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Abstract

Radiation effect on the natural convection flow of an optically thin viscous incompressible fluid near a ver-
tical plate with ramped wall temperature in a porous medium has been studied. The exact solution of mo-
mentum and energy equations is obtained by the use of Laplace transform technique. The variations in fluid
velocity and temperature are shown graphically whereas the numerical values of shear stress and the rate of
heat transfer at the wall are presented in tabular form for various values of flow parameters. The results show
that the fluid velocity increases with increase in Grashof number, Darcy number and time parameters
whereas the fluid velocity decreases with increase in the radiation parameter and Prandtl number for ramped
temperature as well as isothermal wall temperature. It is found that an increase in radiation parameter leads
to rise the temperature for both ramped wall temperature as well as isothermal wall temperature. Further, it is
found that an increase in Prandtl number leads to fall the temperature for both ramped wall temperature as
well as isothermal wall temperature. The shear stress at the wall decreases with increases in either Prandtl
number or porosity parameter while the result shows reverse in the case of radiation parameter. Finally, the
rate of heat transfer is increased with increase in the radiation parameter for both ramped wall temperature as

well as isothermal wall temperature.

Keywords: Natural Convection, Darcy Number, Radiation Parameter, Prandtl Number, Porous Medium,
Ramped Wall Temperature and Isothermal Wall Temperature

1. Introduction

The phenomenon of natural convection arises in fluids
when temperature changes cause density variations lead-
ing to buoyancy forces acting on the fluid particles. Such
flows which are driven by temperature differences abound
in nature and have been studied extensively because of
its applications in engineering, geophysical and astro-
physical environments. Comprehensive literature on va-
rious aspects of free convection flows and its applica-
tions could be found in Ghoshdastidar [1], Nield and
Bejan [2]. Ghoshdastidar gave various areas of applica-
tions of free convection flow such as those found in heat
transfer from pipes and transmission lines as well as
from electronic devices, heat dissipation from the coil of
a refrigerator unit to the surrounding air, heat transfer
from a heater to room air, heat transfer in nuclear fuel
rods to the surrounding coolant, heated and cooled en-
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closures, quenching, wire-drawing and extrusion, at-
mospheric and oceanic circulation. Unsteady free con-
vection flows in a porous medium have received much
attention in recent time due to its wide applications in
geothermal and oil reservoir engineering as well as other
geophysical and astrophysical studies. Moreover, con-
siderable interest has been shown in radiation interaction
with convection for heat and mass transfer in fluids. This
is due to the significant role of thermal radiation in the
surface heat transfer when convection heat transfer is
small, particularly in free convection problems involving
absorbing-emitting fluids. The unsteady fluid flow past a
moving plate in the presence of free convection and ra-
diation were studied by Mansure [3], Raptis and Perdikis
[4], Das et al. [5], Grief et al. [6], Ganeasan and Loga-
nathan [7], Mbeledogu et al. [8], Makinde [9] and Ab-
dus-Sattar and Hamid Kalim [10]. All these studies have
been confined to unsteady flow in a non-porous medium.
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Israel-Cookey et al. [11] have studied the influence of
viscous dissipation and radiation on unsteady MHD free-
convection flow past an infinite heated vertical plate in a
porous medium with time-dependent suction. Radiative
and free convective effects of a MHD flow through a
porous medium between infinite parallel plates with time
dependent suction have been investigated by Alagoa et al.
[12]. Israel-Cookey et al. [13] have made an analysis on
MHD oscillatory Couette flow of a radiating viscous
fluid in a porous medium with periodic wall temperature.
Sattar and Maleque [14,15] have studied the unsteady
MHD Natural convection flow and mass transfer along
an accelerated porous plate in a porous medium. Thermal
radiation interaction with unsteady MHD flow past a
vertical porous plate immersed in a porous medium has
been analyzed by Samad and Rahman [16]. Mahanti and
Gaur [17] have studied the effects of varying viscosity
and thermal conductivity on steady free convective flow
and heat transfer along an isothermal vertical plate in the
presence of heat sink. Transient free convection past a
semi-infinite vertical plate with variable surface tem-
perature has been investigated by Takhar et al. [18].

