
Open Journal of Fluid Dynamics, 2011, 1, 1-11 
doi:10.4236/ojfd.2011.11001 Published Online December 2011 (http://www.SciRP.org/journal/ojfd) 

Copyright © 2011 SciRes.                                                                                OJFD 

1

Radiation Effect on Natural Convection near a Vertical 
Plate Embedded in Porous Medium  

with Ramped Wall Temperature 

Sanatan Das, Mrinal Jana, Rabindra Nath Jana 
Department of Applied Mathematics, Vidyasagar University, Midnapore, India 

E-mail: jana261171@yahoo.co.in 
Received November 16, 2011; revised December 7, 2011; accepted December 20, 2011 

Abstract 
 
Radiation effect on the natural convection flow of an optically thin viscous incompressible fluid near a ver-
tical plate with ramped wall temperature in a porous medium has been studied. The exact solution of mo-
mentum and energy equations is obtained by the use of Laplace transform technique. The variations in fluid 
velocity and temperature are shown graphically whereas the numerical values of shear stress and the rate of 
heat transfer at the wall are presented in tabular form for various values of flow parameters. The results show 
that the fluid velocity increases with increase in Grashof number, Darcy number and time parameters 
whereas the fluid velocity decreases with increase in the radiation parameter and Prandtl number for ramped 
temperature as well as isothermal wall temperature. It is found that an increase in radiation parameter leads 
to rise the temperature for both ramped wall temperature as well as isothermal wall temperature. Further, it is 
found that an increase in Prandtl number leads to fall the temperature for both ramped wall temperature as 
well as isothermal wall temperature. The shear stress at the wall decreases with increases in either Prandtl 
number or porosity parameter while the result shows reverse in the case of radiation parameter. Finally, the 
rate of heat transfer is increased with increase in the radiation parameter for both ramped wall temperature as 
well as isothermal wall temperature. 
 
Keywords: Natural Convection, Darcy Number, Radiation Parameter, Prandtl Number, Porous Medium, 

Ramped Wall Temperature and Isothermal Wall Temperature 

1. Introduction 
 
The phenomenon of natural convection arises in fluids 
when temperature changes cause density variations lead-
ing to buoyancy forces acting on the fluid particles. Such 
flows which are driven by temperature differences abound 
in nature and have been studied extensively because of 
its applications in engineering, geophysical and astro-
physical environments. Comprehensive literature on va- 
rious aspects of free convection flows and its applica-
tions could be found in Ghoshdastidar [1], Nield and 
Bejan [2]. Ghoshdastidar gave various areas of applica-
tions of free convection flow such as those found in heat 
transfer from pipes and transmission lines as well as 
from electronic devices, heat dissipation from the coil of 
a refrigerator unit to the surrounding air, heat transfer 
from a heater to room air, heat transfer in nuclear fuel 
rods to the surrounding coolant, heated and cooled en-

closures, quenching, wire-drawing and extrusion, at-
mospheric and oceanic circulation. Unsteady free con-
vection flows in a porous medium have received much 
attention in recent time due to its wide applications in 
geothermal and oil reservoir engineering as well as other 
geophysical and astrophysical studies. Moreover, con-
siderable interest has been shown in radiation interaction 
with convection for heat and mass transfer in fluids. This 
is due to the significant role of thermal radiation in the 
surface heat transfer when convection heat transfer is 
small, particularly in free convection problems involving 
absorbing-emitting fluids. The unsteady fluid flow past a 
moving plate in the presence of free convection and ra-
diation were studied by Mansure [3], Raptis and Perdikis 
[4], Das et al. [5], Grief et al. [6], Ganeasan and Loga-
nathan [7], Mbeledogu et al. [8], Makinde [9] and Ab-
dus-Sattar and Hamid Kalim [10]. All these studies have 
been confined to unsteady flow in a non-porous medium. 
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Israel-Cookey et al. [11] have studied the influence of 
viscous dissipation and radiation on unsteady MHD free- 
convection flow past an infinite heated vertical plate in a 
porous medium with time-dependent suction. Radiative 
and free convective effects of a MHD flow through a 
porous medium between infinite parallel plates with time 
dependent suction have been investigated by Alagoa et al. 
[12]. Israel-Cookey et al. [13] have made an analysis on 
MHD oscillatory Couette flow of a radiating viscous 
fluid in a porous medium with periodic wall temperature. 
Sattar and Maleque [14,15] have studied the unsteady 
MHD Natural convection flow and mass transfer along 
an accelerated porous plate in a porous medium. Thermal 
radiation interaction with unsteady MHD flow past a 
vertical porous plate immersed in a porous medium has 
been analyzed by Samad and Rahman [16]. Mahanti and 
Gaur [17] have studied the effects of varying viscosity 
and thermal conductivity on steady free convective flow 
and heat transfer along an isothermal vertical plate in the 
presence of heat sink. Transient free convection past a 
semi-infinite vertical plate with variable surface tem-
perature has been investigated by Takhar et al. [18]. 

