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Abstract 
A set ( )S V G⊆  is a dominating set of G if every vertex of ( )V G S−  is adjacent to at least one 
vertex of S. The cardinality of the smallest dominating set of G is called the domination number of 
G. The square G2 of a graph G is obtained from G by adding new edges between every two vertices 
having distance 2 in G. In this paper we study the domination number of square of graphs, find a 
bound for domination number of square of Cartesian product of cycles, and find the exact value for 
some of them. 
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1. Introduction 
The usual graph theory notions not herein, refer to [1]. The neighborhood of vertex u is denoted by 

( ) ( ) ( ){ }:N u v V G uv E G= ∈ ∈  and the close neighborhood of vertex u is denoted by [ ] ( ) { }N u N u u= ∪ . 

Let ( )S V G⊆ , the neighborhood and closed neighborhood of S are defined as ( ) ( )u S
N S N u

∈
=∪  and 

[ ] [ ]u S
N S N u

∈
=∪ . If ( )u V G∈ , then ( ) ( ) ( ){ }1 ,kN u v V G d u v k= ∈ ≤ ≤ . If ( )S V G⊆  and ( )u V G∈ ,  

t h en  ( ) ( ){ }, min ,d u S d u v v S= ∈ .  Th e  d iam e ter  o f  G  d eno ted  b y  ( )diam G  i s  d e f in ed  a s  
( ) ( ) ( ),max ,Gu v V Gdiam G d u v∈= . A set ( )S V G⊆  is a dominating set of G if every vertex of ( )V G S−  is 

adjacent to at least one vertex of S. The cardinality of the smallest dominating set of G, denoted by ( )Gγ , is 
called the domination number of G. A dominating set of cardinality ( )Gγ  is called a γ-set of G [2]. A 
dominating set S is a minimal dominating set if no proper subset S S′ ⊂  is a dominating set. Given any graph 
G, its square graph 2G  is a graph with vertex set ( )V G  and two vertices are adjacent whenever they are at 
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distance 1 or 2 in G. For example 2
5 5C K= . A set ( )S V G⊆  is a 2-distance dominating set of G if 

( ), 1Gd u S =  or 2 for every vertex of ( )V G S− . The cardinality of the smallest 2-distance dominating set of G, 
denoted by ( )2 Gγ , is called 2-distance domination number of G. Every 2-distance dominating set of G is a  
dominating set of 2G , so ( ) ( )2 2G Gγ γ= . The Cartesian product of Graphs G and H denoted by G H  is a  

graph with vertex set ( ) ( ) ( )V G H V G V H= ×  and the edge set  

( ) ( ) ( )( ) ( )( ) ( )( ){ }, , , : & or &E G H u v z w uz E G v w u z vw E H= ∈ = = ∈ . The graph G H  is obtained by  

locating copies iH  of grpah H instead of vertices of G and connecting the corresponding vertices of iH  to 
jH  if vertex iv  is adjacent to jv  in G. G H  is isomorphic to H G . We denote a cycle with n vertices 

by nC  and a path with n vertices by nP . The bipartite geraph 1,3K  is named claw. 

2. Preliminaries Results 
Theorem 1. Let G be a graph. Then 
a) If ( )uv E G∈ , then ( ) ( )G uv Gγ γ− ≥ . 
b) If ( )cuv E G∈ , then ( ) ( )G uv Gγ γ+ ≤ .  
Proof. a) Every dominating set of G uv−  is a dominating set of G so ( ) ( )G uv Gγ γ− ≥ . 

b) Every dominating set of G is a dominating set of G uv+  so ( ) ( )G uv Gγ γ+ ≤ .  
Theorem 2. [3] A dominating set S is a minimal dominating set if and only if for each vertex u S∈ , one of 

the following conditions holds: 
a) u is an isolated vertex of S. 
b) there exist a vertex ( )v V G S∈ −  for which ( ) { }N v S u=∩ .  
Theorem 3. [3] If G is a graph with no isolated vertices and S is a minimal dominating set of G, then 
( )V G S−  is a dominating set of G.  
Proof. Let S be a γ-set of G. S is a minimal dominating set of G. By Theorem 3, ( )V G S−  is a dominating 

set of G too, so ( )S V G S≤ − , so 
2
nS ≤ .  