In this present paper, we investigate the effects of ra-
diation on the free convection flow of an optically thin
incompressible viscous fluid past an infinite vertical
plate with ramped wall temperature in porous medium.
The fluid considered is a gray, radiation, absorbing,
emitting but non-scattering medium and the Rosseland
approximation is used to describe the radiative heat
transfer in the energy equation. It is seen that the velocity
U, decreases for both ramped wall temperature as well
as isothermal wall temperature with an increase in either
radiation parameter Ra or Prandtl number Pr. It is
also seen that the velocity U, increases for both ramped
wall temperature as well as isothermal wall temperature
with an increase in either Grashof number Gr or time
7. It is found that an increase in radiation parameter
Ra leads to rise the temperature € for both ramped
wall temperature as well as isothermal wall temperature.
Further, it is found that an increase in Prandtl number
leads to fall the temperature for ramped temperature as
well as isothermal case.

2. Formulation of the Problem and Its
Solutions

Consider the unsteady free convection flow of an opti-
cally thin viscous incompressible fluid past an moving
infinite vertical plate coinciding with plane y=0,
where the flow is confined to y >0 in a porous me-
dium. Choose a cartesian co-ordinates system with x-axis
along the wall in a vertically upward direction and y-axis
is normal to it into the fluid (see Figure 1). At t<0, the
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Figure 1. Geometry of the problem.

plate and the surrounding fluid are at the same constant
temperature T, . At time t >0, the temperature of the

wall is raised or lowered to T+ (TW -T, )tl when

0
0<t<t, and the constant temperature T, is main-
tained at t >t,. Since the plate is infinite along X-direc-
tion, all the physical variables are the function of y and
t only. The flow is considered optically thin gray gas
with natural convection and radiation. The radiative heat
flux in the X-direction is considered negligible in com-
parison to y-direction.

The Boussinesq approximation is assumed to hold and
for the evaluation of the gravitational body force, the
density is assumed to depend on the temperature accord-
ing to the equation of reference state

p:po[l—ﬁ*(T—Tw)], ()

where T is the fluid temperature, p the fluid density,
B° the coefficient of thermal expansion and T, and
p, being the reference temperature and the density re-
spectively.
Using Boussinesq Approximation (1), the momentum
equation in a porous medium along X-axis is
2
U u .
8—=va—2+ 9B (T-T,)-—u,
ot oy k
where u, g, B°, v, p and k" are respectively,
fluid velocity, acceleration due to gravity, coefficient of
thermal expansion, kinematic viscosity, fluid density and
permeability of a porous media.
The energy equation is
oT _ k &T 1 0q,
=
ot pc, oy”  pc, oy
where k is the thermal conductivity, ¢, the specific
heat at constant pressure and ¢, the radiative heat flux.
The initial and boundary conditions are

u=0, T=T, for y>0 and t<0,
u=U, at y=0 for t>0,

2

3)
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T ZTN(TW—Tw)tl aty=0for 0<t<t,

0

T=T,
u—0T >T,

aty=0fort>t, 4)
asy »> oo fort>0

It has been shown by Cogley et al. [19] that in the op-
tically thin limit for a non-gray gas near equilibrium, the
following relation holds

%_ _ o aelh
5 =4(T-T,), K%( = jod/l, (5)

where K, is the absorption coefficient, A is the wave
length, e,, is the Plank’s function and subscript "0’
indicates that all quantities have been evaluated at the
temperature T, which is the temperature of the wall at
time t<0. Thus our study will be limited to small dif-
ference of wall temperature to the fluid temperature.

