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Abstract 
Prominent examples of predator-prey oscillations between prey-specific predators exist, but long- 
term data sets showing these oscillations are uncommon. We explored various models to de-
scribe the oscillating behavior of coyote (Canis latrans) and black-tailed jackrabbits (Lepus cali-
fornicus) abundances in a sagebrush-steppe community in Curlew Valley, UT over a 31-year period 
between 1962 and 1993. We tested both continuous and discrete models which accounted for a 
variety of mechanisms to discriminate the most important factors affecting the time series. Both 
species displayed cycles in abundance with three distinct peaks at ten-year intervals. The coupled 
oscillations appear greater in the mid-seventies and a permanent increase in the coyote density 
seems apparent. Several factors could have influenced this predator-prey system including sea-
sonality, predator satiation, density dependence, social structure among coyotes, and a change in 
the coyote bounty that took place during the course of data collection. Maximum likelihood esti-
mation was used to obtain parameter values for the models, and Akaike Information Criterion 
(AIC) values were used to compare models. Coyote social structure and limiting resources in the 
form of density-dependence and satiation seemed to be important factors affecting population 
dynamics. 
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1. Introduction 
Predator-prey interactions among a wide variety of organisms have been studied extensively under various eco-
logical conditions. Studies show that the abundance of prey-specific predators (those which prey upon a single 
species almost exclusively) is subject to fluctuations dependent on the abundance of the prey species. The most 
prominent example of such patterns existing in mammalian species is between the lynx (Lynx canadensis) and 
snowshoe hare (Lepus americanus) using nearly a century’s worth of pelt records from the Hudson Bay Com-
pany. These data produced cycles with peak abundance every ten years for both species [1]. Other long-term da-
ta sets are rare, and most lab experiments quickly result in the extinction of one or both species [2]. It is also dif-
ficult to obtain sufficient lab or field data depicting such oscillatory patterns, especially in vertebrates, since re-
sources are limited and long-term studies can be very expensive. 

A well-known example of these trade-offs occurs between the protist ciliate species Paramecium aurelia and 
Didinium nasutum [3]. Luckinbill was able to produce such patterns with P. aurelia and its predator, D. nasutum, 
in a homogenous lab environment using methyl cellulose to inhibit the frequency of predator-prey interaction. 
Previous attempts at producing oscillatory data in a lab environment required the addition of new organisms, 
mimicking dispersal, or by adding physical complexity to the system which allowed the prey species to find re-
fuge from predation. This type of manipulation simulates a natural heterogeneous environment where prey are 
able to hide from predators, and are prevented from unlimited growth by natural constraints. Luckinbill was able 
to create oscillatory data only by limiting the frequency of contact between species, as well as manipulating the 
food supply for Paramecium. His results suggest that limitations on both the prey’s food availability, as well as 
the predator’s capture rate, are important factors influencing the existence of coupled oscillations of abundance. 

Many mathematical models have been developed to explain this kind of relationship between predators and 
prey, beginning with Lotka (1925) and Volterra and Brelot (1931) [4] [5]. Their model(s) included a growth rate 
for the predator depending linearly on prey density and a commensurate death rate for the prey. However, prey 
conversion into new predators in this model is instantaneous, and the prey species has unrestricted growth. Ros-
zenweig and MacArthur (1963) and Beverton and Holt (1957) later refined these types of models to include re-
source limitations for one or both species [6] [7]. Saturable predation responses (e.g., the type II functional re-
sponse described by Holling, 1959) were included so that the frequency of prey consumption was intrinsically 
limited [8]. Limitations on the growth of the prey species were also included in these models in the form of 
“carrying capacity,” the number of individuals a certain area can support. Today, it is widely accepted that both 
density dependence and saturable predation are essential components of predator-prey models. 

Harrison (1995) was able to successfully model Luckinbill’s Paramecium and Didinium data by incorporating 
type II predation and carrying capacity, in addition to a delayed numerical predator response in standardized 
predator-prey models [9]. Harrison fit several different models to the data, and compared results using summed 
square error. He also introduced a time-lag in the rate of prey conversion, and this delayed numerical response 
with saturable predation proved to best fit Luckinbill’s data. 

Another study conducted by Dennis et al. (1995) modeled the cannibalistic population interactions of the 
flour beetle, Tribolium castaneum, using a system of nonlinear difference equations [10]. Notably, a time-series 
approach using maximum likelihood and conditional least squares estimation was used to determine model pa-
rameters. Their experiment included several populations which were subject to identical lab conditions with 
model coefficients estimated individually for each population. Their analysis failed to reject the hypothesis that 
all populations had the same parameter values, supporting the use of these methods as an effective way to obtain 
model coefficients. 

