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Abstract 
In this paper, a two species predator-prey model is developed where prey is 
affected by over-harvesting and drought and predator is affected by drought. 
The intention is to investigate the impact of over-harvesting and drought on 
predator-prey system, and suggest control strategies to alleviate the problem 
of loss of prey and predator species due to over-harvesting and drought. The 
control strategies suggested are creation of reserve areas with restriction of 
harvesting for controlling over-harvesting and construction of dams for mi-
tigating drought effects. The results obtained from theoretical and numerical 
simulation of the predator-prey model with harvesting and drought without 
control strategies showed that, both harvesting and drought affect the preda-
tor-prey population negatively. However, the results obtained from numerical 
simulations of the model with control measures showed that, the use of con-
trol strategies one at a time encourages the increase of the prey and predator 
species to the optimal population size. Furthermore, the best result is ob-
tained when control strategies, creation of reserve areas with restriction of 
harvesting and construction of dams are applied simultaneously. 
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1. Introduction 

Predator-prey system is a dynamical system that explains the dynamics of 
ecological systems in which two species prey and predator do interact. The 
interactions can be through predation, competition, parasitism, mutualism and 
detritivory [1]. However, predation has been defined as the process in which 
species of one type consume species of another type, with condition that prey 
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should be alive when it is captured [1] [2]. Furthermore, [1] defined competition, 
parasitism, mutualism and detitrivory as follows: Competition is an interaction 
in which one organism consumes a resource that would have been available to 
and might have been consumed by another; parasitism is an interaction in which 
predators consume part of their prey, for example parasites and their hosts; 
mutualism is an interaction in which both species in the system benefits from 
each other; and detitrivory (commensalism) is an interaction in which a predator 
consumes prey which is dead already. In this study we consider prey and predator 
species that interact through predation. 

The dynamic relationship between predators and their prey has been and 
continue to be one of the most important topic of discussion in ecology and 
mathematical ecology due to its universal existence and importance [3]. 
Therefore, the study of predator-prey dynamics helps scientists to understand 
interacting populations in the natural environment, which in turn guide them to 
develop solutions to problems affecting the growth rate of prey and predator 
species in the ecosystem [4]. The dynamics of predator-prey interactions is 
affected by factors such as over-harvesting, over predation, environmental 
pollution, mismanagement of the habitat, and hazards fire and drought. It has 
been recognized that many species in the ecosystem, have been pushed to 
extinction and many others are at the point of extinction due to interaction with 
the above mentioned factors [5]. From the bottom-up theory of community 
ecology, prey population density determines the predator’s population density 
since predators depend on prey as their only source of food. Thus, any change in 
prey population density affects the predator population density which means 
that a decrease in prey population density results in a decrease in predator 
population density and increase in prey population density results in increase in 
predator population density [5] [6]. Therefore, in order to sustain the prey and 
predator species in the ecosystem, harvesting rate of prey population should not 
be either greater or equal or close to intrinsic growth rate of prey but should be 
at a rate at which the prey species will still survive in the system. 

Harvesting in the predator-prey system is the killing of predator and prey 
species for the purpose of human consumption or trade. The problems of 
predator-prey systems with harvesting have been explored by many researchers, 
however most of them have put attention on the optimal harvesting guided 
entirely by economic profits from harvesting [7] [8]. In fact, harvesting of 
species should be done by considering both economic and biological values of 
the population [9]. Recently, it has been observed that, the biological species of 
predator-prey system is harvested and sold for the purpose of making economic 
profit which slowly decreases the species and finally the ecosystem collapses 
[10]. 

Drought can be defined as the absence of water for a long time to result in 
depletion of soil water and damage to plants [11]. This condition results in the 
disturbance of the physical and biological structure of an ecological system 
which in turn alters the availability of resource and the physical environment of 
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the habitat [12] [13]. These ecological impacts caused by drought have affected 
the survival and reproduction of prey and predator species in the ecosystem [6]. 
For example, in the 1993 Serengeti ecosystem drought, about 30% of the 
wildebeest and about 40% to 50% of the total park population of large mammals 
died [5]. These external forces cause a rapid decrease of the population 
densities and probably the species can go to extinction if control measures are 
not taken into account. Thus, we need to control the system for the survival of 
the prey and predator species in the ecosystem. In other words, we need to act 
upon the problems over-harvesting and drought in order to guarantee that the 
system behaves as desired [14]. One way of doing so is by the use of optimal 
control theory which involves the formulation of objective function and 
dynamical constraints both with time dependent control mechanism. 

