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Abstract 
Recent analysis indicates that the numbers of dengue cases may be as high as 
400 million/year in the world. According to the Ministry of Brazilian Health, 
in 2015, there were 1,621,797 probable cases of dengue in the country includ-
ing all classifications except discarded, the highest number recorded in the 
historical series since 1990. Many studies have found associations between 
climatic conditions and dengue transmission, especially using generalized 
models. In this study, Generalized Additive Models (GAM) was used asso-
ciated to visreg package to understand the effect of climatic variables on capi-
tals of Northeast Brazilian, from 2001 to 2012. From 12 climatic variables, it 
was verified that the relative humidity was the one that obtained the highest 
correlation to dengue. Afterwards, GAM associated with visreg was applied to 
understand the effects between them. Relative humidity explains the dengue 
incidence at an adjusted rate of 78.0% (in São Luis-MA) and 82.3% (in Tere-
sina-PI) delayed in, respectively, −1 and −2 months. 
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1. Introduction 

Dengue Fever is fast emerging pandemic-prone viral disease in many parts of the 

How to cite this paper: da Silva, J.C.B., 
Karam, H.A. and Machado, C.J.S. (2018) 
Visualizing Fit between Dengue and Cli-
matic Variables on Capitals of the Brazilian 
Northeast Region by Generalized Additive 
Models. Open Journal of Epidemiology, 8, 
259-275. 
https://doi.org/10.4236/ojepi.2018.84020 
 
Received: October 27, 2018 
Accepted: November 26, 2018 
Published: November 29, 2018 
 
Copyright © 2018 by authors and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

http://www.scirp.org/journal/ojepi
https://doi.org/10.4236/ojepi.2018.84020
http://www.scirp.org
https://doi.org/10.4236/ojepi.2018.84020
http://creativecommons.org/licenses/by/4.0/


J. C. B. da Silva et al. 
 

 

DOI: 10.4236/ojepi.2018.84020 260 Open Journal of Epidemiology 
 

world. Dengue flourishes in urban poor areas, suburbs and the countryside but 
also affects more affluent neighbor hoods in tropical and subtropical countries. 
Dengue is a mosquito-borne viral infection causing a severe flu-like illness and, 
sometimes causing a potentially lethal complication called severe dengue. The 
incidence of dengue has increased 30-fold over the last 50 years. Up to 50 - 100 
million infections are now estimated to occur annually in over 100 endemic 
countries, putting almost half of the world’s population at risk [1]. 

Tropical countries are the most heavily affected due to environmental, climat-
ic, and social conditions. Studies of climatic variables can improve knowledge 
and prediction of epidemic seasonality. The climate is an important factor in the 
temporal and spatial distribution of vector-transmitted diseases as dengue fever 
[2]. 

Many works sought to identify climatic influences on dengue, and to evaluate 
the ability of the climate-based dengue models to describe associations between 
climate and dengue, simulate outbreaks by generalized additive models—GAMs 
[3]. This model provides a flexible method for identifying nonlinear covariate 
effects in exponential family models and other likelihood-based regression mod-
els. For this, it used a degree of freedom estimate to assess the importance of co-
variates based on the expected decrease in the deviance due to smoothing, com-
putable from the trace of the appropriate smoother matrix [4]. 

We assessed the potential contribution of climatic variables on Dengue Fever 
(DF) incidences based in GAM, according Hastie and Tibshirani (1990) [5], and 
we provided suggestions to improve their performance generated from the sta-
tistical analyses of the direct and indirect associations. 

Mordecai et al. (2017) [6] used generalized models associated with R package 
visreg to understand the impact of temperature on transmission of Zika, dengue 
and chikungunya. Specifically, Oliveira (2016) [7] used visreg associated with 
GAM to understand the effect of temperature on ovulation by Aedes aegypti in 
Rio de Janeiro. It wasn’t found in the literature, to date, a study involving GAM 
and visreg package associated with relative humidity. 

Ferreira et al. (2017) [8] used (Logistic Regression and) GAM associated to 
Binomial Negative distribution and model offset to understand DF cases rela-
tionship meteorological variables, specifically, temperature, rainfall and humidi-
ty. 

This work aims to identify the risk of DF incidence by the occurrence limits 
parametrization of climatic variables as a function of the time (months and 
years), in capitals of the NEB, from January 2001 to December 2012, as from vi-
sualizing the fit of regression models arising from of GAM, assuming Poisson 
Distribution, by cross-sectional plots using two-dimensional contour, by “vi-
sreg” package function. 

