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Abstract

A set ScV(G) is a dominating set of G if every vertex of V' (G)—S is adjacent to at least one

vertex of S. The cardinality of the smallest dominating set of G is called the domination number of
G. The square G2 of a graph G is obtained from G by adding new edges between every two vertices
having distance 2 in G. In this paper we study the domination number of square of graphs, find a
bound for domination number of square of Cartesian product of cycles, and find the exact value for
some of them.
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1. Introduction

The usual graph theory notions not herein, refer to [1]|. The neighborhood of vertex u is denoted by
N(u)= {ve V(G):uve E(G)} and the close neighborhood of vertex u is denoted by N[u]=N(u)U{u}.

Let SV (G), the neighborhood and closed neighborhood of S are defined as N (S )=UueSN (u) and

N[S]=U,.N[u]. If ueV(G), then N, (u)={veV(G)[i<d(uv)<k|.If ScV(G) and ueV(G),

then d(u,$)= min{d(u,v)|ve S} . The diameter of G denoted by diam(G) is defined as
diam(G) = max, g 4o (u,v). Aset ScV(G) is a dominating set of G if every vertex of V(G)-S is
adjacent to at least one vertex of S. The cardinality of the smallest dominating set of G, denoted by }/(G) , 18
called the domination number of G. A dominating set of cardinality y(G) is called a j-set of G [2]. A
dominating set S is a minimal dominating set if no proper subset S'c S is a dominating set. Given any graph
G, its square graph G* is a graph with vertex set V(G) and two vertices are adjacent whenever they are at
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distance 1 or 2 in G. For example C; =K. A set ScV(G) is a 2-distance dominating set of G if
d; (u,S ) =1 or 2 for every vertex of ¥ (G)—S . The cardinality of the smallest 2-distance dominating set of G,
denoted by »’ (G), is called 2-distance domination number of G. Every 2-distance dominating set of G is a

dominating set of G*,so y*(G)= y(Gz) . The Cartesian product of Graphs G and H denoted by GOH isa
graph with vertex set V' (GOH )=V (G)xV (H) and the edge set
E(GOH)= {((u,v),(z,w)) : (uz eE(G)&v= w) or(u =z&we E(H))} . The graph GOH is obtained by

locating copies H, of grpah H instead of vertices of G and connecting the corresponding vertices of H, to
H, if vertex v, is adjacentto v, in G. GOH is isomorphic to HOG . We denote a cycle with n vertices
by C, and apath with n vertices by P, . The bipartite geraph K, ; is named claw.

2. Preliminaries Results

Theorem 1. Let G be a graph. Then

a)If uve E(G),then y(G-uv)2y(G).

D) If uveE(G°), then y(G+uv)<y(G).

Proof. a) Every dominating set of G —uv is a dominating setof Gso y(G-uv)>y(G).

b) Every dominating set of G is a dominating set of G+uv so y(G+uv)<y(G).

Theorem 2. [3] A dominating set S is a minimal dominating set if and only if for each vertex u e S, one of
the following conditions holds:

a) u is an isolated vertex of S.

b) there exist a vertex veV (G)—S for which N(v)NS ={u}.

Theorem 3. [3] If G is a graph with no isolated vertices and S is a minimal dominating set of G, then
14 (G) —S is a dominating set of G.

Proof. Let S be a y-set of G. S is a minimal dominating set of G. By Theorem 3, V(G)—S is a dominating

set of G too, so |S| S|V(G)—S| ,50 |S] gg.

Theorem 4. [4] If G is a connected claw free graph, then }/(G) < [g—‘ .

Theorem 5. [5] Let G be a graph. Then [#(G)—' <7(G)<n-A(G).

Since A(C,)=A(P,)=2,by Theorems 4 and 5 we have the following corollary.
Corollary 6. 7(C,)=y(P,)= {2-‘ .

Vizing conjecture
Let G and H be two graphs. Then y(GOH)>y(G)y(H) [6].

3. Domination Number of Square of Graphs

Theorem 7. Let S be a dominating set of G*. Then S is a minimal dominating set of G* if and only if each
vertex ueS satisfies at least one of the following conditions:

a) There exists a vertex veV (G)—S for which N,(v)NS ={u}.

b) d(u,w)>2 forevery vertex weS—{uj.

Proof. If ueS and u does’t satisfy conditions a) and b), then the set § —{u} is a dominating set of G*
that is contradiction. Conversely, let S be a dominating set of G* but not minimal. Then there exists a vertex
ueS suchthat S—{u} isa dominating set of G, too. So d(v,S—{u}) =1 or2 forevery veV(G)-S;
therefore S doesn’t satisfy in condition a). In addition d (u,S —{u}) =1 or 2, so S doesn’t satisfy in condition

b).
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Theorem 8. If diam(G) <3, then 7(G2 ) <
Proof. Let d(u)=6(G). Since diam(G)

7(G*)<|N(u) =d(u)=5(G).