Knowlton and Stoddart (1992) modeled a 31-year data set of coyote (Canis latrans) and black-tailed jackrab-
bit (Lepus californicus) abundances in Curlew Valley, Utah using a seasonal time-step approach [11]. Four equa-
tions were developed and parameterized individually representing 1) coyote population change, 2) jackrabbit 
natality, 3) adult jackrabbit mortality, and 4) juvenile jackrabbit mortality. They were able to successfully repro-
duce cyclical patterns of abundance in the system, but included two ad hoc constraints (not allowing the jack-
rabbits to fall below very low levels of abundance, simulating availability of refuges or emigration into the area 
and placing an upper limit on coyote abundance). Their model reproduced the three distinct cycles evident in the 
data and results from the study supported the notion that jackrabbits are a majority prey-item for coyotes. 

In another study conducted by Bartel and Knowlton (2005), coyotes demonstrated non-trivial functional feed- 
ing responses in reaction to varying levels of prey abundance [12]. Specifically, coyotes displayed a hyperbolic 
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(type II) feeding response characterized by increasing predation for increasing prey abundance before the rela-
tionship asymptotically levels off. Thus, predator satiation is likely to be a factor in this predator-prey system. 
Pitt et al. (2003) developed an individual-based computer model to test the effects of coyote social structure on 
population dynamics [13]. This model distinguished between transient coyotes and territorial coyotes since tran-
sient coyotes are likely to have higher mortality rates. Social dynamics could affect the success rate of prey cap-
ture and handling times because pack coyotes collaborate to take down larger prey. Only territorially dominant 
females were allowed to reproduce in the simulation. However, this model assumed a homogeneous food supply, 
unlikely in a natural environment. Still, results suggested that territoriality and social structure limited reproduc-
tion, which could influence predator-prey dynamics. 

Multiple models have been developed to describe predator-prey relationships, but rarely have individual in-
fluencing factors been assessed using competing models on the same system. Here we used several predator- 
prey models to describe Knowlton’s unique data set to discriminate which mechanisms have the greatest effect 
on abundance, testing effects of satiable predation, density dependence and consequences of social hierarchy at 
the population level. Continuous and discrete models were examined to evaluate the effects of seasonality and 
changing anthropogenic influences (e.g., changes in coyote bounties) on the populations. Parameter estimates 
were obtained using nonlinear maximum likelihood estimation (MLE), and models were compared using the 
Akaike Information Criterion (AIC). 

2. Methods  
2.1. Site Description and Data Collection 
Curlew Valley is located in Box Elder County in northeastern Utah on the border of Idaho. This area is domi-
nated by big sagebrush (Artemisia tridentata), rabbitbrush (Chrysothamnus nauseousus or C. viscidiflorus), 
greasewood (Sarcobatus vermiculatus), as well as agricultural crops including crested wheatgrass (Agropyron 
cristatum) and alfalfa (Medicago sativa) [14]. Curlew Valley is mainly managed by the Bureau of Land Man-
agement, and thus seasonal grazing by cattle and sheep occurs on much of the valley [12]. Elevation is approx-
imately 1280 m on the southern edge of the valley floor and gradually rises to the north by about 5.7 m/km [14]. 
Many small mammals inhabit the area including the deer mouse (Peromyscus maniculatus), the Great Basin 
pocket mouse (Perognathus parvus), Ord’s Kangaroo rat (Dipodomys ordi) and the least chipmunk (Tamias 
minimus) in addition to several lagamorph species with the black-tailed jackrabbit being the most prevalent. The 
coyote is the primary predator in this area, preying extensively on black-tailed jackrabbits. However, there has 
been some evidence of prey-switching to rodents and voles when jackrabbit numbers are low [12]. Other carni-
vores are also present in the area, including the striped skunk (Mephitis mephatis), weasel (Mustela frenata), and 
an occasional cougar (Puma concolor). 

Both coyotes and jackrabbits are considered pest species in Utah, so hunting is unrestricted all year round [15] 
[16]. Harvest rates, the number of animals “taken” by humans, varied during the course of our data set for both 
species. Utah offers bounties for coyotes, which have ranged from $8 to $50 per pelt over the past thirty five 
years. In particular, the bounty decreased by almost half in 1988 and remained low until 1992 [17]. Moreover, 
coyotes are part of Utah’s predator management plan so the state’s Division of Wildlife Resources (DWR) over-
sees additional removal of coyotes in target areas. Usually management is directly associated with livestock 
predation or used to alleviate the effects of coyotes on local mule deer herds [15]. Alternatively, white and black- 
tailed jackrabbits are not regulated by the state and, according to the Utah DWR, can be “hunted any time with 
any weapon” [16]. Lack of regulation has led to questionable eradication practices for both species including the 
use of poisons (e.g., 1080, sodium monoflouroacetate) on coyotes, spotlighting, and the historic round-ups and 
clubbing of jackrabbits in nearby southern Idaho [18]. These management practices may have affected the pre-
valence of both species in this study, but the effect is hard to quantify since Utah does not require hunters to re-
port the taking of pest species. However, we can assume that this hunting pressure remained relatively constant 
throughout the study period. 