2. Methods 

To understand the risk of DF incidence by the occurrence limits parametrization 
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of climatic variables on capitals of the NEB, we conducted the GAM analysis by 
average monthly data observed from 9 capitals of Brazilian Northeast (NEB), in 
the period of January 2001 to December 2012. These capitals and their respective 
codes of the Federative Unit (referring to their States): Aracaju-SE, Fortaleza-CE, 
João Pessoa-PB, Maceió-AL, Natal-RN, Recife-PE, Salvador-BA, São Luís-MA 
and Teresina-PI, according Figure 1. The data were provided by: 

1) Climatological variables: rainfall, in mm, (PRP); minimum, average and 
maximum temperature, in ˚C, (respectively, T-min, T-mean and T-max); relative 
humidity, in % (RH); all collected by Meteorological Databank for Education and 
Research—BDMEP1, from the National Institute of Meteorology—INMET. From 
these variables collected, we calculated:  

a) Vapour pressure deficit (VPD) and saturated vapour pressure deficit 
(SVPD), all according Allen et al. (1998) [9]; 

b) Evapotranspiration of Reference (ETO), according Thornthwaite (1948) 
[10]; 

c) Annual and monthly heat index, respectively, HI-a and HI-m; as well as, its 
Function (HI-f), both according to Steadman (1979) [11]; and 

d) Human comfort index (HCI), according to Rosenberg (1983) [12]. 
2) DF cases collected by the site SINAN-Net2, from the Departamento de In-

formática do Sistema Único de Saúde—DATASUS; and transformed into DF In-
cidence Rate; and  

3) Annual population size for each of the nine capitals studied, collected by 
the Sistema de Recuperação Automática—SIDRA3, from the Brazilian Institute 
of Geography and Statistics—IBGE. 

The monthly reporting DF cases were converted to DF incidence rates, which, 
according to the Ministry of Health [13], this is defined as the number of con-
firmed cases (classic and hemorrhagic DF), by 100,000 people in certain geo-
graphic space and the current year, and calculated according to Equation (1): 

number of confirmed dengue cases in residentsDF incidence= 100,000
Total resident population in the given period

×  (1) 

DF incidence are classified by occurrence bands, as criteria of the National 
Program for Dengue Control—PNCD/MS [13], which considers: 1) low inci-
dence = 0| … 100; 2) average incidence = 100| … |300; and 3) high incidence = 
300 … ∞.  

All analyses were conducted using the R-Project Software, Version 3.0.34. 

2.1. Generalized Additive Model 

The class of models known as generalized linear models, or GLMs, was formally 
introduced by Nelder and Wedderburn (1972) [15]. Considering the DF inci-
dences (Y) a response random variable or mean dependent variable, and the  

 

 

1URL: <http://www.inmet.gov.br/portal/index.php?r=bdmep/bdmep>. 
2URL: <http://tabnet.datasus.gov.br/cgi/deftohtm.exe?sinannet/dengue/bases/denguebrnet.def>. 
3URL: <http://www.sidra.ibge.gov.br/bda/popul/>. 
4URL: <https://cran.r-project.org/bin/windows/base/old/3.0.3/>. 
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Figure 1. Geographical and political map of the NEB region. Cartographic base: IBGE 
[14]. 
 
temporal (months and years of the time series data) and climatic variables 
( 1 2, , , pX X X… ) a set of predictors or independent/explanatory variables, a re-
gression procedure can be viewed as a method for estimating the expected value 
of Y given the values of iX . The standard linear regression model assumes a li-
near form for the dependency, according Hair Jr. et al. (2005) [16], described as: 

( ) 0 1 1 2 2 p pE Y X X Xβ β β β ε= + + +…+ +                (2) 

where ( ) 0E ε =  and ( ) 2Var ε σ= . Given a sample, estimates of 0 1, , . pβ β β…  
are usually obtained by the least squares method. 

According Hastie and Tibshirani (1990) [5], GAM consist of a random com-
ponent, an additive component, and a link function relating that two compo-
nents, like generalized linear models (GLM). The response Y, the random com-
ponent, is assumed to have exponential family density: 

( ) ( ) ( )
( ) ( ); , exp ,

y b
Y y c y

a
θ θ

θ
 − ∅ = + ∅ 

∅  
∫                (3) 

where θ  is called the natural parameter and ∅  is the scale parameter. The 
conditional mean μ of the response variable x to the linear predictor η  is re-
lated to the set of covariates iX  by a link function g. The quantity: 
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( ) ( )0 1
p

i iix s f Xη
=

= +∑                        (4) 

defines the additive component, where if  are smooth functions, and the rela-
tionship between the conditional mean ( )xµ  and the linear predict ( )xη  is 
defined by ( )g µ η= . The most commonly used link function is the canonical 
link, for which η θ= . Assuming that μ(x), is the mean of the Poisson distribu-
tion, the dependence of μ(x) and independent variables iX , the link function 
for the Poisson model is the log function ( ) ( )logg µ µ η= = . According Hastie 
and Tibshirani (1986, 1990) [4] [5], the generalized additive model (GAM) fits a 
response variable Y by a sum of smooth functions of the explanatory variables, 

iX  for i = 1, ..., p by modeling the dependency as: 