Several studies have been conducted on optimal control strategies and 
management policies to keep and protect the ecological species such as those by 
[5] [7] [8] [10] [15] [16] [17] [18] [19]. In particular, [20] studied a diseased 
predator-prey system with stage structure. This study intends to apply optimal 
control theory to investigate optimal strategies for persistence of predator and 
prey species by considering the combined effects of harvesting and drought in 
the system. The optimal control theory is executed by first investigating the 
effects of over-harvesting and drought on predator-prey model, then extending 
the model to include time dependent control efforts and finally examining the 
impact of control efforts, suggested to alleviate the problem of species loss due 
to over-harvesting and drought. The suggested control efforts are creation of 
reserve areas with restriction of harvesting for controlling over-harvesting and 
construction of dams for controlling drought. However, the results obtained 
from numerical simulations of the model with control efforts showed that, the 
use of control efforts one at a time or two at a time encourages the increase of 
the prey and predator species to the optimal population size. Furthermore, the 
best result is attained when control efforts, creation of reserve areas with 
restriction of harvesting and construction of dams are simultaneously applied. 

2. The Model with Harvesting and Drought 

Consider two different populations consisting of prey and predator species. The 
population densities are respectively represented by x and y. The dynamics of 
the species interactions is modelled using Holling type II functional response 
with the following assumptions.  

1) In the absence of predators, harvesting and drought, prey population is 
assumed to grow logistically to the carrying capacity. 

2) The rate of increase of the predators depend on the amount of prey biomass 
predators convert as food. 

3) Predators depend on prey population as their only source of food.  
From Holling type II functional response, the model is represented by the 

system of equations as below: 
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( ) ( )

1
2 1

1

1
1 2

d 1
d
d ,
d

0, 0.

xyx xrx x d x
t K x A

xyy y d y
t x A

x t y t

α
α

β
µ

 
= − − − −  + 

= − + −
+

> >

               (2.1) 

where ( )x t  represents the prey population density at time t, ( )y t  represents 
the predator population at time t, 0r >  stands for intrinsic growth rate of prey 
population, 1K  is the carrying capacity of the environment to prey species, 

1 0α >  represents the maximum per capita predation rate, 1 0β >  is the 
conversion rate, 2 0α >  is the rate of harvesting, 1 0d >  is the death rate of 
prey species due to drought, 1 0µ >  is the mortality rate of predator population, 

2 0d >  is the death rate of predator population due to drought and 0A >  
represents the half saturation of a predator. 

2.1. Model Analysis 

The solutions of the predator-prey model developed in (2.1) represent the 
populations of living individuals, and thus, they should be positive and bounded. 
The following lemma provides details: 

Lemma: All the solutions of the system which start in 2IR+  are uniformly 
bounded. 

Proof: We define a function  

( ) ( ) ( )1

1

y t
t x t

α
σ

β
= +                       (2.2) 

where ( )tσ  represents the total population of the prey-predator species. 
Differentiating (2.2) with respect to time gives  

1

1

d d d
d d d

x y
t t t

ασ
β

= +                        (2.3) 

Substitute (2.1) into (2.3) and simplify yields  

( )( ) ( )
2

1
2 1 1 2

1 1

d
d

rxr d x d y
t K

ασ
α µ

β
= − + − − +             (2.4) 

Choosing arbitrary constant say 1n  and applying it in (2.4) results into 

( )( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )

( )( ) ( )

( )( ) ( )

( )( )

2
1

2 1 1 2 1 1
1 1

2
1

1 2 1 1 2 1
1 1

2
1 1

2 1 1 2 1
1 1 1

2
1

2 1 1 1 2 1
1 1
2

2 1 1
1

d
d
d
d

rxr d x d y n t n t
t K

rxn t r d x d y n t
t K

rxr d x d y n x y
K

rxr d n x d n y
K
rxr d n x
K

ασ α µ σ σ
β

ασ σ α µ σ
β
α α

α µ
β β

α
α µ

β

α

= − + − − + + −

+ = − + − − + +

 
= − + − − + + + 

 

= − + + − − + −

≤ − + + −

 

Thus,  
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( ) ( )( )21
1 2 1 1

d
d 4

Kn t r d n
t r
σ

σ α+ ≤ − + +                (2.5) 

where 

( )( ) ( )( )
2

21
2 1 1 2 1 1

1

max .
4
K rxr d n r d n x

r K
α α

 
− + + = − + + − 

 
 

By letting  

( )( )21
2 1 1 14

K r d n m
r

α− + + =  

we get  

( )1 1
d
d

n t m
t
σ

σ+ ≤                        (2.6) 

Solving Equation (2.6) by integrating factor 1en tI =  yields  

( ) 1 11

1

e e .n t n tmt C
n

σ −≤ +                      (2.7) 

At 0t = , the Equation (2.7) becomes 

( ) ( ) 11 1

1 1

0 e .n tm mt
n n

σ σ − 
= + − 

 
                 (2.8) 

Thus,  

( ) ( ) 11 1

1 1

0 0 e n tm mt
n n

σ σ − 
≤ ≤ + − 

 
               (2.9) 

As t →∞  Equation (2.9) becomes  

( ) 1

1

0 mt
n

σ≤ ≤                        (2.10) 

Therefore, ( )tσ  is bounded and from positivity of x and y,  

1

1

1

1

0 ,

0 .

mx
n
my
n

≤ ≤

≤ ≤
                        (2.11) 

