameters 
is required to suppress artificial slip effects near the walls. 
The BGK model induces numerical slip which—in con-
trast to the tuned MRT models—may yield unphysical 
results as discussed in [6]; a tuning of the BGK operator 
to remove these artifacts may not be possible. For a der-
ivation of the tuned relaxation parameter sets for the 
MRT collision operator, see [2] and [6]. 

2.3. The Peano Framework 

The Lattice Boltzmann model and the respective slip and 
transition flow extensions are implemented within the 
Lattice Boltzmann application [11,32] of the Peano 
framework [33]. This framework provides adaptive Car-
tesian grid structures that are traversed along the iterates 
of the space-filling Peano curve. A block-structured ap-
proach to LBM-based simulations within Peano has re-
cently been presented and validated; for details, see [11]. 
The respective implementation allows for two- and 
three-dimensional Lattice Boltzmann simulations on 
adaptive static or dynamic Cartesian grids. It enables 
coarse-graining and refining of both the spatial resolution 
of the simulation and the properties of the fluid. The lat-
ter can for example be established by using different col-  
lision models on different grid levels which can signifi-

cantly reduce computational costs as pointed out in [11]. 

3. Numerical Results 

3.1. Validation: Channel Flows (2D) 

We validate our implementations and therefore consider 
different channel flow scenarios. We compare our simu-
lations to the results from [2] and [6]. In a first series, we 
carry out simulations in the slip flow regime, considering 
pressure-driven Poiseuille flow in a 2D channel. We ap-
ply the tuned MRT collision operator and the first- 
order boundary conditions from the previous section and 
study the flow for different Knudsen numbers, using a 
1100 11  grid. The results are depicted in Figure 2. Our 
numerical results match the results reported in [6], indi-
cating the correctness of our implementations. The limi-
tations of this approach with respect to higher Knudsen 
number flows also become apparent from Figure 2: the 
first-order Navier-Stokes slip solution provides a good 
estimate of the streamwise velocity profile for Kn = 
0.0194 and Kn = 0.0194, but strongly overestimates the 
slip occurring at the wall for higher Knudsen number 
flows. The presented first-order Lattice Boltzmann scheme 
shows a similar behaviour—it is valid in the slip flow 
regime, but needs further modifications when entering 
the transition flow regime. Both the first-order Navier- 
Stokes and first-order Lattice Boltzmann scheme show 
a significantly stronger pressure deviation from the 
linear pressure distribution, which is typically encoun-
tered in macro-scale channels, than the Direct Simula- 
tion Monte-Carlo method. In order to extend the usabi- 
lity range of our method, we checked the results for pe-
riodic channel flows according to the setups presented in 
[2]. 

Figure 3 presents the evolving streamwise velocity 
profile for Knudsen numbers in the range of [0.1128; 
4.5135]. Our results perfectly fit the ones reported by Li 
et al. 

3.2. Validation: Channel Flows (3D) 

The three-dimensional implementation is validated by 
comparing the pressure deviation from the linear distri-
bution along the centerline of a Poiseuille flow with the 
results of other researchers: Tang et al. [25] employed 
the LBM with the BGK collision operator and special 
boundary conditions to accommodate for the occurring 
slip in order to solve the problem numerically. Aubert 
and Colin [34] proposed an analytical model for gaseous 
flows which they used to obtain analytical data. The 
three-dimensional channel is simulated for the height-to- 
width ratios of 1H W   and 0.25 with grid sizes of 
1200 24 24   nodes and 120  nodes, respec-
tively. The Knudsen number is set to  and  

0 12 48 
Kn 0.055          
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Figure 2. Pressure deviation from the linear distribution along the centerline (top row), normalised streamwise velocity pro-
file (mid row) and normalised spanwise velocity profile (bottom row) in a pressure-driven Poiseuille flow at different Knud-
sen numbers. Present LBM (solid red line), LBM proposed by Verhaeghe et al. [6] (black triangles), first-order slip Navier- 
Stokes solution [6] (green diamonds) and IP-DSMC proposed by Shen et al. [35] (blue circles). Left: Kn = 0.0194; Center: 
Kn = 0.194; Right: Kn = 0.388. 
 