In this present paper, we investigate the effects of ra-
diation on the free convection flow of an optically thin 
incompressible viscous fluid past an infinite vertical 
plate with ramped wall temperature in porous medium. 
The fluid considered is a gray, radiation, absorbing, 
emitting but non-scattering medium and the Rosseland 
approximation is used to describe the radiative heat 
transfer in the energy equation. It is seen that the velocity 

1  decreases for both ramped wall temperature as well 
as isothermal wall temperature with an increase in either 
radiation parameter  or Prandtl number . It is 
also seen that the velocity 1  increases for both ramped 
wall temperature as well as isothermal wall temperature 
with an increase in either Grashof number  or time 

u

Ra Pr

Gr

u

 . It is found that an increase in radiation parameter 
 leads to rise the temperature Ra   for both ramped 

wall temperature as well as isothermal wall temperature. 
Further, it is found that an increase in Prandtl number 
leads to fall the temperature for ramped temperature as 
well as isothermal case. 
 
2. Formulation of the Problem and Its  

Solutions 
 
Consider the unsteady free convection flow of an opti-
cally thin viscous incompressible fluid past an moving 
infinite vertical plate coinciding with plane 0y  , 
where the flow is confined to  in a porous me-
dium. Choose a cartesian co-ordinates system with x-axis 
along the wall in a vertically upward direction and y-axis 
is normal to it into the fluid (see Figure 1). At 

0y 

0t  , the  

 

Figure 1. Geometry of the problem. 

plate and the surrounding fluid are at the same constant 
temperature T . At time , the temperature of the  0t 

wall is raised or lowered to  
0

w

t
T T T

t    when  

00 t t 

l

 and the constant temperature wT  is main-
tained at 0 . Since the plate is infinite along x-direc- 
tion, all the physical variables are the function of y  an  
t  on y. The flow is considered optically thin gray gas 
with natural convection and radiation. The radiative heat 
flux in the x-direction is considered negligible in com-
parison to y-direction.  

t t
d



The Boussinesq approximation is assumed to hold and 
for the evaluation of the gravitational body force, the 
density is assumed to depend on the temperature accord-
ing to the equation of reference state  

0 1 T T   
     ,           (1) 

where  is the fluid temperature, T   the fluid density, 
   the coefficient of thermal expansion and T  and 

0  being the reference temperature and the density re-
spectively. 

Using Boussinesq Approximation (1), the momentum 
equation in a porous medium along x-axis is  

 
2

2

u u
g T T u

t y k

  
 

 
   

 
,      (2) 

where , u g ,   ,  ,   and  are respectively, 
fluid velocity, acceleration due to gravity, coefficient of 
thermal expansion, kinematic viscosity, fluid density and 
permeability of a porous media. 

k

The energy equation is  
2

2

1 r

p p

qT k T

t c c yy 
 

 
 

,         (3) 

where  is the thermal conductivity, k pc  the specific 
heat at constant pressure and  the radiative heat flux. r

The initial and boundary conditions are  
q

0u  , T T  for  and ,  0y  0t 

0Uu   at  for t , 0y  0
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  0
0

0

at 0 for 0

at 0 for 

0, as  for 0

w

w

t
T T T T y t t

t

T T y t t

u T T y t

 



     

 
   

   (4) 

It has been shown by Cogley et al. [19] that in the op-
tically thin limit for a non-gray gas near equilibrium, the 
following relation holds  

 
00

0

4 dhr eq
T T K

y T


 




       
 ,      (5) 

where K  is the absorption coefficient,   is the wave 
length, he  is the Plank’s function and subscript 0̀  
indicates that all quantities have been evaluated at the 
temperature  which is the temperature of the wall at 
time . Thus our study will be limited to small dif-
ference of wall temperature to the fluid temperature. 