2.1.1. Existence of Equilibrium Points 
We start by setting the system of equations of model (2.1) equal to zero and by 
so doing we get the possible equilibrium points of the system as trivial equilibrium 
point ( )( )0 0,0A , predator free equilibrium point ( )( )*

1 ,0A x , prey free 
equilibrium point ( )( )*

2 0,A y  and ( )* *
3 ,A x y  the co-existence or interior 

equilibrium point. Thereafter we establish the conditions for existence of each 
equilibrium point of the system. The condition of existence of the equilibrium 
point ( )0 0,0A  is trivial. The existence of the rest of the fixed equilibrium 
points is described as below: 

1) Existence of ( )*
1 ,0A x  with * 0x > . 

Let 0y = , the system of equations of model (2.1) reduces to 
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*
*

2 1
1

0,rxx r d
K

α
 

− − − = 
 

 

which simplifies to  

( )1 2 1* .
K r d

x
r
α− −

=  

Thus,  

( ) ( )1 2 1*
1 1,0 ,0 .

K r d
A x A

r
α− − 

=  
 

              (2.12) 

From the expression of *x  we observe that harvesting and drought have 
negative impacts on the prey growth rate which eventually affects the prey 
population density. Moreover, for predator free equilibrium point ( )*

1 ,0A x  to 
exist 2 1 0r dα− − >  which implies that 2 1r dα> + . Therefore, in the absence 
of predators the intrinsic growth rate of prey population should be greater than 
the sum of harvesting and drought rates. Increasing harvesting and drought 
rates, the prey population decreases which affects the survival of predator species. 
This is from the fact that predators depend on prey as their only source of food. 

2) Existence of ( )*
2 0,A y  with * 0y > . 

Let * 0x = , the system of equations of model (2.1) reduces to  
( )*

1 2 0y dµ− − = , 
from which we obtain * 0y = . Thus,  

( ) ( )*
2 20, 0,0 .A y A=                    (2.13) 

The result above concur with the assumption that predators depend on prey 
as their only source of food. Thus, in the absence of prey, predator population 
becomes extinct. 

3) Co-existence equilibrium point ( )* *
3 ,A x y . 

We equate the system of equations of model (2.1) to zero, and solving for *x  
and *y  yields  

( ) ( )

( )( ) ( )( )
( )

2 1 2 1*

1 2 1 1 2 1

1 1 2 1 1 2 1 2 1*
2

1 1 1 2 1

,

.

A d A d
x

d d

A K r d d Ar d
y

K d

µ µ
β µ β µ

β α β µ µ

α β µ

+ +
= − =

− + + − −

− − − − − +
=

− −

      (2.14) 

which gives the co-existence point (interior point). 
From the values of interior point in (2.14), we see that predator mortality rate 

and drought affect the predator’s birth rate ( 1β ) negatively which in turn results 
into negative effects on predator population density. On the other hand, the 
co-existence equilibrium point exist if 1 2 1 0dβ µ− − >  implying that 1 2 1dβ µ> + . 
Therefore, in the presence of both populations birth rate of predators should be 
greater than the sum of rates of mortality and drought. Furthermore, the 
intrinsic growth rate of prey should be greater than the sum of harvesting rate 
and drought rate of prey for co-existence equilibrium point to exist. However, 
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increasing death rate of predator population results in the increase of prey 
population density.  

2.1.2. Local Stability Analysis of the Equilibrium Points 
The stability properties of the equilibrium points are analyzed by computing the 
Jacobian matrix and determining the eigenvalues of the Jacobian matrix of each 
fixed point. The equilibrium points are asymptotically stable if the real parts of 
the eigenvalues of each Jacobian matrix is negative. From the system of equations 
of model (2.1) the general Jacobian matrix of the equations is given by: 

( )
1 1

2 2
i

g g
x y

J A
g g
x y

∂ ∂ 
 ∂ ∂ =
 ∂ ∂
 ∂ ∂ 

 

which provides  

( )
( )

( )

* * * ** *
1 1 1

2 1* 2 **
1 1

* * * *
1 1 1

1 2* 2 **

1

.i

y x y xx rxr d
K K x A x Ax A

J A
y x y x d

x A x Ax A

α α α
α

β β β
µ

  
− − − + − − −   + +  + 

=  
 

− − + − + ++  

 (2.15) 

1) For ( ) ( )1 2 1*
1 1,0 ,0

K r d
A x A

r
α− − 

=  
 

, 

the Jacobian matrix evaluated at this equilibrium point is given by 

( )
( ) ( )

( )

( )

1 1 2 1
2 1

1 2 1
1

1
1 2 1

1 2 1

.
0

K r d
r d

Ar K r d
J A

Ar d
Ar K r d

α α
α

α
β

β µ
α

 − − 
− − − − + − − =  

− − − 
+ − −  

 

The eigenvalues of the Jacobian matrix ( )1J A  are ( )2 1r dα− − −  and 

( )
1

1 2 1
1 2 1

Ar d
Ar K r d

β
β µ

α
− − −

+ − −
. 