( ) ( ) ( ) ( )0 1 1 2 2 p pE Y f X f X f Xβ ε= + + +…+ +            (5) 

where if  are smooth functions, ( ) 0E ε =  and ( ) 2Var ε σ= . 
In order to be estimable, the smooth functions if  have to satisfy standar-

dized conditions such as ( )( ) 0i iE f X = . GAM extends the parametric form of 
predictors in the linear model to nonparametric forms. Assuming that Y is nor-
mally distributed, an additive model is defined as 

( ) ( )0 1
p

i iiE Y s f X
=

= +∑                        (6) 

GAM and GLM can be applied in similar situations, but they serve different 
analytic purposes. GLM emphasizes estimation and inference for the parameters 
of the model, while GAM focus on non-parametric data, and this is more suita-
ble for exploring the data and visualizing the relationship between dependent 
and independent variables, considering the estimation of the smoothing terms 

if  in GAM, described in Equation (6) [4]. 

Smoothers 
The spatial distribution was modeled using a bi-dimensional smooth function. A 
smoother is a tool for summarizing the trend of a response measurement Y as a 
function of one or more predictor measurements , ,i pX X… . An important 
property of a smoother is its nonparametric nature. It does not assume a rigid 
form for the dependence of Y on , ,i pX X… , producing an estimate of the trend 
that is less variable than Y itself, since of penalized least squares method. Each 
smoother is  is controlled by a single smoothing parameter, specificity in the 
model or choose it automatically by the generalized cross validation method [17] 
[18] [19]. The GAMs used in this work included a set of directly observed cova-
riates and an s spline smothing function, as depicted in the equations below: 

( ) ( ) ( ) ( )0 0:12logit month yeart L
i k k iiY f x s s eβ β−

=
= + + + +∑     (7) 

where iY  is the response variable, in this work the Dengue incidence simulated 
index, β ’s are the slope coefficients of the model, so ( )0exp β  is the adjusted 
odds ratio, kx  are the climatic variables at the individual and household levels 
as factor of the monthly lags in 0 - 12 times; ( )months  and ( )years  are s 
spline smooth function, and ie  are the residuals. All covariates with a p-value ≤ 
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0.001 in the climatic variable univariate analysis were considered with high sig-
nificance in the model.  

2.2. Chi-Squared Statistic 

According Zuur et al. (2007) [20], this test is used for comparing models in GLM 
and GAM to analyze if there is no overdispersion. The chi-square test is one of 
the most popular hypothesis tests. The Chi-squared Statistic is a measure of how 
similar two categorical probability distributions are to each other. If the two dis-
tributions are identical, the chi-squared statistic is 0, if the distributions are very 
different, some higher number will result. 

( ) ( )2
2

1, k i i
i

i

X Y
x X Y

Y=

−
= ∑                   (8) 

2.3. Package “Visreg” 

This interface was used in this work for visualize the fit of regression models 
arising from of GAM, as from constructing surface by cross-sectional plots using 
two-dimensional contour or perspective plots. In addition to estimates of this 
relationship, the package also provides pointwise confidence bands and partial 
residuals to allow assessment of variability as well as outliers and other devia-
tions from modeling assumptions [21] [22]. The contourlines with high relative 
risk of DF incidence (Dengue RR) presented in the “visreg” plot were identified 
on the maps and their climatic limits observed in the model parameterization 
were considered, as areas with high occurrences of dengue rates. 

2.4. Pearson’s Correlation Coefficient 

Pearson correlation coefficient (r) [23] [24] [25] was used for measuring direc-
tion and degree of linear association between dengue and climatic variables, by 
each capital of the Brazilian Northest. According to Bewick et al. (2003) [26], r 
can be given by: 

( )( )
( ) ( )2 2

i i

i i

x X y Y
r

x X y Y

− −
=

− −

∑
∑ ∑

                   (9) 

where Pearson correlation coefficient or product moment correlation coefficient 
(r) is a measure of shared variance between two variables, ix  and iy  based in 
their averages X  and Y , and their standard deviations Sx and Sy. The sign in-
dicates a positive or negative direction of the correlation, and the value suggests 
the power of the relationship between the variables, which value r can vary from 
−1 to +1, indicating a perfect and very strong positive linear relationship (r = 
+1), a perfect and very strong negative linear relationship (r = −1), or no linear 
relationship (r = 0) between the variables [26] [27] [28]. 