T

0t

On the use of (5), Equation (3) becomes  

 
2

2

4

p p

T k T
T T I

t c cy  
 

  
 

,      (6) 

where  

00
0

dhe
I K

T


 
     
 .          (7) 

Introducing dimensionless variables  

0 0

y

U t
  , 

0

t

t
  , 1

0

u
u

U
 , 

w

T T

T T
 







,   (8) 

Equations (2) and (6) become  
2

1 1
12

1u u
u Gr

 
 

  
 

,           (9) 

2

2

1

Pr
Ra

  
 
 

 
 

,            (10) 

where 
 

3
0

wg T T
Gr

U

  
  is Grashof number,  

Pr pc

k


  the Prandtl number, 

2
0

4

p

I
Ra

c U




  the ra-

diation parameter, 
2
0

2

k U
MaDa





   the porosity  

parameter and  the Darcy number. Da
The characteristic time  is defined as  0t

0 2
0

t
U


 .                (11) 

The corresponding initial and boundary conditions for 
 and 1u   are  

1 0, 0 for 0 and 0,u        

1 1 at 0 for 0,

at 0 for 0 1,

u  
   

  
   

       (12) 

1   at 0   for 1  , ,  1 0u 
0   as   for 0  . 

Taking Laplace transformation of the Equations (9) 
and (10), we get  

2
1

12

d 1

d

u
s u Gr

MaDa



     
 

,       (13) 

 
2

2

d
Pr 0

d
s Ra

 


   ,           (14) 

where  

   

   
1 10

0

, ,

, ,

s

s

u s u e

s e





d ,

d .

   

    

 

 







 
        (15) 

The corresponding boundary conditions for 1u  and 
  are  

 1 2

1

1 1
, 1  at 

0, 0 as .

su e
s s

u

 

 

 0,   

  
      (16) 

The solution of the Equations (14) and (13) subject to 
the boundary conditions (16) can be easily obtained and 
are given by  

 
   Pr

2

1
,

s
s Ra

e
s e

s
 


 

 ,        (17) 

 

   

1

1

1
Pr

2

1
,

1
               

( )

s
MaDa

s
s s RaMaDa

u s e
s

e
e e

s s



 







 


   



 
  

   

 (18) 

where  

 1 Pr

Gr 


 and 
 

1
Pr

1 Pr

Ra
MaDa

  
 


.   (19) 

Taking the inverse Laplace transform of Equations (17) 
and (18), the solution for the fluid temperature  ,    
and fluid velocity  1 ,u    are obtained and are given 
by  

      1 1, , , 1 H          1    ,    (20) 

 1

1
, erfc

2 2

                erfc
2

MaDa

MaDa

u e
MaDa

e
MaDa





  


 




  
      

 
     
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,     (21) 

where  

     1 1, , 1 1H             

  Pr
1

Pr

1 Pr
,

2 2

Pr
      erfc

2

Pr Pr
      erfc ,

2 2

Ra

Ra

e
Ra

Ra

e
Ra





   

 


  Ra




 
    
 

   
 

   
             

 (22) 

 

   

   

1

1 2

1

Pr

Pr

1
,

2

1
      erfc

2

1
      erfc

2

Pr
      erfc

2

Pr
      erfc

2

   

MaDa

MaDa

Ra

Ra

e
e

MaDa

e
MaDa

e Ra

e Ra

  

 

 

 

  


  


  


  


  




 



 

  
 

         
         
 

    
 

      

Pr

1 1
   

2

      erfc
2

1 1
      

2

1 1 Pr
      erfc

22

Pr 1 1 Pr
      erfc

2 2

MaDa

MaDa

Ra

MaDa
e

MaDa

MaDa
e

e
MaDa Ra

Ra
Ra








 

 



 

  
 

  
  



 
    

 
 

   
 

 
    

 
   

          
   
   

          
   

Pr Pr
      ,

2
Rae erfc Ra  




 
     

 (23) 

where  erfc x  
 1  

is the complementary error function and 
is the unit step function. 