Theorem 9. If diam(G) <4, then 7(G2 ) < (Zv d(v ))

5(G).
<3, the set N ( ) is a dominating set of G’ . Therefore

d(

{

every veV(G). Therefore S(u) is a dominating set of G”. |S(u)| ZveN (d(v)— and |N u|
).

Hence y(Gz)S|S(u)|SZveN(u)(d(v)_l):ZveN( ( ( )) (u
Theorem 10. Let G be a graph. Then y((GDK") ) 7(G).
Proof. Let V(G)={u,u,,--,u,} and HH,,--,H, be the copies of K, in GUK, corresponding to

u) ,forevery ue V(G).
j

Proof. Let u be an arbitrary vertex of G. Let S (u)= ( (u))—{u} . Since diam(G)<4, d(v,S(u))<2, for

the vertices u,,u,.u, . Let S =1{u, . uy.~u,} be a pset of G. Then the st S’gV((GDH)Z) that

1> t

contains a vertex of each copies K,,K,,,+,K, isa ysetof (GUK, )2 . Since |S’| = |S| , the result holds.

5
Proof. The graphs C; and C; are complete graphs, therefore ;/(C32 ) = ;/(Cf ) =1. So the result holds for

Theorem 11. For every n>3, ;/(Cf):(ﬁ—‘_

C2 and C2.Let C,=uu, uu, n=5.Since A(Cf)=4, by the Theorem 5 we have )/(Cj)z[g—‘ On

the other hand by Figure 1 the set §= {usk“ k= O,l,---,{%}—l} is a dominating set of size [g—l for C2.

So ;/(Cj ) < {g—l , therefore }/(Cj) = {g—l .

Theorem 12. For every n2>1, 7/(312) = {%—l .
Proof. ;/(}’,2)= ;/(Pzz)z 7/(1332) = ;/(Pf)=1, and the result holds for these graphs. Let P, =uwu, --u

n o

n>5. Since A(Pn2 ) =4, by Theorem 5 we have }/(Pn2 ) > {g—l . By Figure 2 the set:

{u5k+3:k=0’1""> lanO(modS)

S = {uw k=01,

I
u]|: m|= m|=

1} if n=4(mod5)

r
L

} if n=1,2,3(mod5)
{u5k+3:k=0’1’.“’ } n

. o . n 2 2 ni. 2\ _| I
is a dominating set of size [E—I for P, so 7/(Pn ) < {g—‘ ; therefore }/(R, ) = {;l .

Theorem 13. For every m,n2>1, }’((P,,, () )2) > (%—‘ , and for every m,n>3, ((C ac ) ) Plrl:—‘

Proof. The graphs P 0P, and C,UC, have mn vertices and every vertex u dominates at least 13 vertices
in (P DP) and (C ac, ) (Figure 3), so the result holds.

By Theorem 13, 7/((Pm DF;) ) or 7/((Cm DCn) ) equals the minimum number of diamonds like Figure 4.

we can cover all the vertices of P 0P, or C, 0C,.
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Uy U U3 Ug Us Ug U7 U Ug Uig Urr Uiz U1z U4 Uts Uie u]jiii%n,
Figure 1. A dominating set of C2 .
Uy Uz U3 Ug Us Ug U7 U Ug Uig
Uy Uy Uz Ug Us Ug U7 U Ug Uig Ul
Uy Uy U3z Uy Us Ug U7 U U9 Uig Uil U2
Uy Uz Uz Ug Us Ug U7 Ug Uy Ui Uil Ur2 U13

Uy Uz U3 Ug Us Ug U7 U Ug Uip Uil U2 U13 Ulg
O—0O—e—0O0—0O—"0C—"C0C—e—0O0—0O—"0O—C0C—e—-=0

Figure 2. A dominating set of P,,z .

Figure 3. Dominated vertices by u in (P,00P,)° and (C,0C,)".

X
X X X
X X X X X
X X X
X

Figure 4. Dominated vertices by one vertex in (P,0P,)° and (C,0C,)’ .

In this paper we use short display or s.d to show the graphs P P, and C,UC, for simplicity; it means
that we don’t draw the edges of these graphs and draw only their vertices.

Theorem 14. For every k,t>1, 7((C13k OcC,,, )2 ) =13kt .
Proof. By Theorem 13 we have ;/((C13I]C13)2 ) >13 . In Figure 5 that is s.d of C;0JC,;. It is determined by
a y-set of size 13 for (C;00C,,)’. Therefore 7/((C13DC13 )2) <13 ; hence 7/((C13DC13 ) ) =13.