Abundance indices were measured for jackrabbits using flushing transects each spring and fall between fall of 
1962 and spring of 1993 in a 640 square kilometer portion of the valley. Data for jackrabbits were complete with 
the exception of the spring measurements in 1987 and 1988. Coyote indices were estimated by catch-per-unit 
efforts, scent station visitation, and scat deposition rates. Fall coyote observations were complete from 1963 to 
1992. However, spring coyote measurements were only taken from 1974-1986, and from 1989-1992. These val-
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ues were then normalized and averaged for a single density index value for coyotes each season [11]. Although 
data for both species were only indices, not actual population counts, we treated them as surrogates for actual 
abundance and state “jackrabbit abundance” or “coyote abundance” in place of “observed jackrabbit index” or 
“observed coyote index.” Therefore parameter estimates will reflect index values instead of population num- 
bers. Jackrabbit abundance peaked in 1970, 1980, and 1990 with peaks in coyote abundance occurring shortly 
after in 1972, 1983, and again in 1987 (Figure 1). However, coyote abundance deviated from this oscillating 
pattern since values were noticeably higher after 1980. 

2.2. Mathematical Models for Coupled Population Dynamics 
2.2.1. Continuous Models  
These models assume continuous rates of reproduction and mortality, independent of season since abundance 
indices are updated constantly. Thus, the effects of a birthing season or harsh winter mortality, for example, are 
not included; rather, such responses are integrated with decreasing weight over all past population states. 

The Lotka-Volterra model was used as the “null” model to test out our hypotheses concerning the various 
factors influencing the dynamics of this system. This model assumes exponential growth of the prey species, not 
limited by density-dependence. It also assumes instantaneous conversion of prey into new predators, and does 
not include satiable predation, density-dependence, or social status among coyotes. The basic model is com-
posed of two equations representing the change in the jackrabbit population, J, and the change in the coyote 
population, C,  

,    andJ rJ bCJ
t

∂
= −

∂
                                 (1) 

C cbCJ dC
t

∂
= −

∂
,                                  (2) 

where r is the jackrabbit intrinsic growth rate per year and b is the attack rate of coyotes on jackrabbits per year. 
The parameter c represents jackrabbit conversion efficiency into new coyotes, measuring the relationship  
 

 
Figure 1. Abundance indices for coyotes (stars) and black-tailed jackrabbits (circles) 
in Curlew Valley, UT between 1962 and 1993. These values reflect population counts 
estimated each year using distance sampling methods. Three peaks of abundance in 
both species are apparent around 1970, 1980, and 1990.                                       
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between new coyotes and the number of prey required to support them. Lastly, coyotes die randomly every year 
at a constant rate, d. Jackrabbits reproduce at a rate proportional to the current abundance of jackrabbits, while 
they die of predation at a rate proportional to the abundance of coyotes. Coyote abundance increases simulta-
neously with the death of jackrabbits, and decreases at a constant rate across all seasons. 

The Rosenzweig and MacArthur model incorporates density dependence among the jackrabbits with the addi-
tion of a carrying capacity parameter, K. In this model, the per-capita growth rate for jackrabbits would be den-
sity-dependent,  

1 ,JrJ
K

 − 
 

 

where r  is the intrinsic growth rate per year. The model also includes type II functional response by Holling 
(1959) for saturable coyote predation,  

.
1

b
bhJ+

 

Handling time (in years) per prey item and the capture rate per year are included in the parameters h  and b  
respectively, describing how time spent interacting with prey dominates a predator’s time budget when prey are 
encountered frequently. The Rosenzweig and MacArthur model, including all of these mechanisms, is written  
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where c  and d  are again the yearly prey conversion and coyote death rates. 
Additionally, the coyote death rate parameter, d , was allowed to change at a (to be determined) time, 0t ,  

1 0

2 0
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d
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to allow variable death rates in response to changes in coyote bounties and harvest rates that occurred during the 
course of data collection. 