Theorem 4. [4] If G is a connected claw free graph, then ( )
3
nGγ  ≤   

.  

Theorem 5. [5] Let G be a graph. Then 
( ) ( ) ( )

1
n G n G

G
γ

 
≤ ≤ − ∆ 

+ ∆  
.  

Since ( ) ( ) 2n nC P∆ = ∆ = , by Theorems 4 and 5 we have the following corollary. 

Corollary 6. ( ) ( )
3n n
nC Pγ γ  = =   

.  

Vizing conjecture 
Let G and H be two graphs. Then ( ) ( ) ( )G H G Hγ γ γ≥  [6]. 

3. Domination Number of Square of Graphs 
Theorem 7. Let S be a dominating set of 2G . Then S is a minimal dominating set of 2G  if and only if each 

vertex u S∈  satisfies at least one of the following conditions: 
a) There exists a vertex ( )v V G S∈ −  for which ( ) { }2N v S u=∩ . 
b) ( ), 2d u w >  for every vertex { }w S u∈ − .  
Proof. If u S∈  and u does’t satisfy conditions a) and b), then the set { }S u−  is a dominating set of 2G  

that is contradiction. Conversely, let S be a dominating set of 2G  but not minimal. Then there exists a vertex 
u S∈  such that { }S u−  is a dominating set of 2G , too. So { }( ), 1d v S u− =  or 2 for every ( )v V G S∈ − ; 
therefore S doesn’t satisfy in condition a). In addition { }( ), 1d u S u− =  or 2, so S doesn’t satisfy in condition 
b).  
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Theorem 8. If ( ) 3diam G ≤ , then ( ) ( )2G Gγ δ≤ .  
Proof. Let ( ) ( )d u Gδ= . Since ( ) 3diam G ≤ , the set ( )N u  is a dominating set of 2G . Therefore 

( ) ( ) ( ) ( )2G N u d u Gγ δ≤ = = .  

Theorem 9. If ( ) 4diam G ≤ , then ( ) ( ) ( )( ) ( )2
v N uG d v d uγ
∈

≤ −∑ , for every ( )u V G∈ .  

Proof. Let u be an arbitrary vertex of G. Let ( ) ( )( ) { }S u N N u u= − . Since ( ) 4diam G ≤ , ( )( ), 2d v S u ≤ , for 

every ( )v V G∈ . Therefore ( )S u  is a dominating set of 2G . ( ) ( ) ( )( )1v N uS u d v
∈

≤ −∑  and ( ) ( )N u d u= , 

Hence ( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )2 1v N u v N uG S u d v d v d uγ
∈ ∈

≤ ≤ − = −∑ ∑ .  

Theorem 10. Let G be a graph. Then ( )( ) ( )2
nG K Gγ γ= .  

Proof. Let ( ) { }1 2, , , mV G u u u= �  and 1 2, , , mH H H�  be the copies of nK  in nG K  corresponding to 

the vertices 1 2, , , mu u u� . Let { }1 2, , ,t t tkS u u u= �  be a γ-set of G. Then the set ( )( )2S V G H′ ⊆   that 

contains a vertex of each copies 1 2, , ,t t tkK K K�  is a γ-set of ( )2
nG K . Since S S′ = , the result holds.  

Theorem 11. For every 3n ≥ , ( )2

5n
nCγ  =   

.  