the results are calculated for the pressure ratios 

1.94in outp p  , 2.37 and 2.64. The obtained data pro-
vided in Figure 4 are in good agreement with the results 
of Tang et al. and Aubert and Colin. 

adaptive grids together with a volumetric adaptivity ap-
proach for the LBM [37], [38] to speed up the computa-
tions. The inner part of the reactor chamber is resolved 
by a coarse grid whereas the small-sized ducts and the 
regions near the walls of the chamber are discretized us-
ing a fine grid, with a cell size coarse fined 3dx x ; see [11] 
for details on the discretisation process. The second-or- 
der slip boundary conditions consistent with the MRT 
collision operator including viscosity adjustment are ap-
plied at all walls of the system. The Knudsen number 
used in our simulation lies between 0.11 and 0.21, de-
pending on the size of the respective ducts. We compared 
the flow properties at different cross sections, see Figure 
6. To validate our boundary treatment near geometric 
corners, we first compared the mass flux before and after 
the branching. We therefore evaluated the respective 
integral expressions for the mass flux over the cross 

3.3. Microreactor Simulations 

In the following, we apply the method to a microreactor 
duct-system as it can be found in typical microflow en-
gineering setups [36]. Figure 5 shows the two- and 
three-dimensional representations of the respective ge-
ometry. The system consists of branch-like structures 
transporting polluted fluid into the reactor chamber. In 
this chamber, reaction processes-such as the oxidation of 
pollutants [36]—take place before the clean fluid leaves 
the system again via another channel system. We con-
ducted different experiments starting with a two-dimen- 
sional setup. In our implementations [11], we use static   
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Figure 3. Normalised streamwise velocity profiles: Present LBM with second-order boundary conditions and viscosity 
adjustment (solid red line), LBM proposed by Li et al. [2] (black triangles), second-order slip velocity Navier-Stokes solution 
by Hadjiconstantinou [39] (green diamonds) and the solution of the linearised Boltzmann equation by Ohwada et al. [40] 
(blue circles) of Poiseuille flows at different Knudsen numbers. 
 

  

Figure 4. Pressure deviation along the centerline of differently sized channels for a pressure driven Poiseuille flow: Left: H/W 
= 1; Right: H/W = 0.25. Present LBM with first-order boundary conditions and viscosity adjustment (solid lines), LBM pro-
posed by Tang et al. [25] (black triangles), analytical solution by Aubert and Colin [34] (black circles). 
 

Figure 5. Microreactor duct-system. Left: Two-dimensional setup with visualisation of the underlying adaptive grid and the 
velocity field via streamlines. Right: Three-dimensional setup with density visualisation in the inlet duct system. 
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Figure 6. Cross sections at different positions within the reactor. 
 
sections from Figure 6. We found that the mass flux de-
viations are less than 0.4% in each of the branches. We 
further checked the velocity profiles at the cross sections. 
We compared them to the results from a non-adaptive 
simulation of a Poiseuille flow where the fine grid and 
the respective MRT collision rule are applied in the 
whole domain. The profiles are given in Figure 7. It can 
be seen that the streamwise velocity profiles at the dif-
ferent checkpoints agree very well with the solution of 
the Poiseuille flows. The largest pointwise deviation be-
tween the Poiseuille flow and the different solutions can 
be found in Table 2. Both adaptive and completely re-
solved simulations show nearly identical deviations, in-
dicating the validity of our adaptive simulation setup. A 
speedup of 1.154 could be observed, going from the 
regular to the static adaptive simulation. 