2.1. Solution in Case of Unit Prandtl Number 
 
Prandtl number is a measure of the relative stren
the viscosity and thermal conductivity of the fluid. So the 

H  
 

gth of 

case Pr 1  
us a
 order 

t solutio

co
visco ness are of the 
ame of magnitude. Setting  in Equation 

the 
xac n for the fluid temp

rresponds to those fluids for which both 
nd thermal boundary layer thick

s Pr 1

erature 
(14) and following the same procedure as before, 
e  ,    and 
fluid velocity  1 ,u    is obtained and is expressed in 
the following form  

       2 2, , , 1 1H             ,  (24) 

 

     

1

1
, erfc

2 2

                

MaDa

Ma

u e
MaDa

e

   


 

  
     

 


2 2

erfc
2

               , , 1 1 ,

Da

MaDa

H





       



    
     

 (25) 

where  

 2

1
, erfc

2 2 2

            erfc ,
2 2

Ra

Ra

e R
Ra

e R
Ra





 
a

a

    


  




  
    

  
  

  






  

   

 (26) 




 2

1
, erfc

2 2 2

         erfc
2 2

         erfc
2 2

        erfc ,
2 2

Ra

Ra

MaDa

MaDa

e Ra
Ra

e Ra
Ra

MaDa
e

MaDa

MaDa
e

MaDa









     


  


 


 






   
     

   
   

     
   
  

      
  

  
  










        

 



and 
1

Gr Ra
MaDa

    
 

. 

 
2.2. Solution for Isothermal Case 
 
In order to highlight the effects of the ramped tempera-
ture distribution near a vertical plate, it may be important 

mpare the effects of th al temperature dis-
tribution for the fluid flow. The temperature and the ve-

city for the fluid flow near an isothermal plate can be 

to co e isotherm

lo
expressed as  

  Pr

Pr

1 Pr
, erfc

2 2

Pr
              erfc ,

2

Ra

Ra

e Ra

e Ra





   


 




  
      

 
     

   (27) 
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 

   

1

11 12

1
, erfc

2 2

                erfc
2

                , , ,

MaDa

MaDa

u e
MaDa

e
MaDa

u u





  


 


    



  
      

 
     
   

  (28) 

where  
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         
          
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 

   
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        



Pr Pr
     erfc .

2
Rae Ra  




       

 (29) 

When , the Solutions (27) and (28) become  Pr 1

  1
, erfc

2 2

               erfc ,
2

Ra

Ra

e R

e R





   


 




  
   

 
 

   
 

 

a

a

   (30) 

      1 13 13 14, , ,u u u u,            ,  (3 1) 

where  

 13

1
, erfc

2 2
MaDau e

MaDa

   


 
    

 

erfc ,
2

MaDae
MaDa

  


  
     

      (32) 
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               erfc .
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




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
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



  
   

 
 

   
 

    (33) 

 
3. Results and Discussion 
 
We have plotted the non-dimensional velocity and tem-
perature for several values of radiation para
Prandtl number , Grashof number , Darcy
ber  and tim

meter Ra , 
Pr
e 

Gr  num-
Da   in Figures 2-9  2-6

resen e ve  against 
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Ra , Pr , Gr , Da  . 

a
 ram
mp

creases 

mb

Figure
rameter 

p
eratu

for

er Pr

 ow
n p ads

h perat  
r e 3 dis  

e  ramped  
eratur

tl nu ysically, th

2 sh
 le
tem

Figur
th
mp

in t

am

s that an 
 to fall in in

th

at

n

enh

crease in th
e velo

well as iso
 the 

 in

luid.

a

e radi
 

rmal wall te
ty u

buo

u

atio
for bot

 

in

Ra
ed wall 

e. 
 bo

. Ph

r

city 1u
the

veloci

crease in Prand

nt i

l

ure as
plays
 wall

e with 
is is 

 the

th 1
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d
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
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true because the increase in the Prandtl number is due to 
increase in the viscosity of the fluid which makes  
fluid thick and hence causes a decrease he velocity of 
the f  It is observed from Figure 4 that an increase in 
Gr , leads to a rise  the values of velocity 1u  due to 

nceme n yancy force. Figure 5 reveals that 
the velocity 1u  increases for both ped wall tem-
perature as we l as isothermal wall temperature with an 
increase in Darcy number Da . It is seen from Figure 6 
that the velocity 1  increases for both ramped wall 
temperature as well as isothermal wall temperature with 
an increase in time  . It is observed from Figure 7 that 
the temperature   decreases as the radiation parameter 
Ra  increases for both ramped wall temperature as well 
as isothermal wall temperature. This result qualitatively 
agrees with expectations, since the effect of radiation is 