We can obtain s.d of C;,[JC,;, with dominating set of size 13kt for (C,;,[0C,;, )2 by locating kt copies of

Figure 5 in k rows and ¢ columns. Hence y((CBk 0c,, )2 ) <13kt . By Theorem 13 we have
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O 0O O e O O O O O O O O ©
O O O O O O O O e O O O O
e O O O OO0 0O O O o o o
O o 0 o 0 e O O O O O O ©
o 0O 0O 0O 0O 0 0 0 0O O e O O
O 0O e O O O O O O O O O O
O 0O 0O 0O 0O 0O 0O e O O O O O
O 0O 0O 0O 0O 0O 0O 0O O O O O e
O 0O 0O 0O € O O O O O O O ©
O 0O O 0O O OO0 0 O e O O O
O e€ O O O O O O O O O O ©
O o 0 o o O e O O O O O O
O O 0O O O O 060 O O O e O

Figure 5. A dominating set of size 13 for (C,,0C;;)” .

y((cmmcm ) ) >13kt, so y((CBkDCm )2) = 13kt
Theorem 15. 7/((C3DC” )2) = {g—‘ ,forevery n>3.
Proof. Since C; = K;, by Theorem 10 and Corollary 6 we have
2 2 n
y((C3DCn) ):y((KSDCn) ):y(cn):’(E—‘
Theorem 16. 7((C4 ac, )2 ) = “—Z—‘ , n=4,5,6,7, and

2k if £ =0,
y((c4Dc6k+,)2)s 2%+l ifr=1,
2(k+1) if1=2,3,4,5.

4
Proof. By Theorem 13 we have ;/((C4 ac, )2 ) > [%—‘ . In Figure 6 it is determined by a dominating set of

13

In Figure 6, the seventh column of s.d of C,[JC, (from left to right) is similar to the first column of s.d of
c,0p, C,0P and C,00C,, n=3,4,5,6,7. By setting s.d of k graphs C,0JC, and one s.d of C,0P, or
C,0C; or C,00C, or C,0C; consecutively from left to right such that the first column of every s.d of graph
locates on the last column of s.d of the previous graph, we can obtain a s.d of C,00C,,, with a dominating set
of size 2(k+1) for (C,0C,,, )2 , t=2,3,4,5. By the same setting for s.d of k graphs C,[JC, we can
obtain a s.d of C,00C;,,, with a dominating set of size 2k +1 for (C,00C,,,, )2 . Also by the same setting for
s.dof k-1 graphs C,00C, andones.d of C,0C, we can obtain as.d of C,[IC,, with a dominating set of
size 2k for (C,00C,, ).

4 4
size {g—l for (C,0C,)", n=4,5,6,7, so for these graphs we have y((C4 ac, )’ ) = [_n—‘ .

Theorem 17. y((CSDCn )2 ) = ﬁ—z—‘ , n=3,4,6,and

3k if +=0,

)/((CSDC6k+t) )S 3k+2 if t=2,3,4,
3(k+1) ifr=5.

Proof. By Theorem 13 we have }/((CSDCn )2) > ﬁ—z—‘ . In Figure 7 it is determined by a dominating set for
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O O O O
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Figure 6. A dominating set for (C,0IC, )2 , n=1,2,.-
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Figure 7. A dominating set for (C501C, )2 , n=12,-7.
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(C,OR), (C,OR) and (C,OC,)", n=3,4,56,7.

By Figure 7 we have ;/((CSDCn )2) < ﬁ—z—‘ , n=23,4,6.So for these graphs equality holds.

In Figure 7, the seventh column of s.d of C,[JC, (from left to right) is similar to the first column of s.d of
C,O0R, C,OP, and C,0C,, n=3,4,5,6,7. By setting s.d of k graphs C,L0C, and one s.d of C,[JP, or
C,00C, or C,0C, consecutively from left to right such that the first column of every s.d of graph locates on
the last column of the previous s.d of graph, we can obtain a s.d of C,0JC,,, with a dominating set of size
3k+2 for (C;OC,,, )2, t=2,3,4. By the same setting for s.d of k graphs C,0JC, we can obtain a s.d of
C,0C;,,, with a dominating set of size 3k+1 for (C;0C,,, )2 and by the same setting for s.d of k graphs
C,0C, and one s.d of C;LJC; we can obtain a s.d of C;0JC,,; with a dominating set of size 3(k+1) for
(CsOC;.s )2 . Also by the same setting for s.d of k—1 graphs C,0JC, and one s.d of C,LJC, we can obtain
as.dof C,0C,, witha dominating set of size 3k for (C,00C,, )’ .
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