3. Results 

In Table 1, it is observed the Pearson’s correlation coefficient (r) with respective  
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Table 1. Pearson correlation coefficient (r) with respective 95% confidence interval (CI) 
and p-value, between DF cases and climatic variables, by capital of the NEB. 

Capital of the NEB Climatic Variable Pearson 
CI 

Lower 
95% 

Upper 
p-value 

São Luis-MA PRP 0.0740 −0.0907 0.2347 0.3783 

Teresina-PI PRP 0.0844 −0.0803 0.2446 0.3147 

Fortaleza-CE PRP 0.2707 0.1121 0.4158 0.001 

Natal-RN PRP 0.2430 0.0827 0.3911 0.0033 

João Pessoa-PB PRP 0.2811 0.1232 0.4252 <0.001 

Recife-PE PRP 0.1384 −0.0257 0.2953 0.0980 

Maceió-AL PRP 0.2633 0.1043 0.4093 0.0014 

Aracaju-SE PRP 0.2827 0.1249 0.4266 <0.001 

Salvador-BA PRP −0.0056 −0.169 0.1582 0.9472 

São Luis-MA RH 0.2494 0.0895 0.3968 0.0026 

Teresina-PI RH 0.3196 0.1646 0.4592 <0.001 

Fortaleza-CE RH 0.3392 0.1859 0.4763 <0.001 

Natal-RN RH 0.3681 0.2177 0.5015 <0.001 

João Pessoa-PB RH 0.2683 0.1095 0.4137 0.0011 

Recife-PE RH 0.1009 −0.6377 0.2601 0.2290 

Maceió-AL RH 0.3794 0.2302 0.5112 <0.001 

Aracaju-SE RH 0.1131 −0.0514 0.2717 0.1770 

Salvador-BA RH −0.0386 −0.2009 0.1258 0.6462 

São Luis-MA T-min −0.0740 −0.2347 0.0907 0.3780 

Teresina-PI T-min −0.1512 −0.3072 0.0127 0.0704 

Fortaleza-CE T-min −0.2012 −0.3531 −0.0389 0.0156 

Natal-RN T-min −0.3023 −0.4439 −0.1459 <0.001 

João Pessoa-PB T-min −0.1533 −0.3091 0.0106 0.0667 

Recife-PE T-min 0.1045 −0.0601 0.2636 0.2127 

Maceió-AL T-min 0.1833 0.0204 0.3368 0.0279 

Aracaju-SE T-min 0.0264 −0.1378 0.1891 0.7539 

Salvador-BA T-min 0.1231 −0.0413 0.281 0.1416 

São Luis-MA T-mean −0.1867 −0.3399 −0.0239 0.025 

Teresina-PI T-mean −0.3747 −0.5072 −0.2249 <0.001 

Fortaleza-CE T-mean −0.2634 −0.4093 −0.1043 0.0014 

Natal-RN T-mean −0.1622 −0.3173 0.0015 0.0522 

João Pessoa-PB T-mean −0.1426 −0.2992 0.0215 0.0881 

Recife-PE T-mean 0.0504 −0.1141 0.2122 0.5485 

Maceió-AL T-mean −0.0073 −0.1707 0.1564 0.9306 

Aracaju-SE T-mean 0.0381 −0.1263 0.2004 0.6504 

Salvador-BA T-mean 0.1231 −0.0413 0.2811 0.1414 

São Luis-MA T-max 0.1281 −0.2857 0.0362 0.1259 

Teresina-PI T-max −0.3757 −0.508 −0.2260 <0.001 
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Continued 