Therefore, the equilibrium point ( )*
1 ,0A x  is locally asymptotically stable if  

it satisfies the following condition: 
( )

1
1 2 1

1 2 1

0Ar d
Ar K r d

β
β µ

α
− − − <

+ − −
. 

which is negative if 1 2 1dβ µ< + . Thus, the predator free equilibrium point is 
locally asymptotically stable if predator population goes to extinction. 

2) The corresponding Jacobian matrix of the equations evaluated at the 
equilibrium point ( ) ( )*

2 20, 0,0A y A=  is 

( ) 2 1
2

1 2

0
0

r d
J A

d
α

µ
− − 

=  − − 
 

The eigenvalues for the Jacobian matrix ( )2J A  are 2 1r dα− −  and  
( )1 2dµ− + . If 2 1r dα> + , then the equilibrium point ( )*

2 0,A y  is unstable 
saddle point. That is, to say the prey population is growing. However, if  
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2 1r dα< +  then the prey population goes to extinction which results to extinction 
of predator population under the assumption that predators depends on prey as 
their only source of food. Thus, the prey free equilibrium point is locally 
asymptotically stable if prey population goes to extinction. 

3) For co-existence fixed point ( )* *
3 ,A x y  

Consider the following Jacobian matrix  

( ) 11 12
3

21 22

a a
J A

a a
 

=  
 

 

where 

( ) ( )( ) ( )( )( )( )
( )

( )

( ) ( )( )( ) ( )

2 1 1 2 1 2 1 1 2 1
11

1 1 1 2 1

1 2 1
12

1

1 2 1 2 1 1 2 1 1 1 1 2 1
21

1 1

22 0

d Ar K r K A K r d M
a

K d

d
a

K r K A K r d K d d
a

K
a

µ α β α µ

β β µ

α µ
β

α β α µ β µ
α

+ − + − + − + + −
=

− −

+
= −

− + − + + − − −
=

=

 

and ( )1 1 1 2 1M K d dβ µ= − −  
The stability of this equilibrium point is stated using the trace/determinant 

technique as follows: Suppose the Jacobian matrix evaluated at the co-existence 
equilibrium point has the characteristic polynomial equation  

2 0,P Qλ λ− + =                       (2.16) 

Such that ( )( )3 11 22 11P tr J A a a a= = + =  and  
( )( )3 11 22 21 12 21 12 .Q Det J A a a a a a a= = − = −  

Then, the co-existence equilibrium point is locally asymptotically stable or 
stable spiral if 0P <  and 0Q > . However, the interior equilibrium point is a 
center (neutrally stable) if 0P =  and 0Q > . Moreover, if the co-existence 
equilibrium point is locally asymptotically stable or stable spiral or neutrally 
stable, it implies that there is a stable dynamic relationship between predator and 
prey.  

2.1.3. Global Stability Analysis 
The global stability of equilibrium points 1A  and 3A  is shown by linearizing 
the system of equations of model (2.1) and defining appropriate Lyapunov 
function to separately describe each equilibrium point. The linearization process 
is done using Jacobian technique such that  

( )d
,

d
i

i i
X J A X
t
=                       (2.17) 

where ( )iJ A  is the Jacobian matrix and iX  is a small perturbation on ix . 
Therefore the system of equations of model (2.1) reduces to the following linear 
system of equations; 
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( )

( )

* * ** *
1 1

2 1* 2*
1 1

* * * *
1 1 1

1 2* 2 **

d 1
d

d
d

y x yX x rxr d X P
t K K x A x A

y x y xY X d Y
t x A x Ax A

α α
α

β β β
µ

   = − − − + − − −  +  + 
    = − + − + −  + + + 

     (2.18) 

where 
*

1
*

xP Y
x A
α

=
+

. 

The Lyapunov function is chosen as  

( )
2 2

, .
2 2

X YV X Y = +                       (2.19) 

The function ( ),V X Y  is a positive definite function since ( ), 0V X Y >  for 
any values of ( ),X Y  and it is minimum at the origin. That is, ( )0,0 0V = . The 
time derivative of ( ),V X Y  is given by  

( )d , d d .
d d d

V X Y V X V Y
t X t Y t

∂ ∂
= +
∂ ∂

                  (2.20) 

By substitution of (2.18) into (2.20) and differentiate V partially, we obtain the 
following 

( )
( )

( )

* * ** *
1 1

2 1* 2*
1 1

* * * *
1 1 1

1 2* 2 **

d ,
1

d
V X Y y x yx rxX r d X S

t K K x A x A

y x y xY X d Y
x A x Ax A

α α
α

β β β
µ

     = − − − + − − −   +   +   
      + − + − + −   + +   +   

  (2.21) 

where 
*

1
*

xS Y
x A
α

=
+

. 