ecrease the rate of energy transport to the fluid, 
thereby decreasing the temperature of the fluid. It is seen 
from Figure  that the temperature 

to d

8   decreases for 
both ramped wall temperature as well as isothermal wall 
temperature with an increas  in Prandtl number Pr . 
This implies that an ncrease in Prandtl number leads to 
fall the thermal boundary layer flow for ramped tem-
perature as well as isothermal wall temperature. The ef-
fect of the Prand number is very important in the tem-

ture field. A fall in temperature occurs due to an in-
creasing value of the Prandtl number. This is in agree-
ment with the physical fact that the thermal boundary 

e
 i

tl 

 decrease

pera

layer thickness s Figure    with increase in Pr .  9

Copyright © 2011 SciRes.                                                                                OJFD 



S. DAS  ET  AL. 

Copyright © 2011 SciRes.                                                                                OJFD 

6 

 

 

 and  0.04Da  .Ra  when Pr 0.71 , 25Gr  , 0.1 Figure 2. Velocity profiles for variations in 

 

Figure 3. Velocity profiles for variations in  when Pr 0.04Da  , 25Gr  , 0.1   and  

shows that the temperature 

2Ra  .

  increases for both ramped 
wall temperature as well as isothermal wall temperature 
with an increase in time  .  

From the physical point of view, it is necessary to 
know the shear stress and the rate of heat transfer (or the 
Nusselt number) at the wall  0  . We have presen  ted
the expression for the rate heat transfer  and 

shear stress 

of Nu

0  at the wall 0   
emp

erature 

in the following form 
for both the mped wall t erature and isothermal 
wall temp

For the ram ed wall temp

 ra
erature. 

p  

 ,  3 3 ,
   


 
0

1 1Nu H


  



    , (34)    
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

  


   
 

              

  

 


where  

Copyright © 2011 SciRes.                                                                                OJFD 



S. DAS  ET  AL. 8 

 

 

Figure 6. Velocity profiles for variations in time   when Pr 0.71 , 25Gr  , 2Ra   and 0.04a  . D

 

RaFigure 7. Temperature profiles for variations in  when Pr 0.71  and 0.5  . 
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Figure 8. Temperature profiles for variations in  whenPr  2Ra   and 0.5  . 
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Numerical results of shear stress at the wall  0   
es radia-
of num-

thermal wall temperature with an increase in Prandtl 
number 

Numerical results of the rate of heat transfer at the 
are presented in Tables 1 to 4 for various valu
tion parameter , Prandtl number , Grash
ber , D number  and time 

Ra
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Table 1 
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al wall te

crease in  . Table 4
creases for both ramped wall temperature as well as iso-  

Table 1. Shear stress 

 displays that for 

0  for Pr 0.71 , 10Gr   and 
1  . 

 Ramped tem r ature peratu e Isothermal temper

Da Ra  25 30 35 25 30 35 

0.040 
0.045 
0.050 
0.055 

3.93632 
3.61771 
3.34675 
3.11244 

3.97912 
3.66324 
3.39462 
3.16245 

4.01576 
3.70195 
3.43524 
3.20487 

3.91459 
3.59386 
3.32075 
3.08436 

3.95998
3.64215
3.37170
3.13779

3.99849
3.68301
3.41473
3.18282

Table 2. Shear stress 0  for Pr 0.71 , 25Ra   and 
1  . 

 Ramped tem ature perature Isothermal temper

Da Gr  10 15 20 10 15 20 

0.040 
0.045 
0.050 
0.055 

3.9363 
3.6177 
3.3467 
3.1124 

3.4044 
3.0696 
2.7840 
2.5366 

2.8726
2.5214
2.2214
1.9608

3.91459 
3.59386 
3.32075 
3.08436 

3.37188
3.03377
2.74506
2.49454

2.82917
2.47368
2.16937
1.90471

Table 3. Shear stress 0  for  and Pr 0.71 10Gr  . 