On the use of (5), Equation (3) becomes

oT k o°T 4

—=————(T-T))I 6
ot pc, oy? pC, ( ) ©
where
=]k (ae’hj da. %)
0
Introducing dimensionless variables
T-T

p=l st u =t =0T @

Uoto t0 Uo Tw _Too

Equations (2) and (6) become
2
o _9 u2‘ —lu1+Gr9, )
or 0n- o
2
%ziaf—Rae, (10)
or Pron
where Gr = w is Grashof number,
0
vpC
Pr="2"" the Prandtl number, Ra= 4|V2 the ra-
pchO

#12

0 =MaDa the porosity

diation parameter, o=

v
parameter and Da the Darcy number.
The characteristic time t, is defined as
v
t,=—. (11)
0 U 5

The corresponding initial and boundary conditions for
U, and @ are

U =0,8=0 fornp=0and <0,
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u =1 atn=0forz>0,

(12)
=7 atnp=0for0<r<],
f=1at n=0 for >1, u, —0,

0—>0 as n—ooofor 7>0.

Taking Laplace transformation of the Equations (9)
and (10), we get

2—
d”;—(s+ ! jm:—eré, (13)
dn MaDa
d’6 —
a7 —Pr(s+Ra)é = (14)
where
T (7,s)= “u n,t)e ¥ dr,
(25)= [ u(7) -

0 (n.,s)= I: 0(n,7)e*dr.

_The corresponding boundary conditions for U and
6 are
I
u = g, 0= S—2<1 —
0 —0,6 >0as 77—,

'S) at 7 =0, (16)

The solution of the Equations (14) and (13) subject to
the boundary conditions (16) can be easily obtained and
are given by

(1‘e_s)e-nJm<TRa>

2 E

g(n,s)z 5
Ul(n’s)zée—n s+ﬁ
(18)
a(i-e )[ s m]

(17)

)
where
Gr (Pr Ra- MaDa)
e ™Ay 9

Taking the inverse Laplace transform of Equations (17)
and (18), the solution for the fluid temperature 6(7,7)
and fluid velocity u,(7,7) are obtained and are given
by

0(n,7)=6,(n,7)-6,(n,t-1)H(r-1), (20)
u (n,7)= %{e@erfc(#+ M;Da]
+e¢ﬁerfc[23¥ B Mz:Daﬂ
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—a[¢1(77,r)—¢1(77,1—1)H(r—l)], 1)
where
_l PrRa
2
xerfc{z — ] (22)
T

H o= o e et 1 Pt Rar ||,
Ra 2\ 7

n 1
x erfc| —=+ +
(zﬁ (MaDa ﬂH
1
+e VmaDa ﬁerfc( n
n

1
Wr (MaDaJr’B)TJ
—_e \/Pr(Ra+ﬂ)erfc(%\/§+1/(Ra+ﬂ)fj

_gonrRasp) o |1 |PT

e erfc[z\/j 1/(Ra+ﬂ)z'J}

__( n\/MaDaJ
B

2

1
B
n T
x erfc| —=+
[2\/; \JMaDaJ

l(ﬂi n«/MaD] T
AN 2

xerfe| —1-— |~ +i 1+77 Pr onPrRa
2Jr VMaDa | g ,B 2\Ra
x erfc Z\/E+ Rar +1 r+l—£ Pr
2Nt sl g 2\Ra
xe"’merfc[z /E—\/R—arﬂ,
2\ 7
(23)

where erfc(x) is the complementary error function and
H(z—1) is the unit step function.

2.1. Solution in Case of Unit Prandtl Number

Prandtl number is a measure of the relative strength of
the viscosity and thermal conductivity of the fluid. So the
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case Pr=1 corresponds to those fluids for which both
viscous and thermal boundary layer thickness are of the
same order of magnitude. Setting Pr=1 in Equation
(14) and following the same procedure as before, the
exact solution for the fluid temperature 6(7,7) and
fluid velocity u,(7,7) is obtained and is expressed in
the following form

H(U,r)zﬁz(r],r) (77,7 I)H(T 1), 24)

1| Toms
u (7,7)= 2[6 '\"*‘D"’lerfc(2 7 / J

W n 7
+e 2 erfc 25
[2\/; MaDa H (2)