2.2.2. Discrete Models 
Discrete models reflect seasonal differences occurring in survivorship parameters such as increased mortality in 
winter. Additionally, it is assumed that reproduction primarily occurs in the spring and thus new individuals are 
added to the population once annually. Since populations depend only on states in the previous season, seasonal-
ity effects are strict and immediate. The Beverton-Holt model was modified to include factors associated with 
the existence of a hierarchal social structure among the coyotes by specifying a baseline number of territorial 
coyote pack members, g, which were assumed to always be present. This reflects a division of the Curlew Valley 
landscape into pack territories. The number of coyotes supported in territories is assumed to be constant, since 
coyote packs typically cooperate to obtain resources in their own territory and are therefore less sensitive to the 
fluctuating abundance of jackrabbits. 

However, not all coyotes live in packs; young coyotes in particular may become “transient” as pups mature 
and begin to forage on their own. These transient coyotes, T, were assumed to be most responsive to fluctuations 
in prey abundance with survivorship of pups dependent on the abundance of jackrabbits during the winter of 
gestation. Resource availability when coyote pups are born would influence both litter size and pup survival. 
Hence, jackrabbit abundance when pups are born is likely to affect coyote abundance two years later (Figure 2). 

We assumed the transient population, 2nT + , is a function of surviving transients from last year, plus new tran-
sients comprised of surviving pups which were dependent on the abundance of jackrabbits from two years ago. 
This seems counter-intuitive, since pups mature in a year or less. However, we assume that pup survival is most 
strongly influenced by jackrabbit abundance during the winter/spring of gestation ( nJ , letting the index n  de-
note fall of year n ). The year in which pups would be able to forage on their own and become transient would 
be the year after their birth year ( )1n + , thus adding to the transient population in year 2n + . The predator  
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Figure 2. Diagram of model structure for the Beverton-Holt/territoriality model, in 
which the number of jackrabbits in fall of year n (closest to the time of gestation, early 
spring of year 1n + ) controls the number and survival of pups born in spring 1n + . 
A fraction ( )c  of those pups are added to the transient population in year 2n + . It is 
assumed that the number of territories, and therefore territorial coyotes, is fixed. 
Transient survivorship is a fraction 1f < . The total number of coyotes in a given year 
consists of territorial coyotes plus the new and surviving transient coyotes.                       

 
conversion rate is denoted by c, and the annual survivorship of the transients is denoted by f . The total number 
of coyotes observed should consist of both transients ( )T  and alpha pack members ( )g . The effects of satia-
tion among coyotes is included with the parameters b and a, reflecting the maximum predation rate and 
half-saturation constant, respectively. 

Jackrabbits in this model were assumed to follow a Beverton-Holt nonlinear response with intrinsic growth 
rate r e  and carrying capacity r e− ,  

1 1
2

1 1

n n
n
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rJ C
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                             (5) 
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n
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                            (6) 

2 2 .n nC g T+ += +                                    (7) 

The predation and satiation rates are denoted by b and a respectively. This model includes both the effects of 
social status (i.e. a constant number of territorial coyotes and fluctuating abundance of transients) and satiable 
predation among coyotes, as well as density-dependent growth for the jackrabbits. 

The preceding models were parameterized using only fall indices, but the data set included some years with 
spring data as well. To take advantage of this, we split the discrete model biannually to test for seasonal differ-
ences in survivorship and hopefully to gain leverage on the parameters. Jackrabbits in the spring, SJ , were as-
sumed to be directly proportional to the surviving jackrabbits from the winter, excluding the possibility of winter 
births. Winter predation from coyotes was not explicitly considered since we found some evidence of prey- 
switching during this time. Jackrabbits in the fall followed the same function as in the previous model, with den-
sity dependence and satiable predation included, giving  

2 1
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where s  denotes winter jackrabbit survivorship, r  and e  characterize carrying capacity and growth as de-
scribed above, and satiation and predation are reflected in the parameters a  and b . Jackrabbits in the spring 
( )2nSJ

+
 consisted of the surviving jackrabbits from the fall ( )1nFJ

+
, where jackrabbits in the fall included new 

jackrabbits born in the spring. 
Social structure among the coyotes was reflected by a constant number of territorial coyote pack members, 

g , and variable numbers of transient coyotes not associated with packs, T . To preserve model structure for 
comparison with the un-split model, however, we maintained the assumption that the effects of jackrabbit abun-
dance on pup production is lagged an entire year, giving  

2 1
,    and

n n
n n

S F
n

bJs Cs
T fT c

a Js+ +

 
= +  + 

                          (10) 

2 2n nS SC g T
+ +
= +                                   (11) 

where f  is winter survivorship, c  is the prey conversion rate, and the parameters b  and a  again corres-
pond to predation and satiation. The total number of coyotes, C , consisted of the transient coyotes plus the 
pack coyotes (Figure 3). 