Fortaleza-CE T-max −0.2458 −0.3936 −0.0857 0.0030 

Natal-RN T-max −0.1407 −0.2974 0.0234 0.0926 

João Pessoa-PB T-max −0.0560 −0.2176 0.1086 0.5048 

Recife-PE T-max 0.0009 −0.1627 0.1644 0.9917 

Maceió-AL T-max −0.1486 −0.3048 0.0153 0.0754 

Aracaju-SE T-max 0.0132 −0.1507 0.1764 0.8752 

Salvador-BA T-max 0.0807 −0.0839 0.2411 0.3360 

São Luis-MA SVPD −0.1824 −0.3359 −0.0194 0.0287 

Teresina-PI SVPD −0.3765 −0.5087 −0.2269 <0.001 

Fortaleza-CE SVPD −0.2616 −0.4077 −0.1024 0.0015 

Natal-RN SVPD −0.1607 −0.3160 0.0029 0.0543 

João Pessoa-PB SVPD −0.1437 −0.3002 0.0204 0.0858 

Recife-PE SVPD 0.0455 −0.1190 0.2075 0.5882 

Maceió-AL SVPD −0.0114 −0.1747 0.1524 0.8916 

Aracaju-SE SVPD 0.0325 −0.1318 0.1951 0.6989 

Salvador-BA SVPD 0.1258 −0.0386 0.2835 0.1330 

São Luis-MA VPD 0.2140 0.0523 0.3648 0.0100 

Teresina-PI VPD 0.2153 0.0536 0.3660 0.0095 

Fortaleza-CE VPD 0.2094 0.0474 0.3606 0.0118 

Natal-RN VPD 0.0798 −0.0849 0.2403 0.3415 

João Pessoa-PB VPD 0.1018 −0.0629 0.2610 0.2249 

Recife-PE VPD 0.1916 0.0289 0.3444 0.0214 

Maceió-AL VPD 0.3869 0.2384 0.5177 < 0.001 

Aracaju-SE VPD 0.1110 −0.0535 0.2697 0.1853 

Salvador-BA VPD 0.1215 −0.0429 0.2796 0.1467 

São Luis-MA ETO 0.2059 −0.3574 −0.0438 0.0133 

Teresina-PI ETO −0.3558 −0.4908 −0.2040 < 0.001 

Fortaleza-CE ETO −0.3511 −0.4897 −0.1989 < 0.001 

Natal-RN ETO −0.2668 −0.4124 −0.1079 0.0012 

João Pessoa-PB ETO −0.2293 −0.3786 −0.0682 0.0057 

Recife-PE ETO −0.0396 −0.2019 0.1248 0.6372 

Maceió-AL ETO −0.2027 −0.3545 −0.4049 0.0148 

Aracaju-SE ETO −0.0264 −0.1892 0.1377 0.7532 

Salvador-BA ETO 0.1046 −0.0600 0.2637 0.2122 

São Luis-MA HCI −0.0459 −0.2079 0.1185 0.5846 

Teresina-PI HCI −0.1681 −0.3228 −0.0047 0.0440 

Fortaleza-CE HCI −0.0319 −0.1945 0.1324 0.7042 

Natal-RN HCI −0.0776 −0.2382 0.0871 0.3551 

João Pessoa-PB HCI −0.0613 −0.2226 0.1033 0.4657 

Recife-PE HCI 0.1138 −0.0507 0.2723 0.1744 
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Continued 