_7|:¢2(779 ¢2(7737_1)H(T_1):|9

where

st
+[7_2J'%Je ”J_erfc(z\’;; —x/@ﬂ,
é,(n.7) = IK 2\/—} "rerf"(zjg JR—“)

+(r— 2\/’7_] g VR erfc(%— Rarj

IR/A L Ll Maba evMaDaerfc i
2 2[ MaDa
—| - 7vMaba MaDaerfc m__ ‘
2 2Jr \MaDa ||

and }/:Gr/(Ra_MlD j
aba

2.2. Solution for Isothermal Case

In order to highlight the effects of the ramped tempera-
ture distribution near a vertical plate, it may be important
to compare the effects of the isothermal temperature dis-
tribution for the fluid flow. The temperature and the ve-
locity for the fluid flow near an isothermal plate can be
expressed as

Q(U,T)zé{e” P’Raerfc(g f% +x/Raz'J
-n PrRaerfC[% ’E—JRHT]:|,
T

@7
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n
w(’?ﬁ):{%ewamerfc( Ty a ]

n
JMaDa g £ /- ‘ 28
2Jr \'MaDa %)

N 0!|:u11 (77’ Z-) —Up (77, T)],

+€

n
~/MaDa n 4
+e erfc| ——=—
[ 2Jr V'MaDa jH

Uy, (U’T):ileﬂr{ o (F+Ra)Pr
xerfc(%\/ngmJ
+e_nmerfc(g\/1§_m]}

T

—{e”“"Raerfc(ﬁ /EJr RarJ 29)
2\ T
+e MPrRaafe [g /E —+/Rar ]H

T

When Pr =1, the Solutions (27) and (28) become

0(n.7)= %{E"ﬁerfc(i+ Raz-j

nr

+e"’ﬁerfc[ n —\/Rarj ,
PN

u (7,7)=uy(n,7)+ ;/[u13 (7,7)-uy, (77,1)} , (3D

where

(30)

1| == T

— +/MaDa n

u ,T)=—|¢e erfc +

”('7 ) 2{ (2\/2 MaDa]
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n
_«/MaDa ’7 v
+e erfc - , 32
( 2J7 \'MaDa H (32)

Uy (17,7) = %{ewﬁerfc [L+ Rarj

2z

e Ragrfe [L —+/Rar j .
PN

(33)

3. Results and Discussion

We have plotted the non-dimensional velocity and tem-
perature for several values of radiation parameter Ra,
Prandtl number Pr, Grashof number Gr, Darcy num-
ber Da and time 7 in Figures 2-9. Figures 2-6 rep-
resent the velocity U, against 7 for several values of
Ra, Pr, Gr, Da and r. Figure 2 shows that an
increase in the radiation parameter Ra leads to fall in
the velocity u, for both ramped wall temperature as
well as isothermal wall temperature. Figure 3 displays
that the velocity U, decreases for both ramped wall
temperature as well as isothermal wall temperature with
an increase in Prandtl number Pr. Physically, this is
true because the increase in the Prandtl number is due to
increase in the viscosity of the fluid which makes the
fluid thick and hence causes a decrease in the velocity of
the fluid. It is observed from Figure 4 that an increase in
Gr, leads to a rise in the values of velocity U, due to
enhancement in buoyancy force. Figure 5 reveals that
the velocity U, increases for both ramped wall tem-
perature as well as isothermal wall temperature with an
increase in Darcy number Da . It is seen from Figure 6
that the velocity U, increases for both ramped wall
temperature as well as isothermal wall temperature with
an increase in time 7 . It is observed from Figure 7 that
the temperature 6 decreases as the radiation parameter
Ra increases for both ramped wall temperature as well
as isothermal wall temperature. This result qualitatively
agrees with expectations, since the effect of radiation is
to decrease the rate of energy transport to the fluid,
thereby decreasing the temperature of the fluid. It is seen
from Figure 8 that the temperature 6 decreases for
both ramped wall temperature as well as isothermal wall
temperature with an increase in Prandtl number Pr.
This implies that an increase in Prandtl number leads to
fall the thermal boundary layer flow for ramped tem-
perature as well as isothermal wall temperature. The ef-
fect of the Prandtl number is very important in the tem-
perature field. A fall in temperature occurs due to an in-
creasing value of the Prandtl number. This is in agree-
ment with the physical fact that the thermal boundary
layer thickness decreases with increase in Pr. Figure 9
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Figure 2. Velocity profiles for variationsin Ra when Pr=0.71, Gr=25, 7=0.1 and Da=0.04.
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Figure 3. Velocity profiles for variationsin Pr when Da=0.04, Gr=25, z=0.1 and Ra=2.