Proof. The graphs 2
3C  and 2

4C  are complete graphs, therefore ( ) ( )2 2
3 4 1C Cγ γ= = . So the result holds for 

2
3C  and 2

4C . Let 1 2 1n nC u u u u= � , 5n ≥ . Since ( )2 4nC∆ = , by the Theorem 5 we have ( )2

5n
nCγ  ≥   

. On 

the other hand by Figure 1 the set 5 1 : 0,1, , 1
5k
nS u k+

  = = −    
�  is a dominating set of size 

5
n 
  

 for 2
nC . 

So ( )2

5n
nCγ  ≤   

, therefore ( )2

5n
nCγ  =   

. 

Theorem 12. For every 1n ≥ , ( )2

5n
nPγ  =   

.  

Proof. ( ) ( ) ( ) ( )2 2 2 2
1 2 3 4 1P P P Pγ γ γ γ= = = = , and the result holds for these graphs. Let 1 2n nP u u u= � , 

5n ≥ . Since ( )2 4nP∆ = , by Theorem 5 we have ( )2

5n
nPγ  ≥   

. By Figure 2 the set: 

( )

{ } ( )

{ } ( )

5 3

5 3

5 3 1

: 0,1, , 1 if 0 mod5
5

: 0,1, , 1 if 1,2,3 mod5
5

: 0,1, , 1 if 4 mod5
5

k

k n

k n

nu k n

nS u k u n

nu k u n

+

+

+ −

  = − ≡     
  = = − ≡    
  = − ≡     

�

� ∪

� ∪

 

is a dominating set of size 
5
n 
  

 for 2
nP , so ( )2

5n
nPγ  ≤   

; therefore ( )2

5n
nPγ  =   

. 

Theorem 13. For every , 1m n ≥ , ( )( )2

13m n
mnP Pγ  ≥   

 , and for every , 3m n ≥ , ( )( )2

13m n
mnC Cγ  ≥   

 . 

Proof. The graphs m nP P  and m nC C  have mn vertices and every vertex u dominates at least 13 vertices 
in ( )2

m nP P  and ( )2
m nC C  (Figure 3), so the result holds. 

By Theorem 13, ( )( )2
m nP Pγ   or ( )( )2

m nC Cγ   equals the minimum number of diamonds like Figure 4. 

we can cover all the vertices of m nP P  or m nC C . 
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Figure 1. A dominating set of 2
nC .                               

 

 

Figure 2. A dominating set of 2
nP .                               

 

 

Figure 3. Dominated vertices by u in ( )2
m nP P  and ( )2

m nC C .       

 

 

Figure 4. Dominated vertices by one vertex in ( )2
m nP P  and ( )2

m nC C . 
 

In this paper we use short display or s.d to show the graphs m nP P  and m nC C  for simplicity; it means 
that we don’t draw the edges of these graphs and draw only their vertices. 

Theorem 14. For every , 1k t ≥ , ( )( )2
13 13 13k tC C ktγ = .  

Proof. By Theorem 13 we have ( )( )2
13 13 13C Cγ ≥ . In Figure 5 that is s.d of 13 13C C . It is determined by 

a γ-set of size 13 for ( )2
13 13C C . Therefore ( )( )2

13 13 13C Cγ ≤ ; hence ( )( )2
13 13 13C Cγ = . 

We can obtain s.d of 13 13k tC C  with dominating set of size 13kt for ( )2
13 13k tC C  by locating kt copies of 

Figure 5 in k rows and t columns. Hence ( )( )2
13 13 13k tC C ktγ ≤ . By Theorem 13 we have  
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Figure 5. A dominating set of size 13 for ( )2
13 13C C . 

 

( )( )2
13 13 13k tC C ktγ ≥ , so ( )( )2

13 13 13k tC C ktγ =
 

Theorem 15. ( )( )2
3 3n

nC Cγ  =   
 , for every 3n ≥ .  