Maceió-AL HCI 0.1305 −0.0338 0.2879 0.1191 

Aracaju-SE HCI 0.0644 −0.1003 0.2256 0.4435 

Salvador-BA HCI 0.1259 −0.0385 0.2836 0.1328 

São Luis-MA HI-a −0.1569 −0.3124 0.0069 0.0604 

Teresina-PI HI-a −0.3607 −0.4950 −0.2095 <0.001 

Fortaleza-CE HI-a −0.1980 −0.3502 −0.0355 0.0174 

Natal-RN HI-a −0.1312 −0.2886 0.0331 0.1171 

João Pessoa-PB HI-a −0.1218 −0.2798 0.0427 0.1460 

Recife-PE HI-a 0.0717 −0.0930 0.2325 0.3931 

Maceió-AL HI-a 0.0398 −0.1246 0.2020 0.6360 

Aracaju-SE HI-a 0.0438 −0.1207 0.2059 0.6025 

Salvador-BA HI-a 0.1259 −0.0385 0.2836 0.1328 

São Luis-MA HI-m −0.1880 −0.3410 −0.0252 0.0240 

Teresina-PI HI-m −0.3757 −0.5081 0.2260 <0.001 

Fortaleza-CE HI-m −0.2590 −0.4054 −0.0997 0.0017 

Natal-RN HI-m −0.1547 −0.3104 0.0091 0.0642 

João Pessoa-PB HI-m −0.1466 −0.3029 0.0174 0.0796 

Recife-PE HI-m 0.0526 −0.1119 0.2143 0.5311 

Maceió-AL HI-m −0.0125 −0.1757 0.1514 0.8822 

Aracaju-SE HI-m 0.0333 −0.1310 0.1958 0.6918 

Salvador-BA HI-m 0.1228 −0.0416 0.2808 0.1425 

São Luis-MA HI-f 0.2959 0.1390 0.4382 <0.001 

Teresina-PI HI-f −0.0424 −0.2046 0.1220 0.6135 

Fortaleza-CE HI-f 0.0977 −0.0670 0.2571 0.2442 

Natal-RN HI-f −0.3653 −0.4990 −0.2145 <0.001 

João Pessoa-PB HI-f 0.3112 0.1556 0.4518 <0.001 

Recife-PE HI-f 0.0500 −0.1146 0.2119 0.5518 

Maceió-AL HI-f 0.3524 0.2004 0.4879 <0.001 

Aracaju-SE HI-f −0.0489 −0.2108 0.1156 0.5604 

Salvador-BA HI-f −0.0512 −0.2130 0.1133 0.5421 

 
95% confidence interval (CI) and p-value, between DF cases and 12 climatic va-
riables, on capital of the NEB. The relative humidity presents the best correlation 
with DF cases for capitals analyzed, at an absolute average rate of 24.18%, with 
high significance (p-value < 0.001) observed in four capitals each one. Low cor-
relation is observed with Human Comfort Index and that DF cases, at an abso-
lute rate of 9.1%. In Teresina-PI, there are the best correlations compared to the 
other capitals tested, at an absolute average rate of 26.67%, and high significance 
(p-value < 0.001) observed to seven of 12 climatic variables in relationship DF 
cases. Already, in Aracaju-SE, Recife-PE and Salvador-BA, there are the lower 
absolute mean correlations and respective no significance p-value observed, 
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suggesting that there are other factors involved in the increase of their DF cases. 
Table 2 presents the parametric coefficients of GAM between DF incidence 

and relative humidity over the period of one year (0 - 12 time-lags), using tem-
poral variables (months) in Teresina-PI and São Luis-MA cities. In Teresina-PI,  
 
Table 2. Parametric coefficients of GAM between DF incidence and relative humidity 
over the period of one year (0 - 12 time-lags), using temporal variables (months) with s 
term splines smooth, in Teresina-PI and São Luis-MA, in the period from 2001 to 2012. 

 Variable Estimate SE z Pr(>|z|) Sig 

Teresina-PI (Intercept) 8.375 1. 659 5.047 <0.001 *** 

Teresina-PI Lag 0 −0.007 0.007 −0. 920 0. 357 
 

Teresina-PI Lag 1 0.029 0.007 3. 993 <0.001 *** 

Teresina-PI Lag 2 0.040 0.006 6. 802 <0.001 *** 

Teresina-PI Lag 3 0.014 0.005 2. 667 0.008 ** 

Teresina-PI Lag 4 −0.044 0.005 −8. 703 <0.001 *** 

Teresina-PI Lag 5 −0.051 0.005 −10.068 <0.001 *** 

Teresina-PI Lag 6 −0.012 0.005 −2. 465 0.014 * 

Teresina-PI Lag 7 0.000 0.005 −0.085 0. 933 
 

Teresina-PI Lag 8 −0.008 0.006 −1. 385 0. 166 
 

Teresina-PI Lag 9 −0.033 0.007 −4. 462 < 0.001 *** 

Teresina-PI Lag 10 −0.020 0.008 −2. 432 0.015 * 

Teresina-PI Lag 11 −0.012 0.009 −1. 238 0. 216 
 

Teresina-PI Lag 12 0.020 0.008 2. 456 0.014 * 

São Luís-MA Intercept −46.327 8.898 −5.206 <0.001 *** 

São Luís-MA Lag 0 0.114 0.022 5.235 <0.001 *** 

São Luís-MA Lag 1 0.158 0.020 7.993 <0.001 *** 

São Luís-MA Lag 2 0.115 0.016 7.135 <0.001 *** 

São Luís-MA Lag 3 0.057 0.014 4.068 <0.001 *** 

São Luís-MA Lag 4 0.040 0.015 2.758 0.006 ** 

São Luís-MA Lag 5 −0.023 0.015 −1.529 0.126  

São Luís-MA Lag 6 −0.003 0.018 −0.195 0.846  

São Luís-MA Lag 7 0.004 0.020 0.203 0.839  

São Luís-MA Lag 8 0.002 0.020 0.104 0.917  

São Luís-MA Lag 9 0.021 0.020 1.071 0.284  

São Luís-MA Lag 10 0.011 0.020 0.566 0.571  

São Luís-MA Lag 11 0.077 0.019 4.113 <0.001 *** 

São Luís-MA Lag 12 0.009 0.017 0.516 0.606  

SE = standard error; z = z-value score; Pr(>|z|) = significance score Z; Sig = significance level: considering 
“***” when z-value is ≤0.001 (result is “highly significant” with 99.9% of the hypothesis tested being true; 
that is, the probability (Pr) of the error was less than 0.1%); “**” ≤0.01 (99% of the hypothesis tested is 
true); and “*” ≤0.1 (9% of the hypothesis tested is true). 
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GAM shows high significant (p-value < 0.001) association between DF incidence 
and relative humidity over a range of time-lags 0 - 2, 4 - 5 and 9, being the lag 2 
the most significant, with the largest z-value (z = 6.802). Already, in São 
Luis-MA, the simulated GAM presents high significant level (p-value < 0.001) 
association between DF incidence and relative humidity over a range of time-lags 0 
- 3 and 11, being the lag 1 the most significant, with the largest z-value (z = 
7.993). 