shows that the temperature 6 increases for both ramped
wall temperature as well as isothermal wall temperature
with an increase in time 7 .

From the physical point of view, it is necessary to
know the shear stress and the rate of heat transfer (or the
Nusselt number) at the wall (7 =0). We have presented
the expression for the rate of heat transfer Nu and

Copyright © 2011 SciRes.

shear stress 7, atthe wall 7 =0 in the following form
for both the ramped wall temperature and isothermal
wall temperature.

For the ramped wall temperature

_(ﬂ = 0,(n.7) -0, (n.~1)H (1), 34)
n=0

Nu=——
on
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Figure 5. Velocity profiles for variationsin Da when Pr=0.71, Gr=25, 7=0.1 and Ra=2.

r_% |- e_M;Da+\/ ! orf\/ ‘ (n,7)= e” L Borf L,
Yoonl., |Nar MaDa |\ MaDa A7) =" vapa TP |\ Mapa 7 )*

a4 (n.7)=4(n.z-1)H(n-1)], L,
+Le{’\"303‘ﬁ)1 _\/Pr(Ra+ﬂ)erf(\/(Ra+ﬂ)r)

T

(35)
where
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+ e MaDa

Jl_(+

+m(r+%]erf(«/@)+

T

and for the isothermal wall temperature

Nu:—g—g} :1/PrRaerf(\/Rar)+
1,0

and Da=

0.04.

Pr( 1J Ra,}
T+—|e ,
B

(36)

|Prorer (37)
7T
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Numerical results of shear stress at the wall (7 =0)
are presented in Tables 1 to 4 for various values radia-
tion parameter Ra, Prandtl number Pr, Grashof num-
ber Gr =4, Darcy number Da and time 7. Table 1
shows that the magnitude of shear stress 7, decreases
for both ramped wall temperature as well as isothermal
wall temperature with an increase in Darcy number Da
for fixed values of Ra and while the result is reversed
with an increase in radiation parameter Ra for fixed
values of Da. It is observed from Table 2 that the
magnitude of shear stress 7, decreases for both ramped
wall temperature as well as isothermal wall temperature
with increase in either Darcy number Da or Grashof
nubmer Gr. It is also observed from Table 3 that the
magnitude of shear stress 7, decreases for both ramped
wall temperature as well as isothermal wall temperature
with an increase in time 7. Table 4 displays that for
creases for both ramped wall temperature as well as iso-

Table 1. Shear stress -z, for Pr=0.71, Gr=10 and
7=1.

Ramped temperature Isothermal temperature
Da/Ra 25 30 35 25 30 35

0.040  3.93632 3.97912 4.01576 3.91459 3.95998 3.99849
0.045  3.61771 3.66324 3.70195 3.59386 3.64215 3.68301
0.050  3.34675 3.39462 3.43524 3.32075 3.37170 3.41473
0.055  3.11244 3.16245 3.20487 3.08436 3.13779 3.18282

Table 2. Shear stress -z, for Pr=0.71, Ra=25 and
7=1.

Ramped temperature Isothermal temperature

Da/Gr 10 15 20 10 15 20

0.040  3.9363 3.4044 2.8726 3.91459 3.37188 2.82917
0.045  3.6177 3.0696 25214 3.59386 3.03377 2.47368
0.050  3.3467 2.7840 2.2214 3.32075 2.74506 2.16937
0.055  3.1124 25366 1.9608 3.08436 2.49454 1.90471

Table 3. Shear stress —z, for Pr=0.71 and Gr=10.