Proof. Since 3 3C K= , by Theorem 10 and Corollary 6 we have  

( )( ) ( )( ) ( )2 2
3 3 3n n n

nC C K C Cγ γ γ  = = =   
   

Theorem 16. ( )( )2
4

4
13n

nC Cγ  =   
 , 4,5,6,7n = , and  

( )( )
( )

2
4 6

2 if 0,
2 1 if 1,
2 1 if 2,3, 4,5.

k t

k t
C C k t

k t
γ +

=
≤ + =
 + =

  

Proof. By Theorem 13 we have ( )( )2
4

4
13n

nC Cγ  ≥   
 . In Figure 6 it is determined by a dominating set of 

size 4
13

n 
  

 for ( )2
4 nC C , 4,5,6,7n = , so for these graphs we have ( )( )2

4
4
13n

nC Cγ  =   
 . 

In Figure 6, the seventh column of s.d of 4 7C C  (from left to right) is similar to the first column of s.d of 
4 1C P , 4 2C P  and 4 nC C , 3, 4,5,6,7n = . By setting s.d of k graphs 4 7C C  and one s.d of 4 2C P  or 
4 3C C  or 4 4C C  or 4 5C C  consecutively from left to right such that the first column of every s.d of graph 

locates on the last column of s.d of the previous graph, we can obtain a s.d of 4 6k tC C +  with a dominating set 
of size ( )2 1k +  for ( )2

4 6k tC C + , 2,3, 4,5t = . By the same setting for s.d of k graphs 4 7C C  we can 
obtain a s.d of 4 6 1kC C +  with a dominating set of size 2 1k +  for ( )2

4 6 1kC C + . Also by the same setting for 
s.d of 1k −  graphs 4 7C C  and one s.d of 4 6C C  we can obtain a s.d of 4 6kC C  with a dominating set of 
size 2k for ( )2

4 6kC C . 

Theorem 17. ( )( )2
5

5
13n

nC Cγ  =   
 , 3, 4,6n = , and  

( )( )
( )

2
5 6

3 if 0,
3 1 if 1,
3 2 if 2,3,4,
3 1 if 5.

k t

k t
k t

C C
k t
k t

γ +

=
 + =≤  + =
 + =



 

Proof. By Theorem 13 we have ( )( )2
5

5
13n

nC Cγ  ≥   
 . In Figure 7 it is determined by a dominating set for  
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Figure 6. A dominating set for ( )2
4 nC C , 1,2, ,7n = � .    

 

 

 

Figure 7. A dominating set for ( )2
5 nC C , 1,2, ,7n = � .    
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( )2
5 1C P , ( )2

5 2C P  and ( )2
5 nC C , 3, 4,5,6,7n = . 

By Figure 7 we have ( )( )2
5

5
13n

nC Cγ  ≤   
 , 3, 4,6n = . So for these graphs equality holds. 

In Figure 7, the seventh column of s.d of 5 7C C  (from left to right) is similar to the first column of s.d of 
5 1C P , 5 2C P  and 5 nC C , 3, 4,5,6,7n = . By setting s.d of k graphs 5 7C C  and one s.d of 5 2C P  or 
5 3C C  or 5 4C C  consecutively from left to right such that the first column of every s.d of graph locates on 

the last column of the previous s.d of graph, we can obtain a s.d of 5 6k tC C +  with a dominating set of size 
3 2k +  for ( )2

5 6k tC C + , 2,3, 4t = . By the same setting for s.d of k graphs 5 7C C  we can obtain a s.d of 
5 6 1kC C +  with a dominating set of size 3 1k +  for ( )2

5 6 1kC C +  and by the same setting for s.d of k graphs 
5 7C C  and one s.d of 5 5C C  we can obtain a s.d of 5 6 5kC C +  with a dominating set of size ( )3 1k +  for 

( )2
5 6 5kC C + . Also by the same setting for s.d of 1k −  graphs 5 7C C  and one s.d of 5 6C C  we can obtain 

a s.d of 5 6kC C  with a dominating set of size 3k for ( )2
5 6kC C . 
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