This model assumes that mortality primarily occurs in the winter, and new coyote pups are added to the pop-
ulation specifically in the spring since coyotes typically have only one litter of pups per year [19]. In addition, a 
time lag in prey conversion to new predators was included, with new transients dependent on the abundance of 
jackrabbits in the fall of the year before pup gestation. This time delay appears as a two-year lag: jackrabbits in 
the winter of gestation, nJ , contribute to pup production for year 1n +  and surviving pups contribute to 

2nST
+

 
in the spring, when new pups are born. Hence, the influencing factors of density-dependence, delayed predator 
response, satiable predation, social status, as well as seasonality, were included in this model. 

These discrete models were also expanded to reflect possible changes in coyote management by allowing a 
change in the number of coyote pack members, g, taking place partway through the simulation. Other simula-
tions were also tried which allowed for a change in the transient survivorship rate, f, to occur. This was done in 
an attempt to reflect how changing mortality might lead to the permanent increase in coyote abundance that 
started in the early eighties that could have resulted from changing coyote bounty prices. 
 

 
Figure 3. Model structure for the Beverton-Holt/territoriality/seasonally-split model, 
in which spring jackrabbits in year n  (a year before gestation, for consistency with 
the un-split model) control the number and survival of pups born in the next spring. A 
fraction ( )c  of year 1n +  pups are added to the transient population in year 2n + . 
It is assumed that the number of territories, and therefore territorial coyotes, is fixed. 
Transient survivorship is a fraction 1f < ; total number of coyotes in a given year 
consists of continuing territorial coyotes plus the new and surviving transients.                   
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2.3. Parameter Estimation and Model Comparison 
Parameter estimates for the models were obtained using nonlinear MLE, assuming a Laplace distribution of er-
rors, making it less sensitive to outliers than the normal distribution [20]. Additionally, the Laplace error model 
is appropriate for accommodating phase shifts between data and continuous models, which are exponentially 
distributed. The probability of observing obs,nC  coyotes and obs,nJ  jackrabbits in year n , given model predic-
tions, nC  and nJ , is  

( )
obs, obs,

1 1,
2 2

n n n n

C J

C C J J

n n
C J

P C J e eσ σ

σ σ

− −
− −

=  

where the error variances are 22 Jσ  for jackrabbits and 22 Cσ  for coyotes. Parameters were determined by mi-
nimizing the negative log-likelihood for all observations,  

( ) ( )obs pred obs pred 2 21 1log 4 log 4
2 2J C

J C

J J C C
LL σ σ

σ σ

− −
− = + + +∑  

using fminsearch  in MATLAB. 
Models were compared using Akaike Information Criterion ( )AIC , which measures goodness of fit based on 

the value obtained from the negative log likelihood function, LL− , and the number of parameters in a model, 
k  [21]. An AIC  correction for small sample sizes, AICc , includes an additional penalty for the number of 
samples, n . Since our data consisted of just 31 points and could be considered small, we used AICc  to com-
pare the different models. The equations for computing AIC values are  

AIC 2 2 ;k LL= −  

( )2 1
AIC AIC ,

1c

k k
n k

+
= +

− −
 

where small values indicate a good fit with the data. Consequently, increasing the number of parameters needing 
to be estimated for the model increases its AIC  value. 

We also bootstrapped the data to produce histograms of AICc  distributions for all four general models: the 
“null” Lotka-Volterra model (1-2), the Rosenzweig and MacArthur model (3-4), and the two Beverton-Holt 
models which are differentiated by seasonality (5-7 and 8-11). We randomly eliminated three years from the data, 
with replacement, to ensure all models had the same number of observations (since some models included a two 
year time lag), and fit 1000 samples for each model. Vectors of AICc  values from converging MLE estimates 
for each model were then used to create the histograms for comparison. This produced a visual representation of 
goodness of fit for each model, and allowed for us to determine the probability that a model could outperform 
another model given the data.  

3. Results 
Both continuous and discrete models appeared to fit the data fairly well. In fact, the two models with the lowest 
AICc  values were the annual discrete Beverton-Holt model without seasonality, and the continuous Rosenz-
weig and MacArthur model (Table 1). Models that included density-dependence and satiable predation pro-
duced much better fits than the basic Lotka-Volterra model. The discrete Beverton-Holt models, split to account 
for spring/fall seasonality produced the largest AICc values, but this can partially be explained by the increase in 
the number of model coefficients.  