1) For fixed point ( )*
1 ,0A x  

Here, Equation (2.12) is used in Equation (2.21) to get  

( ) ( ) ( )
( )

( ) ( )

1 1 2 12
2 1

1 2 1

21
1 2 1

1 1 2 1 1

d ,
d

V X Y K r d
r d X XY

t A K r K Kd

Ar d Y
A K r K K d

α α
α

α

β
β µ

α

− −
= − − − −

+ − −

 
+ − − +  + − − 

      (2.22) 

From (2.22), the equilibrium point ( )*
1 ,0A x  is globally asymptotically stable 

if the following condition is satisfied: That is,  

( ) ( ) 21
1 2 1

1 2 1 1

0,Ar d Y
A K r K K d

β
β µ

α
 

− − + <  + − − 
 

which is negative if 1 2 1dβ µ< + , implying that, the equilibrium point ( )*
1 ,0A x  

is globally stable if predators go to extinction. 
2) For equilibrium point ( )*

2 0,A y . 
In this subsection, we use Equation (2.13) in Equation (2.21) to obtain  
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( ) ( ) ( )2 2
2 1 2 1

d ,
d

V X Y
r d X d Y

t
α µ= − − − +               (2.23) 

From Equation (2.23), the fixed point ( )*
2 0,A y  is globally asymptotically 

stable if ( ) 2
2 1 0r d Xα− − < , which implies 2 1r dα< + . Thus, the prey free 

equilibrium point is globally asymptotically stable if prey population goes to 
extinction. 

3) For steady state point ( )* *
3 ,A x y . 

Here we substitute the values of interior point (2.14) into Equation (2.21) to 
obtain  

( ) ( )2
11 12 21

d ,
,

d
V X Y

a X a a XY
t

= + +                 (2.24) 

with usual notations for 11 12,a a  and 21a . Therefore the point is globally stable 
if the condition below holds,  

( ) ( )( )2
11 12 21

d ,
0.

d
V X Y

a X a a XY
t

= + + <              (2.25) 

3. The Model with Control 

We introduce into system of equations of model (2.1), time dependent control 
efforts on harvesting and drought to alleviate the loss of species in the predator- 
prey system. Let ( )1u t  represents over-harvesting control strategy (Creation of 
reserve areas with restriction of harvesting) and ( )2u t  represents the drought 
control strategy (construction of dams). Thus, the system of equations of model 
(2.1) becomes: 

( )( ) ( )( )

( )( )

1
1 2 2 1

1

1
1 2 2

d 1 1 1
d
d 1
d

xyx xrx u t x u t d x
t K x A

xyy y u t d y
t x A

α
α

β
µ

 
= − − − − − −  + 

= − + − −
+

       (3.1) 

3.1. Analysis of the Optimal Control 

Here we construct an objective function that provides the optimal population 
size of the prey-predator species at minimum costs for over-harvesting and 
drought control strategies. The objective function takes the following form, that 
is 

( ) ( )( ) ( ) ( )( )( )1

0
1 1max , , , d

T
i i i iT

J u G x T T F x t u t t t = −  ∫        (3.2) 

subject to  

( ) ( )( )d
, , ,

d
i

i i i
x g t u t x t
t
=  

where ( )0 0i ix T x=  and 0 1iu≤ ≤  for [ ]0 1,t T T∈ . The terms ( )( )1iG x T  and 
( ) ( )( ), ,i iF x t u t t  represent the predator-prey populations to be optimized at 

terminal time of control and total cost of control respectively. 
Therefore, from (3.2) the objective function becomes:  
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( ) ( ) ( ) 1

1 2

2 2
1 1 2 2

1 1 2 1 0,
max d

2 2
T

u u

C u C uJ D x T D y T t
  

= + − +  
   

∫U        (3.3) 

subject to  

( )( ) ( )( )

( )( )

1
1 2 2 1

1

1
1 2 2

d 1 1 1
d
d 1
d

xyx xrx u t x u t d x
t K x A

xyy y u t d y
t x A

α
α

β
µ

 
= − − − − − −  + 

= − + − −
+

 

( )0 0x T x= , ( )0 0y T y=  and 1 20 1,0 1u u≤ ≤ ≤ ≤  for [ ]10,t T∈ ; 1 2,u u ∈U . 
However, the terms ( )1 1D x T  and ( )2 1D y T  represent the prey and predator  

populations to be optimized at terminal time of control and 
2

1 1

2
C u  and 

2
2 2

2
C u   

are total control costs for over-harvesting and drought respectively. The costs 
weights 1 2,C C  and state weights 1 2,D D  are all positive constants. In here, the 
aim is to pick up *

1u  and *
2u  such that,  

( ) ( )( )* *
1 2 1 2, max , ,J u u J u u=

U
                   (3.4) 

with 1 20 1,0 1u u≤ ≤ ≤ ≤  for [ ]10,t T∈ . 