Table 3 shows the adjust coefficients for GAMs simulated in lags 0 and 1 with 
DF Cases (using logarithmic function of the population) and DF Incidences, as-
suming a Poisson distribution, in Teresina-PI and São Luis-MA, in the period 
from 2001 to 2012. The largest effective degree freedom (edf) values in DF cases 
simulations indicate nonlinear data when compared to DF incidences. Already, 
high values of the mean square error (Chi.sq), also simulated with those cases, 
characterize the overdispersion data. Although the models with DF cases have 
better fit of the explained deviance; however, your BIAS are extremely high, 
making the models with DF incidences more parsimonious and therefore more 
suitable for use [29]. In Teresina-PI, the modeling by GAM with relative humid-
ity over a time-lag 2 explain 82.3% of the deviance on DF incidences while São 
Luis-MA over a time-lag 1 explain 78.0% of the deviance on DF incidences, with 
significant effects in the adjust coefficients with low effective degree freedom, 
respectively, 6.067 and 7.276; and low estimate of the intercept and respective 
z-value, making it the best simulated model. In the lag 0 (no lag effect), both 
models presented the best estimate and z-value, although they had the lowest 
R-adjusted between the variables measured, 0.699 in both. 

Figure 2 shows the distribution of DF incidence and relative humidity as  
 
Table 3. Parametric coefficients of GAM between DF and relative humidity, for time-lags 
(0 - 1 lags in São Luis-MA and 0 - 2 lags in Teresina-PI) using temporal variables (months) 
with s term splines smooth, simulated with DF cases (with logarithmic function of popu-
lation) in the period of 2001 and 2012. 

   offset      Intercept  

 Model Dengue 
log 

(pop) 
R-sq 
(adj) 

DE 
(%) 

edf Chi.sq Estimate SE z 

Teresina Lag 0 Case Yes 0.714 77.3 8.991 22949.0 4.1331 0.0036 1159.0 

Teresina Lag 0 Incidence No 0.699 76.3 7.887 154.9 1.8642 0.0409 45.6 

Teresina Lag 2 Case Yes 0.750 79.3 8.989 30581.0 4.1376 0.0036 1162.0 

Teresina Lag 2 Incidence No 0.754 82.3 6.067 118.2 2.5199 0.0356 70.81 

São Luís Lag 0 Case Yes 0.714 77.3 8.991 22949.0 4.1331 0.0036 1159.0 

São Luís Lag 0 Incidence No 0.699 76.3 7.887 154.9 1.8642 0.0409 45.6 

São Luís Lag 1 Case Yes 0.750 79.3 8.989 30581.0 4.1376 0.0036 1162.0 

São Luís Lag 1 Incidence No 0.726 78.0 7.276 210.2 1.8726 0.0408 45.9 

R-sq = R square adjusted; DE = explained deviance; edf = effective degree freedom, chi.sq = quadratic mean 
error; SE = standard error; z = z-value score. 
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Figure 2. Seasonality effect, by boxplot, on DF incidence (DF Cases/100.000 inhabitants) 
in function of months (A and E) and years (B and F); and relative humidity (%) in func-
tion of months (C and G) and years (D and H), in Teresina-PI and São Luis-MA, respec-
tively, from January 2001 to December 2012. 
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time function, in Teresina-PI and São Luis-MA. The seasonal trend of that inci-
dence over monthly and annual time-frequency was observed. 

In relation to Teresina-PI, Figure 2(A) shows an increase in the DF incidence 
from the month of January with peak and highest mean in May, that coincides 
with the lagged relative humidity in 2 months or March (Figure 2(C)); declining 
from this month with lower rates in December, that coincides with the lagged 
relative humidity in 2 months or October (Figure 2(C)). It is also observed three 
annual periods for the occurrence of the DF epidemiological cycles, with peak in 
2010-2011, 2007 and 2001-2003, according Figure 2(B). 

In relation to São Luis-MA, Figure 2(E) shows an increase in the DF inci-
dence from the month of January with peak and highest mean in May that coin-
cides with the lagged relative humidity in 1 month, according to Figure 2(G), 
declining from this month with lower rates in November and December. The 
highest occurrence and average of DF incidences were recorded in the years 
2011, 2007, 2010 and 2005, in this descending order, Figure 2(F). 

Figure 3 shows the visualization of the effect of simultaneous variance be-
tween relative humidity and time (months and years, Figure 3(A) and Figure 
3(B), respectively), in relationship to DF incidence risk (Dengue RR), simulated 
on DF incidences, from January 2000 to December 2012, by “visreg” function on 
simulated regression GAM using penalized s splines smoothing, in São Luís-MA. 
Figure 3(A) shows a large nucleus limited to between 87.0% and 90.0% relative 
humidity between August and October months, with high relative risk Dengue 
(RR = 5.0), that is, high DF incidences. Comparing this figure to contour in 
function of the years, Figure 3(B), 3 nuclei are observed, characterizing the 
years of highest DF incidences, being 83.0% and 90.0% of relative humidity 
range highly significant to occurrences those incidences (RR ≥ 4.0). 
 