In order to further reduce computational time besides 
the application of adaptive grids, we investigated the 
influence of applying the BGK collision operator-instead 
of the tuned MRT model-on the coarse grid level in the 
inner part of the reaction chamber. No wall interactions 
are encountered for the coarse cells in this region. As a 
consequence, the motivation for the choice of the MRT 
scheme from Section 2.2 does not play a crucial role in 
this part of the domain. The largest pointwise error and 
the velocity profiles are also depicted in Table 2 and 
Figure 7. The adaptive grid solution using both the MRT 
and BGK collision operator is similar to the other solu-
tions, with maximum deviations of less than 0.6% from 
the adaptive pure MRT solution. Reducing the computa-
tional load on the coarse grid by the simplified collision 
process yields a further reduction of 1.5% in the compu-
tational time, compared to the computational time of the 
adaptive grid with MRT collision rules on both grid lev-
els. The effect of the refined collision model strongly 

depends on the ratio of coarse grid to fine grid nodes, 
which amounts in our case to 0.07. In total, the adaptive 
grid using a resolution dependent collision model de-
creases the computational time by 14.6% in comparison 
to the regular simulation. 

In the next step, we simulated a three-dimensional 
setup. We used a non-adaptive grid consisting of  
cells. The first-order slip boundary condition and the 
MRT with viscosity adjustment were employed for the 
whole domain. The size of the duct system and the reac-
tion chamber were chosen such that the Knudsen num-
bers within the channels and inside the chamber are 

3240

Kn 0.017  and Kn 0.0052 , respectively. In order to 
validate the results, we compared the streamwise velocity 
profiles to Poiseuille flows with similar conditions, see 
Figure 8; they are in good accordance. We further inves-
tigated the mass flux at junctions to evaluate the influ-
ence of the special boundary treatment on three-dimen- 
sional geometries. The relative mass flux error does not 
exceed 0.4%. 

4. Conclusion and Outlook 

We presented the extension of our adaptive Lattice 
Boltzmann implementation to the slip and transition flow 
regime. The code was validated in pressure-driven and 
periodic channel flow scenarios. The results show excel-
lent agreement with the results of other research groups. 
We extended our code to allow for the simulation of 
complex duct systems using the half-way bounce-back 
scheme at corner nodes. Our results from the microreac-
tor simulations agree very well with the predictions of 
the pure channel results, as well as with non-adaptive 
simulations of the same underlying setup. 

Applying the concept of spatial adaptivity reduced the 
computational time by 13.1 p rcent in case of the micro-  e    
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Figure 7. Streamwise velocity profiles at different cross sections of the duct system. Adaptive LBM with MRT scheme applied 
on all levels (red), adaptive LBM with MRT/BGK combination (blue), non-adaptive LBM (green) and respective Poiseuille 
flow profile (black). 
 

  
  

  

Figure 8. Streamwise velocity profiles at different cross sections of the three-dimensional duct system. Non-adaptive LBM 
red) and respective Poiseuille flow profile (black). (  
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Table 2. Largest pointwise deviation of the streamwise ve-
locity between different solutions and the Poiseuille flow 
results. 

Solution x2 x4 x10 x−2 x−4 x−10

Non-Adaptive LBM %0.2  %1.2 %0.4  %0.2  %1.2 %0.6

LBM MRT %0.2  %1.1 %0.4  %0.2  %1.2 %0.6

LBM MRT/BGK %0.8  %1.7 %0.7  %0.8  %1.7 %1.2

 
reactor simulation. The slip corrections, that are required 
near the boundaries and in the small-sized ducts, were 
found to be negligible in the inner part of the big-sized 
reactor chamber. Besides the spatial adaptivity concept, a 
simplification of the collision step could be applied in 
this area. This approach led to a slight increase in per-
formance while still yielding acceptable results. 

In our future work, we plan to approach the molecular 
regime. More focus is to be put on spatial adaptivity: 
higher gains in performance than in the present microre-
actor simulation are expected, for example in the case of 
bigger reactor chambers where the rigorous coarsening of 
the discretisation within the chamber significantly pays 
off. Besides, as the presented LBM scheme is only valid 
in the slip and transition flow regime, multiscale ap-
proaches (see amongst others [41,42]) may account for a 
further reduction in length and time scales; however, 
massively parallel simulation software may be required 
for the simulation of realistic three-dimensional setups. A 
first step towards the latter challenge has already been 
taken in the context of coupled Lattice Boltzmann-Mo- 
lecular Dynamics simulations [43]. 
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