3.1.1. Existence of Optimal Control 
The aim is to show that, the optimal control problem formulated in (3.3) has at 
least one solution before trying to solve for the optimal control values. The 
following theorem explains. Theorem: Given an optimal control problem in (3.3) 
with 1u  and 2u  as control variables, then there exist * *

1 2,u u ∈U  (optimal 
control set) such that,  

( ) ( )( )* *
1 2 1 2, max , ,J u u J u u=

U
                   (3.5) 

Proof: The proof for the existence of optimal control provided by [5] [21] [22] 
is also appropriate in here.  

1) Model Equation (3.1) with control are linear in control variables.  
2) The control U  is convex, closed and bounded set.  

3) The integrand 
2 2

1 1 2 2

2 2
C u C u 

− + 
 

 of the objective function (3.3) is concave  

in U .  

3.1.2. Characterization of the Optimal Control 
The calculation of the optimal control strategy is done by the application of 
Pontryagin’s maximum principle (PMP) which provides the Hamiltonian H 
and necessary conditions with which the optimal control and the co-state 
variables must satisfy. From the objective function (3.3), the Hamiltonian H is 
given by  

( )( ) ( )( )

( )( )

2 2
1 1 2 2 1

1 1 2 2 1
1

1
2 1 2 2

1 1 1
2 2

1 ,

C u C u xyxH R rx u t x u t d x
K x A

xyR y u t d y
x A

α
α

β
µ

    
= − + + − − − − − −     +     

 + − + − − + 

(3.6) 
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where 1R  and 2R  represents the co-state variables or adjoint variables. Using 
Pontryagin’s maximum principle (PMP) [23] and the existence result for the 
optimal control variables, we state a proposition as follows: 

Proposition: Let *
1u  and *

2u  be optimal control variables that optimize the 
objective function in (3.3), then there exist adjoint variables 1R  and 2R   

satisfying the adjoint condition 
d
d

i

i

R H
t x

∂
=
∂

 with ( )i iR T D= ; 1,2i = . 

Proof: Using the adjoint condition, the set of adjoint equations becomes:  

( )
( )( )

( )( )
( )

( )( )

1 1 1
1 1 22

1 1

1 1
2 1 2 2

2 1 1
1 2 1 2 2

d 1 1
d

1

d 1
d

R y xyH x rxR r u t
t x K K x A x A

y xyu t d R
x A x A

R x xH R R u t d
t y x A x A

α α
α

β β

α β
µ

  ∂
= − = − − − − + − −  ∂ + +  

 
− − − −  + +   

∂    = − = − − − − + − −   ∂ + +   

   (3.7) 

with transversality conditions:  

( ) ( )( )

( ) ( )( )

1 1 1 1 1

2 1 2 1 2

d ,
d
d .
d

R T D x T D
x

R T D y T D
y

= =

= =
                   (3.8) 

Using optimality condition, 

0
i

H
u
∂

=
∂

 at *
iu , we have 

1

H
u
∂
∂

 at *
1u  and 

2

H
u
∂
∂

 at *
2u . Thus,  

*
1 1 1 2

1

0H C u R x
u

α
∂

= − + =
∂

 which gives  

* 1 1
1

1

R xu
C
α

=                           (3.9) 

Also,  

*
2 2 1 1 2 2

2

0H C u R d x R d y
u
∂

= − + + =
∂

 

Thus,  

* 1 1 2 2
2

2

R d x R d yu
C
+

=                      (3.10) 

Solving for x, y, 1R  and 2R , we substitute *
1u  and *

2u  in the following 
system of equations below:  

( )( ) ( )( ) ( )

( )( ) ( )

( )
( )( )

1
1 2 2 1 0

1

1
1 2 2 0

1 1 1
1 1 2 12

1 1

d 1 1 1 , 0
d
d 1 , 0
d

d
1 1

d

xyx xrx u t x u t d x x x
t K x A

xyy y u t d y y y
t x A

R y xyx rxR r u t W
t K K x A x A

α
α

β
µ

α α
α

 
= − − − − − − =  + 

= − + − − =
+

  
= − − − − + − − −   + +   
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( )
( )

( )( ) ( )

1 1
2 1 1 12

2 1 1
1 2 1 2 2 2 2 2

,

d
1 , ,

d

y xyR R T D
x A x A

R x xR R u t d R T D
t x A x A

β β

α β
µ

 
− − = 

+ +  
   = − − − − + − − =   + +   

  (3.11) 

where, ( )( )1 2 11W u t d= − . 
Taking back the values obtained in (3.11) into the expressions of *

1u  and *
2u  

in (3.9) and (3.10) we get the characterization of the optimal control as:  

* 1 2
1

1

* 1 1 2 2
2

2

min 1,max 0,

min 1,max 0, ,

R xu
C

R d x R d yu
C

α   =   
   
  + =   
   

               (3.12) 

where 1R  and 2R  are the solutions of the system of adjoint Equation (3.7).  