The Lotka-Volterra model, our “null” model, turned out to give the least appealing visual fit to the data (Fig- 
ure 4). Problematically, coyote abundance remained about the same over the course of the simulation. The mod-
el correctly predicted the time of the third peak in jackrabbit abundance, but did not predict the second peak as a 
maximum (the peak in jackrabbit abundance around 1980 is higher than in 1970 and 1990) and over-predicted 
the first peak. However, it was not the worst fit of the models ( )AIC 508.05c = . The intrinsic growth rate of the 
jackrabbits was estimated to be 4.91/year and the capture rate, 0.753/coyote-year (Table 2). This was consistent 
with existing research on this species having high rates of both growth and mortality [11]. The prey conversion 
rate affecting the coyotes was estimated to be 0.0022 new coyotes/jackrabbit and their death rate 0.089/year.  



S. Kay et al. 
 

 
128 

Table 1. AIC and AICc values for all models. Models that included satiable predation and density-dependence have the 
lowest AIC values, while models which incorporated seasonality have the highest AIC values. The number of parameters 
includes those in the models as well as the variance parameters ( Jσ  and Cσ ) and initial population values.                   

Model Number of parameters AIC  AICc  

Classic Lotka-Volterra 8 501.5 508.05 

Rosenzweig and MacArthur 10 490.7 501.70 

Rosenzweig and MacArthur w/different coyote death rates 12 505.7 523.03 

Basic Beverton-Holt 9 486.4 494.97 

Basic Beverton-Holt Split 14 535.03 561.28 

Beverton-Holt Split w/different coyote death rates 16 539.3 578.16 

Beverton-Holt Split w/different number of pack members 16 534.1 572.96 

 

 
Figure 4. The Lotka-Volterra model predictions for abundance graphed against observed data (stars/solid line for 
coyotes and circles/dashed line for jackrabbits). Time of abundance peaks are predicted satisfactorily for jackrabbits, 
but coyote abundance problematically remains the same over the course of the data.                                   

 
This model did not correctly capture whatever influenced coyote fluctuations since abundances were predicted 
to be nearly constant over all years. 

Adding a carrying capacity for the jackrabbits (although there is currently no direct evidence that jackrabbits 
are in any way resource-limited in Curlew Valley) and predator satiation for the coyotes greatly improved the fit 
in the Rosenzweig and MacArthur model, which had the second-lowest AICc  value ( )AIC 501.7c = . The first 
peak in jackrabbit abundance was clearly predicted accurately, and the other peaks were predicted quite close to 
the observed values as well (Figure 5). The jackrabbit growth rate, valued at 5.18/year, remained consistent with 
expectations (Table 3). The index value for carrying capacity was estimated to be approximately 251 individuals. 
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Table 2. Parameter estimates for the Lotka-Volterra model computed with 
fminsearch  in MATLAB using Maximum Likelihood Estimation and assum- 
ing a Laplace distribution of error. Parameter estimates for jackrabbits, the 
prey growth and predation rates, are consistent with existing literature.                       

Parameters Description Values 

r Prey growth rate 4.91 

b Attack rate 0.753 

c Conversion rate 0.0022 

d Predator death rate 0.089 
 

 
Figure 5. Model predictions for the Rosenzweig and MacArthur model which incorporates density-dependence and 
satiable predation. Peaks of jackrabbit abundance are timed correctly and the first peak appears to fit accurately, but 
the second peak is under-predicted. Conversely, predictions for coyote abundance do not appear to fit the data well.         

 
Predictions were again too stable for coyote abundance, producing only two minor maxima shortly after the rise 
in jackrabbit abundance in the early seventies and again in the early eighties. However, the prey conversion rate, 
estimated to be 0.014 new coyotes/jackrabbit, was more consistent with existing theory regarding energy trans-
fer between trophic levels [22]. The coyote handling time per prey item and attack rate were estimated to be 78.3 
minutes and 0.41/coyote-year, which both seem like realistic values. The coyote death rate also appeared rea-
sonable at 0.13, suggesting approximately ten percent of coyotes die each year. 

The same model was tried again allowing for a change to occur in the coyote death rate partway through the 
simulation to reflect a decrease in the coyote bounty that happened in the eighties. This produced a good visual 
fit to the data (Figure 6), but the addition of two new parameters (the new death rate and time of change) in-
creased the AICc value to 523. Oddly enough, this significantly changed the parameter estimates for the jackrab-
bit growth rate (1.058) and their carrying capacity (605.23), but similar values were obtained for the satiation 
(170.55) and predation (29) rates. However, parameter estimates for the death rates were contrary to our expec-
tations since the death rate increased slightly in 1974 from 0.54 to 0.62 whereas one would expect lower  
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Table 3. Parameter estimates for the Rosenzweig and MacArthur model, 
which included predator satiation and density-dependent growth for the prey. 
Coefficients were estimated using Maximum Likelihood Estimation assuming 
a Laplace distribution of error with values seeming to be consistent with 
existing theory.                                                               