 Ramped temperature Isothermal temperature 

Ra  25 30 35 25 30 35 

0.5 
1.0 
1.5 
2.0 

4.93191 
4.80524 
4.69611 
4.58754 

4.93417 
4.81177 
4.70716 
4.60313 

4.93632
4.81752
4.71677
4.61657

3.96181 
3.91696 
3.91474 
3.91460 

4.00034
3.96170
3.96007
3.95998

4.03430
3.99986
3.99855
3.99849

Table 4. Shear stress 0  for 25Ra  , 0.4Da  . 

 Ramped temperature Isothermal temperature 

Pr   

Pr . 

 0   are presented in Tables 5 to 6 for various val-
ation parameter , Prandtl number  and ues radi

time 
Ra Pr

 . 
Nu  inc
as isot
tion pa
increases 
isotherm

Table 5 shows at the rate of heat fer 
reases for both ram ed wall temperature as well 

hermal wall temp with an increase in radia-
rameter . Further, the rate of heat r 

for ra ed wall te perature while it decreases 
al wall with an increase in time 

th
p

erature 

m
erature 
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 transfe Ra
mp
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at for fixe
for fixed 

d values bserved from Ta  th
value

 of 
 of tim

Ra . 
e 

It is o ble 6
 , th

ed wa
 w

e rate of heat tran
for ll temperature 

al wall ith an increase in Pran

 
4. Conclusions 
 
An analysis is made to study the radiation effects on free 
convection flow past an impulsively started infinite ver-
tical wall with ramped wall temperature in a porous me-
dium. The velocity field and temperature distribution are 

nte nt al parameters graphically. It 
is observed that the velocity profiles decrease with an 
increase in Prandtl number  for ramped wall tem-
perature as well as isotherm  wall temperature. An in-
crease in Grashof number ads to a rise in the val-
ues of velocity due to enh ent in buoyancy force. 
The velocity field is accelerated due to increase in Darcy 
number . The effect Prandtl number is very 
importan  in the temperatu . A fall in temperature 
occurs due to an increasing of the Prandtl number. 
It is fou at the temperature decreases as the radiation 
parameter increases for bot ed wall temperature as 
well as iso rmal wall tem re. Further, the absolute 
value of ear stress 

sfer 
as well as for 

Nu  

dtl 
increases 
isotherm
number 

both ram
 temp

p
erature

Pr . 

prese d for differe  physic

Pr
al

 le
cem

he 
field

value 

ramp
eratu

Gr
an

of t
re 

h 
p

Da
t

nd th

the
sh 0  increases for both ramped wall  

Table 5. Rate of heat transfer  for Nu Pr 0.71 . 

 Ramped temperature Isothermal temperature 

Ra  0.1 0.2 0.3 0.1 0.2 0.3 

2 
4 
6 
8 

0.32032
0.33924
0.35748
0.37509

0.47976
0.53046
0.57787
0.62246

0.61917 
0.70774 
0.78852 
0.86297 

1.79436 
2.06757 
2.32489 
2.56804 

1.46199
1.81588
2.13371
2.42239

1.34228
2.08819
2.91893
2.39419

Ta le 6. Rate ransfer  fb  of heat t  orNu  25Ra  . 

 Ramped temperature Isothermal temperature 
0.5 1.0 1.5 0.5 1.0 1.5 Pr  0.1 0.2 0.3 0.1 0.2 0.3 

0.71 
2.0 
5.0 
7.0 

4.93191 
4.95270 
4.96972 
4.97534 

4.80524 
4.85151 
4.88940 
4.90190 

4.69611
4.76807
4.82698
4.84643

3.96181 
4.21229 
4.41735 
4.48504 

3.91696
4.17355
4.38361
4.45295

3.91474
4.17170
4.38207
4.45151

0.71
2.0
5.0
7.0

0.32032
0.53761
0.85004
1.00578

0.47976
0.80520
1.27314
1.50640

0.61917 
1.03919 
1.64310 
1.94414 

1.79436 
3.01159 
4.76174 
5.63417 

1.46199
2.45375
3.87972
4.59055

1.34228
2.25283
3.56204
4.21466
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temperature as well as isothermal wall temperature with 
an increase in Darcy number for fixed values of 

and while the result is rev  with an increase in 
ion parameter for fi values of . The 

heat transfer increases for both ra ed wall
erature as well as isothermal wall temp e with 
rease in radiation rameter 
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