4. Numerical Results and Discussion 

We verify the equilibrium points of system equations of model (2.1), using phase 
diagrams representation. The aim is to show the dynamical behavior of the 
equilibrium points discussed in the theoretical part. Using parameter values as in 
Table 2, the phase diagrams for equilibrium points ( ) ( )*

2 20, 0,0A y A= ,  
( )* *

3 ,A x y  and ( )*
1 ,0A x  are drawn as follows:  

Figure 1 indicates that, in the presence of over-harvesting and drought the 
dynamical behavior of equilibrium points ( )*

2 0,A y  and ( )*
1 ,0A x  is unstable 

saddle and the dynamical behavior of co-existence equilibrium point ( )* *
3 ,A x y  

is a spiral unstable surrounded by a stable limit cycle. The equilibrium points 
( ) ( )*

2 20, 0,0A y A=  and ( )* *
3 ,A x y  are clearly shown in a top sub-figure of 

Figure 1, while the equilibrium point ( )*
1 ,0A x  is well shown by a bottom 

sub-figure of Figure 1.  

4.1. The Effects of Varying Harvesting Rate on Prey and  
Predator Population Densities 

Figure 2(a) shows the effects of varying harvesting rate to prey population 
density. From the result we observe that, as the harvesting rate of prey increases, 
the prey population decreases. The decrease in prey population proves that 
harvesting has strong negative impact on predator-prey population. Figure 2(b) 
shows the effects of varying harvesting rate of prey on predator population 
density. The result indicates that, as harvesting rate of prey increases, predator 
population decreases. However, the decrease in predator population while they 
are not affected by over-harvesting directly, is due to the fact that predators 
depend on prey as their only source of food. Thus, any effect on prey species 
results into indirect effect on predator species. 

4.2. The Effects of Varying Harvesting and Drought Rates on  
Prey and Predator Population Densities 

Figure 3(a) is the effects of increasing harvesting and drought rates of prey at a  
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Figure 1. Phase diagrams showing dynamical behavior of ( )*
2 0,A y , ( )* *

3 ,A x y  and 

( )*
1 ,0A x . 

 
time, on prey population density. The result shows that, there is a rapid decrease 
in prey population. The rapid decrease in prey population is due to the 
combinations of the problems (harvesting and drought) on prey species both 
with strong negative impact on the prey species. 

Figure 3(b) shows the effects of increasing harvesting and drought rates of 
prey at a time, on predator population density. From the result we observe that, 
there is a rapid decrease in predator population density. The rapid decrease in  
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Figure 2. Simulations of a predator-prey model showing the impacts of varying 
harvesting rate to prey and predator population densities. 
 
predator population density while the effects are on prey individuals is due to 
dependence of predators on prey as their only source of food. Thus, decreasing 
prey population rapidly results into rapid decrease in predator population 
density.  

https://doi.org/10.4236/oje.2018.88028


A. Mapunda et al. 
 

 

DOI: 10.4236/oje.2018.88028 474 Open Journal of Ecology 
 

 
Figure 3. Simulations of a predator-prey model showing the impacts of varying 
harvesting and drought rates on prey and predator densities. 

4.3. The Effects of Varying Drought Rates on Prey and Predator  
Population Densities 

From Figure 4(a) we observe that, the increase of drought, results into decrease 
of prey population density. The decrease of prey population, is due to the fact  
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Figure 4. Simulations of a prey-predator model showing the impacts of varying drought 
rates on prey and predator densities. 
 
that drought affect the population negatively. From Figure 4(b) we observe that, 
the increase of drought to predator population decreases predator population 
density. The decrease in predator population shows that, drought has strong 
negative impact on predator-prey system. 
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4.4. Numerical Results of the Model with Control 

The optimal control strategy can numerically be solved by several numerical 
techniques using parameter values. A forward-backward sweep method (FBSM) 
is one of the numerical techniques that can be used to solve an optimal control 
problem. The technique uses Runge-Kutta 4th order numerical method (RK4) in 
solving the optimal control problem. The following scholars [5] [18] [23], 
suggested the method to be executed as follows:  

1) Make an initial guess for control vector and use initial conditions for state 
vector to solve for the state variables forward in time using Runge-Kutta 4th 
order numerical method (RK4).  

2) Using the new sate values, transversality conditions and the guessed values 
for control vector, solve for adjoint vector backward in time using RK4.  

3) The obtained values for state and adjoint variables are entered on the 
characterization of the optimal control (3.12) to update the control vector which 
becomes a new value for the control vector.  

4) Stop the process when the values of the control variables in the current and 
previous iterations are sufficiently close.  

The investigation of the impacts of the control efforts on the predator-prey 
system is studied numerically through different combinations of the control 
strategies. The following Table 1 and Table 2 are respectively indicating 
different combinations of the control strategies and parameter values of the 
predator-prey model.  
 
Table 1. Control strategies for prey-predator model (3.1). 

Control strategy Description 

Strategy I 
Creation of reserve areas with restriction of harvesting 

for controlling over-harvesting 

Strategy II Construction of dams for mitigating drought effects 

Strategy III Combination of control strategy I and II 

 
Table 2. Parameter values for prey-predator model (3.1). 