Ramped temperature Isothermal temperature

r/Ra 25 30 35 25 30 35

0.5 493191 493417 493632 3.96181 4.00034 4.03430
1.0 4.80524 4.81177 4.81752 3.91696 3.96170 3.99986
1.5  4.69611 4.70716 4.71677 3.91474 3.96007 3.99855
2.0 458754 4.60313 4.61657 3.91460 3.95998 3.99849

7, for Ra=25, Da=04.

Table 4. Shear stress

Ramped temperature Isothermal temperature

Pr/t 0.5 1.0 1.5 0.5 1.0 1.5

0.71 493191 4.80524 4.69611 3.96181 3.91696 3.91474
2.0 495270 4.85151 4.76807 4.21229 4.17355 4.17170
5.0 496972 4.88940 4.82698 4.41735 4.38361 4.38207
7.0 497534 4.90190 4.84643 4.48504 4.45295 4.45151

thermal wall temperature with an increase in Prandtl
number Pr.

Numerical results of the rate of heat transfer at the
(7=0) are presented in Tables 5 to 6 for various val-
ues radiation parameter Ra, Prandtl number Pr and
time 7. Table 5 shows that the rate of heat transfer
Nu increases for both ramped wall temperature as well
as isothermal wall temperature with an increase in radia-
tion parameter Ra . Further, the rate of heat transfer
increases for ramped wall temperature while it decreases
isothermal wall temperature with an increase in time 7
for fixed values of Ra . It is observed from Table 6 that
for fixed value of time 7, the rate of heat transfer Nu
increases for both ramped wall temperature as well as for
isothermal wall temperature with an increase in Prandtl
number Pr.

4. Conclusions

An analysis is made to study the radiation effects on free
convection flow past an impulsively started infinite ver-
tical wall with ramped wall temperature in a porous me-
dium. The velocity field and temperature distribution are
presented for different physical parameters graphically. It
is observed that the velocity profiles decrease with an
increase in Prandtl number Pr for ramped wall tem-
perature as well as isothermal wall temperature. An in-
crease in Grashof number Gr leads to a rise in the val-
ues of velocity due to enhancement in buoyancy force.
The velocity field is accelerated due to increase in Darcy
number Da. The effect of the Prandtl number is very
important in the temperature field. A fall in temperature
occurs due to an increasing value of the Prandtl number.
It is found that the temperature decreases as the radiation
parameter increases for both ramped wall temperature as
well as isothermal wall temperature. Further, the absolute
value of shear stress 7, increases for both ramped wall

Table 5. Rate of heat transfer —Nu for Pr=0.71.

Ramped temperature
Ra/z 0.1 0.2 0.3 0.1 0.2 0.3

2 0.32032 0.47976 0.61917 1.79436 1.46199 1.34228
4 0.33924 0.53046 0.70774 2.06757 1.81588 2.08819
6 0.35748 0.57787 0.78852 2.32489 2.13371 2.91893
8 0.37509 0.62246 0.86297 2.56804 2.42239 2.39419

Isothermal temperature

Table 6. Rate of heat transfer —Nu for Ra=25.

Ramped temperature

Pr/z 0.1 0.2 0.3 0.1 0.2 0.3
0.71 032032 0.47976 0.61917 1.79436 1.46199 1.34228
2.0 053761 0.80520 1.03919 3.01159 2.45375 2.25283
5.0 0.85004 127314 1.64310 4.76174 3.87972 3.56204
7.0 1.00578 1.50640 1.94414 5.63417 4.59055 4.21466

Isothermal temperature

Copyright © 2011 SciRes.
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temperature as well as isothermal wall temperature with
an increase in Darcy number Da for fixed values of

Ra

and while the result is reversed with an increase in

radiation parameter Ra for fixed values of Da. The
rate of heat transfer Nu increases for both ramped wall
temperature as well as isothermal wall temperature with
an increase in radiation parameter Ra .
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