Parameters Description Values 

r Prey intrinsic growth rate 5.18 

K Carrying capacity 251.43 

a Satiation rate 128.22 

b Predation rate 52.49 

c Prey conversion rate 0.014 

d Coyote death rate 0.13 

 

 
Figure 6. Model predictions for Rosenzweig and MacArthur model allowing for change in the coyote death rate to 
occur partway through the simulation to reflect changes in coyote harvest rates. This model adequately predicts the 
three peaks in jackrabbit abundance, as well as the first two peaks in coyote abundance, but predicts a crash in the 
coyote population in the early nineties when observed abundance values are high.                                     

 
mortality rates when bounties decreased (Table 4). Nonetheless, this model adequately predicted the oscillations 
of jackrabbit abundance and produces two distinct maxima in coyote abundance. 

The Beverton-Holt model had the lowest AICc value (495) and included the effects of density-dependence, 
satiable predation, delayed predator response, and social structure among the coyotes. This discrete model pre-
dicted jackrabbit abundance fairly accurately, even capturing a higher abundance in 1980 than in any other year 
(Figure 7). The intrinsic growth rate for the jackrabbits was estimated to be 2.97/jackrabbit/year, and the carry-
ing capacity 278.689 (Table 5). Satiation and predation rates were estimated to be 441.45 and 121.37, respec- 
tively. Transient survival, valued at 0.0763/year, was expectedly low. The number of coyote pack members was  
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Table 4. Parameter estimates for Rosenzweig and MacArthur model which 
allowed for a change in the coyote death rate to occur, from d1 to d2, in some 
year, n. Parameter values changed significantly from the Rosenzweig and 
MacArthur model which does not allow for a changing coyote death rate.              

Parameters Description Values 

r  Prey intrinsic growth rate 1.058 

K  Carrying capacity 605.23 

a  Satiation rate 170.55 

b  Predation rate 29.002 

c  Prey conversion rate 0.11 

1d  Coyote death rate 0.54 

2d  Second coyote death rate 0.62 

0t  Time when switch occurs 1974 

 

 
Figure 7. Abundance predictions for the basic version of the Beverton-Holt model which incorporates social status 
among the coyotes. The three peaks in jackrabbit abundance are correctly predicted, but again, only two maxima in 
coyote abundance are predicted and the population is grossly under-predicted in the early nineties.                   

 
approximately 0.12, and the prey conversion rate 0.0526/jackrabbit (recall that these parameter estimates reflect 
indices values, rather than actual population numbers). This was the only model in which the graph displayed 
three maxima of coyote abundance. However, the coyote population appeared to crash in 1990 when observed 
values were high. 

Splitting the Beverton-Holt model by season failed to improve the fit. In fact, these models had the highest 
AICc  values (561.28 - 572.9), which were computed using only fall values for model comparison. Three dis-
tinct peaks in jackrabbit abundance were evident in both seasons, and coyote abundance seemed to be more ac-
curately predicted by this model in the early nineties than in any other model (Figure 8). The jackrabbit growth  
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Table 5. Parameter estimates for the basic Beverton-Holt model. Estimates for 
vital rates are comparable to the Rosenzweig and MacArthur model. Transient 
survival is expectedly low and the number of coyote pack members is rational 
because these values reflect indices and not the number of individuals.                   

Parameters Description Values 

r e  Prey intrinsic growth rate 2.97 

r e−  Carrying capacity 278.689 

b  Predation rate 121.37 

a  Satiation rate 441.45 

f  Transient survival rate 0.0763 

c  Conversion rate 0.0526 

g  No. of coyote pack members 0.12 

 

 

 
Figure 8. Abundance predictions for seasonal Beverton-Holt model. The peaks in jackrabbit abundance are timed 
correctly, but the second peak is under-predicted. However, this is the only model that predicts three maxima in 
coyote abundance, but the timing of the third peak may be slightly off.                                             

 
rate increased to 5.43/jackrabbit, and the carrying capacity remained about the same at 274.72 (Table 6). Both 
the predation and satiation rates were reduced by almost half because this model updates indices biannually in-
stead of annually. Jackrabbit winter survival was estimated to be 0.67, and the prey conversion rate remained 
consistent at 0.104/jackrabbit. However, the number of coyote pack members in this model was estimated to be 
3.21, significantly higher than the value obtained from the annual model. Coyote transient survivorship also 
changed considerably, increasing to 0.21. 