 
(A)                                                (B) 

Figure 3. Visualization of the relationship between relative humidity on lag 1 and temporal variables (months 
and years), as response to Dengue Relative Risk or Dengue RR (simulated on DF incidences) by GAM regres-
sion with Poisson distribution using penalized s splines smoothing, in São Luis-MA, from January 2000 to De-
cember 2012. The legend presents in a gradual degree of Dengue RR, which ranges from −1 to 5 in Figure 3(B), 
with 5 being the positive chance of having incidence of dengue in the studied population increased by 5x, while 
−1 would be the possibility of RR in −1x. 
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4. Discussion 

All numerical output of GAM and respective intercepts in the capitals of the 
NEB have obtained setting on p-value of 0.001. The capital of João Pessoa-PB is 
the one with the smaller values of mean squared error (Chi.sq); in other words, 
the values of the estimated parameters of climatic variables around the true value 
of DF cases present a greater accuracy and precision in the quality of response by 
GAM. According Bolker (2008) [29], the mean square error represented by the 
sum of the variance and bias square indicates the quality of an estimator and 
shows the total change around a true value, in this study, the DF cases. 

We found a high correlation of DF incidence with relative humidity is lagged 
in 1 and 2 months, respectively, in São Luis and Teresina cities. Wu et al. (2007) 
[30] observed cross-correlation with statistical significance between DF incidence 
and relative humidity over a range of time-lags from −1 to −3 months, above all 
the most dominant effect at a lag −2 months (r = 0.202, p < 0.005). 

Ehelepola and Ariyaratne (2016) [31] evidenced in their study a median in-
crease in 7x of dengue incidences, for a relative humidity of 86%, according to 
figure 6 of that study. Neto and Rebêlo (2004) [32], studying the association be-
tween dengue cases and climatic variables in São Luis-MA, from 1997 to 2002, 
verified that dengue cases are directly related to the increase of precipitation and 
relative humidity, with a positive correlation this variable of 76.0% (r = 0.76; p < 
0.05). In addition, the authors identified peaks of relative humidity in the months 
of March and April, an average variation from 85.6% (March 1999) to 89.3% 
(April 1997), while the highest percentage of dengue was presented in May, with 
an average percentage of 20.2% of cases recorded. While in this study, we iden-
tify an r-adjusted between these variables of 0.75 for a −1 month lag of relative 
humidity in relation to dengue. 

5. Conclusions 

The formulation of GAM model is nearly exactly the same as for GLM. These 
models use all the same families and link functions; but GAM is wrapping the 
predictors in a non-parametric smoother function, in this paper, specifically, the 
s spline. The GAM fit is more sensitive to minimizing deviance (higher wiggli-
ness) than the default fit of the loess function. This model is also able to minim-
ize deviance based on the logit transformation. The model output shows that an 
overall (parametric) intercept is fitted (the mean) on the scale of the logit trans-
formation (logarithmic population of the capitals studied). 

Modeling by GAM, assuming a Poisson distribution, explained 82.3% of the 
deviance of DF incidences, and significant effects were found in the estimates of 
all climatic variables on dengue; however, the high values of the effective degrees 
of freedom (edf) of smooth functions indicate that the association between den-
gue and climate is highly nonlinear. The estimate initially found, by the GLM 
and GEEGLM models for these studied variables, was too high, indicating the 
overdispersion data, however regressions by GAM reduced significantly excess 
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dispersion presented in the proportion of deviations from the response shown in 
simulations by GLM and GEEGLM, i.e., not shown here. Our results were robust 
to other model specifications with different controls for long-term and seasonal 
trends. It is suggested that the models proposed in this paper are used by sur-
veillance agencies for planning, prevention and control of Dengue Incidence. 

From 12 climatic variables, it was verified that the relative humidity was the 
one that obtained the highest correlation to dengue in six of nine capitals of the 
NEB, with high significance (p < 0.001) in Teresina-PI, Fortaleza-CE, Natal-RN 
and Maceió-AL. Afterwards, GAM associated with visreg was applied to under-
stand the effects between them. March and April months show the sensibility of 
the use of GAM for the analysis of that correlation. Relative humidity explains 
the dengue at an adjusted rate of 78.0% (in São Luis-MA) and 82.3% (in Teresi-
na-PI) delayed in, respectively, −1 and −2 months. 
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