Parameter name Symbol Value Source 

Predation rate 1α  0.367 Estimated 

Conversion rate 1β  0.25 [24] 

Intrinsic growth rate r 1 [5] 

Predator’s half saturation A 1 [5] 

Predator’s mortality rate 1µ  0.01 [24] 

Carrying capacity 1K  200 Estimated 

Harvesting rate 2α  0.5 [25] 

Prey’s drought rate 1d  0.15 [5] 

Predator’s drought rate 2d  0.139 Estimated 
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According to [5], the constants for state and control variables are chosen 
depending on their relative importance and relative implications of cost used for 
controlling the problems. Thus, the initial state variables and other constants for 
state and control variables are chosen as follows: 1 2 1110, 46, 45C C D= = =  and 

2 36D =  and the initial state variables are ( )0 48x =  and ( )0 24y = . The 
simulations for different strategies are carried out as below:  

4.4.1. Control Strategy I: Creation of Reserve Areas with Restriction of  
Harvesting for Controlling Over-Harvesting 

From Figure 5(a), the impact of control strategy for controlling over-harvesting  
 

 
Figure 5. Simulations of a predator-prey model affected by 
over-harvesting and drought showing the impacts of creating 
reserve areas with restriction of harvesting to prey and predator 
population densities. 
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u1 is shown by using it to optimize the objective function ( )J U  while setting 
the control strategy for drought u2 equal to zero. The result shows that, at the 
final time of control the prey population increases from 24 to about 128 
individuals. These results indicate that, over-harvesting has strong negative 
impact on the population dynamics of prey-predator population densities. 

In Figure 5(b), optimal control strategy for over-harvesting, u1 is used to 
optimize the objective function ( )J U  while optimal control strategy for 
drought, u2 is set to zero. The result shows that, Despite of predators having 
enough food due to increased prey species as shown in Figure 5(a), there is a 
very small increase in a predator population density. The very small increase in 
predator population is caused by the effects of drought which is in this case 
uncontrolled.  

4.4.2. Control Strategy II: Construction of Dams for Mitigating  
Drought Effects 

From Figure 6(a) above the impact of construction of dams u2 for mitigating 
drought effects is shown by using the control strategy to optimize the objective 
function ( )J U  while setting the control strategy for over-harvesting u1 equal 
to zero. The result shows that after control there is increase in small number in 
prey population from about 24 (final state before control) to about 30 species 
only, at the final time of control. The increase in small number of prey 
population density while drought has been controlled is due to increased 
predators (Figure 6(b)) after controlling drought, and over-harvesting which is 
in this case uncontrolled. 

In Figure 6(b) we show the impact of construction of dams, u2 to predator- 
prey population densities. We observe that, the predator population density 
has increased from 24 individuals to about 76 individuals. The strategy is much 
successful in optimizing predator population. This is due to the assumption 
that, drought is the only external factor that affects predator population den- 
sity.  

4.4.3. Control Strategy III: Combination of Creation of  
Reserve Areas with Restriction of Harvesting and  
Construction of Dams 

From Figure 7(a), the effects of both control Strategies u1 and u2 are shown by 
using them simultaneously to optimize the objective function ( )J U . The result 
of control showed that, prey population increases from 24 to about 150 species. 
Thus, applying both control strategies at a time to predator-prey densities, 
encourages the growth of prey in the predator-prey system. 

From Figure 7(b), both control strategies are simultaneously applied to 
optimize the objective function ( )J U . At the final time of control, We observe 
that predator population increases from 42 to about 84 individuals. This 
information from the Figure implies that, the use of both control strategies at a 
time on prey-predator system, promote the growth of predator population in the 
predator-prey system. 
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Figure 6. Simulations of a predator-prey model affected by over- 
harvesting and drought showing the impacts of construction of 
dams to prey and predator population densities. 

5. Conclusions 

The aim of this study was to investigate the effects of over-harvesting and 
drought, and to assess the impact of control measures to these external forces. 
We developed a predator-prey model which incorporates harvesting and drought 
without control. Thereafter we carried out some analysis (theoretically and 
numerically) of the developed model to describe how harvesting and drought 
affect the prey and predator species. Furthermore, the model was modified to 
include the time dependent control efforts on over-harvesting and on drought. 
The numerical analysis to investigate the impact of the time dependent control  
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Figure 7. Simulations of a predator-prey model affected by 
over-harvesting and drought showing the impacts of combining 
control strategies to prey and predator population densities. 

 
efforts on the predator-prey model was also carried out. 

However, from the numerical simulations we observe that, using control 
strategies one at a time or two at a time encourages the increase of prey and 
predator population densities to the optimal population size. Furthermore, the 
best results is attained when the control strategies are applied at a time. Thus, in 
order to keep and protect the prey and predator species from over-harvesting 
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and drought, the stakeholders should choose to apply for control strategies to 
both over-harvesting and drought simultaneously. 
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