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ABSTRACT 
In this note, we show that the number of digraphs with n vertices and with cycles of length k, 0 ≤ k ≤ n, is equal to 
the number of n × n (0,1)-matrices whose eigenvalues are the collection of copies of the entire kth unit roots plus, 
possibly, 0’s. In particular, 1) when k = 0, since the digraphs reduce to be acyclic, our result reduces to the main 
theorem obtained recently in [1] stating that, for each n = 1, 2, 3, …, the number of acyclic digraphs is equal to 
the number of n × n (0,1)-matrices whose eigenvalues are positive real numbers; and 2) when k = n, the digraphs 
are the Hamiltonian directed cycles and it, therefore, generates another well-known (and trivial) result: the 
eigenvalues of a Hamiltonian directed cycle with n vertices are the nth unit roots [2]. 
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1. Introduction 
A digraph nG  of n vertices { }1,2, ,n  is a directed graph whose edges are oriented from vertex i to vertex j, 
1 ,i j n≤ ≤ . In this note, the digraphs to be considered are with loops or cycles, but parallel edges are forbidden. 
An acyclic digraph is a digraph that has no cycles of any length. Let ,n kD  be a digraph of n  vertices with 
cycles of length k  plus, possibly, an acyclic digraph with n mk−  vertices, where m  is the number of cycles, 
and where k  is fixed, 0 k n≤ ≤ . Then it is seen that the cycles in ,n kD  are disjoined (therefore all the cycles 
that it has are simple) and if k n<  the digraph is not strongly connected. And, in particular, ,n nD  is a 
Hamiltonian directed cycle of size n  and ,0nD  is an acyclic digraph of n  vertices, respectively. 

The acyclic directed graphs have been considered by several authors in the past decades. A first related result 
appeared in the literature seems to be the one described in [2]. It says that a digraph G  contains no cycle if and 
only if all eigenvalues of its adjacency matrix are 0. Subsequently, to the best of our knowledge, Robinson [3,4] 
and Stanley [5] counted the acyclic digraphs independently and showed that if nR  stands for the number of 
acyclic digraphs of n  vertices then  
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where 1.488p = 
, and 0.474M =  . Later, in [6,7], Bender et al. considered the asymptotic number of 

acyclic digraphs with q edges, and subsequently, Gessel counted the acyclic digraphs by their sources and sinks 
in [8]. Most recently, E. Weisstein of Wolfram Research Inc. calculated the number, nM , of n n×  ( )0,1 - 
matrices with real positive eigenvalues and showed that for 1, 2,3, 4,5n =  the numbers nM  are 
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because the numbers were observed to coincide with the first five values of the sequence of the number of 
acyclic digraphs with n vertices that is obtained by Sloane in [9]. Weisstein conjectured that the two sequences 
are identical. The conjecture has recently been proven in [1]. 

Motivated by the above literature, we extend the acyclic digraphs to consider the digraphs ,n kD  with cycles 
of length k in this note, where 0 k n≤ ≤ . Our theorem established in the next section indicates that similar 
counting theorem holds for more general graphs.  

2. The Main Results 
Let us first prove the following lemma. 

Lemma 1 Given a positive integer n , and a nonnegative integer k with 0 k n≤ ≤ , the eigenvalues of the 
adjacency matrix ( ),n kA A D=  of ,n kD  are copies of the entire kth unit roots plus, possibly, 0’s. Conversely, 
if B is an n n×  ( )0,1 -matrix whose eigenvalues are copies of the entire kth unit roots plus, possibly, 0’s then 
its digraph ( )D B  is isomorphic to ,n kD , if ignoring the acyclic parts in the two digraphs. 

Proof. Assume that ,n kD  has m cycles of length k. We show that the eigenvalues of A are m copies of the 
entire kth unit roots plus n mk−  0’s. Since relabeling the vertices of a graph does not change the eigenvalues 
of its adjacency matrix, and since the m cycles of length k are disjoined, we may number the vertices 
consistently with the partial order so that A has the upper block-triangular as follows:  
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where each iA , 1, 2, ,i m=  , is the adjacency matrix of a (directed simple) cycles of length k, and where ‘*’ is 
either a block matrix of 0, 1, or 1, or 0’s. From linear algebra, it can be easily proven that, for any i ( m≤ ), the 
characteristic polynomial of iA  is 1k

iI Aλ λ− = − . So the eigenvalues of iA  are the kth unit roots. Since 
the eigenvalues of A are collection of the eigenvalues of these iA  and n mk−  0’s, its eigenvalues are m  
copies of the entire kth unit roots plus n mk−  zeroes. 

Conversely, if B is an n n×  ( )0,1 -matrix whose eigenvalues are m  copies of the entire kth unit roots plus 
n mk−  0’s, then its graph ( )D B  is a digraph and, for any ( )i n≤ , the ith eigenvalues of kB , ( )k

i Bλ , is 
either 1 or 0. We now consider the power digraphs of ( )D B  with adjacency matrix B. Since for all 
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the number of closed walks of length l in the kth power graph ( )kD B  of ( )D B  is mk . Since the eigenvalues 
of kB  are either 1 or 0, the diagonal elements of kB  must be 1 or 0. In fact, from Perron-Frobenius theory (e. 
g., [10], p. 28, (1,6) Corollary (a)), we have ( ) ( ), 1k kB i i Bρ≤ = , ( )kBρ  is the largest eigenvalue of kB , 
which implies ( ), 1kB i i =  or 0, and kB  has exactly mk  1’s on its diagonal. Thus, counting all the closed 
walks in the kth power graph ( )kD B  we conclude that ( )D B  is a digraph with m disjoined cycles of length k 
plus an acyclic graph with n mk−  vertices. Putting the thing back to B implies that B is the adjacency matrix of 
a digraph with m cycles of length k plus, possibly, an acyclic digraph with n mk−  vertices. The proof is 
complete. 

For 0,1, 2,m =  , counting the number of the digraphs and the ( )0,1 -matrices in the above lemma, we 
immediately have the following  

Theorem 1 For each 1,2,3,n =  , and nonnegative integer k, 0 k n≤ ≤ , the number of digraphs ,n kD  
with cycles of length k  is equal to the number of n n×  ( )0,1 -matrices whose eigenvalues are the collection 
of copies of the entire kth unit roots plus, possibly, 0’s.  

Note that when 0k = , because of the one to one corresponding, this leads to an alternative proof of the 
above conjecture (the main theorem of [1]). That is, for each 1,2,3,n =  , the number of acyclic digraphs ,0nD  
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is equal to the number of n n×  ( )0,1 -matrices whose eigenvalues are 0’s --- from linear algebra, which is 
equivalent to saying that, for each 1,2,3,n =  , the number of acyclic digraphs ,0nD  is equal to the number of
n n×  ( )0,1 -matrices whose n  eigenvalues are equal to 1 --- and from [1], which is also equivalent to saying 
that, for each 1,2,3,n =  , the number of acyclic digraphs ,0nD  is equal to the number of n n×  ( )0,1 -ma- 
trices whose eigenvalues are positive real numbers. 

Corollary 1 If a digraph D  has cycles of lengths ik , 1,2, ,i t=  , and the cycles are piecewise disjoined 
then the eigenvalues of its adjacency matrix A  are collection of the entire kith unit roots, 1,2, ,i t=  , plus 
0’s. And vice versa. 
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