This model was also adjusted, much like the Rosenzweig and MacArthur model, to allow for either a change 
in the number of coyote pack members ( )g , or for a change in the survivorship of transients ( )f  to occur. 
This was done to account for changes that could have taken place in coyote harvest rates due to a decrease in the 
price of the coyote bounty. However, these adjustments produced unrealistic parameter estimates and neither 
simulation visually improved the fit. 
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Distributions of AICc values for each model were computed by randomly eliminating three years from the 
data and fitting each model with the new data for 1000 different samples. AICc values for converging solutions 
were then graphed with lines indicating the AICc  values for the original model fits consisting of all data years 
(Figure 9). These distributions depict the probability that one model could perform better than another. For ex-
ample, the probability that seasonality would improve the Beverton-Holt model of the time series is 0.001p < . 
Similarly, it is shown that satiation and resource limitations are important factors affecting this system since both 
the Beverton-Holt model and the Rosenzweig and MacArthur model most probably outperform the Lotka-Vol- 
terra model ( )0.99p > . 
 

Table 6. Parameter estimates for seasonal split of Beverton-Holt model. 
Values are similar to those from the basic Beverton-Holt model, with the 
exception of an increase in the number of coyote pack members ( )g , 

transient survivorship ( )f , and the jackrabbit growth rate ( )r e .                     

Parameters Description Values 

r e  Prey intrinsic growth rate 5.43 

r e−  Carrying capacity 274.72 

b  Predation rate 75.2 

a  Satiation rate 299.06 

f  Transient survival rate 0.21 

c  Conversion rate 0.104 

g  No. of coyote pack members 3.21 

s  Jackrabbit winter survival 0.67 

 

 
Figure 9. Distributions of AICc for the four basic models. The best models are 
the basic Beverton-Holt model (BH) and the Rosenzweig and MacArthur 
model (Rose), which include density-dependence and satiable predation. Ver- 
tical lines represent AICc values for the model fits described in this paper. 
Since the Beverton-Holt model proved to be one of the best, social status 
among coyotes as well as a delayed predator response, may influence pre- 
dator-prey dynamics in this system.                                               
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4. Discussion 
A variety of both continuous and discrete models competed to describe the details of a time series linking coyote 
and jackrabbit abundance indices in northern Utah/southern Idaho; the best models proved to be the simplest. 
The Lotka-Volterra model (1-2) was used as the null model and did not include any factors tested in the other 
models. Models which included the effects of density-dependence on jackrabbits and satiable predation per-
formed better than the others. The model with the lowest AICc  value included the effects of social status and 
delayed predator response, suggesting these may be significant factors affecting this predator-prey system at the 
population level. The models that accounted for seasonal differences in critical parameters had much higher 
AICc  values, indicating that seasonality is not a significant factor affecting predator-prey oscillations. 

The model with the lowest AICc  value, the basic Beverton-Holt model (5-7), included social status among 
coyotes and an effective carrying capacity of packs in Curlew Valley (i.e. a fixed number of territorial packs and 
a fluctuating number of transients). This supports the hypothesis that social structure could be a contributing 
factor to predator-prey dynamics in this system. Social status among canids may affect their response to fluc-
tuating prey densities since coyote pack members are less likely to be prey-selective. Pack association allows 
coyotes to hunt collaboratively, giving them the ability to take down larger prey which could sustain the pack for 
a longer period of time than smaller prey. Thus, we can assume that a transient coyote’s diet mainly consists of 
small prey and in this case, almost exclusively black-tailed jackrabbits [11]. 

Additionally, the basic Beverton-Holt model included a delayed predator response since incoming transients 
were dependent on the abundance of jackrabbits at the time of pup gestation (an index offset of two, reflecting 
dependence of pup survival on winter jackrabbit abundance during gestation, a year of maturation, and subse-
quent delay until effects of new transients are reflected in fall abundances). This is not a novel idea since preda-
tor abundance in these cyclical predator-prey systems often lags several years behind the prey species; Harrison 
(1995) included a delayed numerical response when modeling Luckinbill’s data. Thus, the inclusion of this type 
of time-lag of prey conversion into new predators could enhance other predator-prey models as well. 

5. Conclusion 
This paper illustrates how multiple, competing models can be used to evaluate the importance of possible me-
chanisms contributing to complex ecological interactions. Rather than trying to nest models, which intrinsically 
links some mechanisms to others, we constructed specific models for specific clusters of mechanisms. Models 
competed via model-independent information theoretic criteria, allowing us to discriminate among mechanisms, 
even using the non-reproducible time series for coyote-jackrabbit oscillations in the Curlew Valley. Similar ap-
proaches can help wildlife managers to evaluate population models and contributing mechanisms without as 
much need for difficult observations and manipulations, which would otherwise be required to reproduce long- 
term oscillations between predator and prey species. 
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