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ABSTRACT

Many problems of discrete optimization are connected with partition of the n-dimensional space into certain subsets,
and the requirements needed for these subsets can be geometrical—for instance, their sphericity—or they can be con-
nected with certain metrics—for instance, the requirement that subsets are Dirichlet’s regions with Hamming’s metrics
[1]. Often partitions into some subsets are considered, on which a functional is optimized [2]. In the present work, the
partitions of the n-dimensional space into subsets with “zero” limitation are considered. Such partitions allow us to con-
struct the set of the group codes, V, and the set of the channels, 4, between the arbitrary elements, V" and 4, having cor-
recting relation between them. Descriptions of some classes of both perfect and imperfect codes in the additive channel
are presented, too. A way of constructing of group codes correcting the errors in the additive channels is presented, and
this method is a further generalization of Hamming’s method of code construction.
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1. Introduction have not only combinatorial-set interest, but also that in

Lot B= { 0,1} be a Galua field of two elements and B" connection with .correctlng. code construction. It is W.OI'—
. . thy to note that in correcting code theory the decoding

be a linear vector space on that field. We consider the . .\ w .
family of the subsets. C (s ¢ g )_ { C} satisfyvin regions form partitions of the space, B", if decoding
y AN AT S A s ying region pairs do not overlap each other. Consequently,

the following conditions for all i=0,k: some code classes—particularly, the perfect codes in the

1) C B additive channel—make it possible to construct the parti-
2) tions, C,(sy,5,,--,5;). Below, in the examples with
G ﬂCJ. =0,i# J; () s, =1 we leave out the subset, C,, which is the zero
3) |Ci|=sl.; vector, 0.
4) > x=0 (summation is with respect to mod 2). Example 1. C,(1,3,6,6)={C,.C,.C,,C;} is the par-
xeC; tition of B*, if:
The first three properties are usual for partition of the 1 01 0
K
subset, C=|JC,, and the last “non-zero” one reflects 1 10 0 01 10
i=0 1 111
the specificity of the further usage for constructing of the G = 0 G = 100 10
correcting codes. 0 1
The case, 0 1 11
C=p" ) 1 101
is particularly important, because it leads to constructing Lo 1
of the perfect codes. 0 1 01
Below, the term, partition of the set, C, (so,s,,w-,sk) S 1110
is used in the sense of (1), i.e. it is the partition into G = 0 0 1 1
“zero” subsets. 001 0
The problems of existence, constructing and partition
of C,(sg,s,"+,s,) for the given sy,s, .5, and n 0001
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Example 2. C4(1,3,3,3,3,3)={CO,CI,CZ,C3,C4,C5}
is the partition of the space, B* , if:

1100 00 1 1
C,=|0 10 0[,C=000 1|
1000 0010
1111 101 1
C,=[0 1 0 1[,C,=|1 10 1/,
1010 0110
01 11
C,=[1 00 1|,
1110

Example 3. C,(1,5,5,5)={C,,C,,C,,C,} is the par-
tition of the space, B* | if:

1000 1100
0100 1010
c=l00 1 0c=[010 1|
000 1 1110
1111 1101
100 1
0110
C,=[0 011
101 1
01 11

It is seen from the above examples that the space, B”",
can be partitioned in many ways with respect both to the
number and the power of the subsets.

k
From the partition, {C,,C,,--,C,}, of the set, | JC,,

i=0

k
one can obtain the partition, U C / C, , taking the subset,
i=0

C,,away from {C,,C,,---,C,}.

We present (without proof) the following lemma that
describes some trivial properties of the partition,
C, (so,sl,---,sk):{CO,CI,---,Ck} .

Lemma 1. For every z €C,,z,€C,,z #z, the fol-
lowing takes place:

a) z,®z,#0;

b) z® > z=#0;
zeCj\z

) z,® Y z#0;
zeCi\z;

d) Z z#0.

ze{C[ \z }U{Cj \zz}

If s,,=s for j =1,2,---,k—i, we will take
C,(50:,8,,8) = C, (84,8755, ).
Then we consider the partitions, C, (s,,s), taking into

Copyright © 2013 SciRes.

account that the necessary condition of their existence is
the evenness of the number, s,if s, isodd.

The following construct of the direct product allows
building new partitions out of the given ones:

Lemma 2. If C, (I,s) and C, (1,5) are the parti-
tions of the sets, B" and B™, respectively, then there
are C, ., (l,s) partitions of the subset, B"™".

Proof
Let:

C, (Ls)={Cp.C.Cy ). €, (Ls),

C, (Ls)={C.C . .CL |
where:
C={x,xh X 1< i<k, CF = {3, ], 0L,
1<j<k,.

Let us represent the direct product-set, C, x Cf , in the
form of the matrix:
(x ¥)

(x »)
(x ») (x )

For every pair, Cl.,C? . We define the sets, Cl/,
in the following way:

a) For every 1<p<s,1<i<k,1<j<k,, the set,
C/ , contains only one element of any line and any col-
umn of matrix (3), and it satisfies the following con- di-

tion: no pair of all the sets, C, is overlapped and every
one of these sets has the power, s; that is:

b) C\=C xC,i=0,k;
) Cp,=CyxC}, j=0,k,.
Let us consider the set:

C*={Cpi=Tky,j =Lk, p=1s

ij ’
U{Cilonizrkl}u{cé/ajzoa 2}-
From definition of C" and if

l—lkl,]—lkz, —lkz, =1,s and those of
Ci. Gy, if i=1k,j=1k, wehave:

€)

C&

i

Z x=0 (summation is with respect to mod?2),

xeCl
and as:

U c=|Uct|=X|cp|-1

cec® 1/1) ijop
ki

SlekSlel 3 lefefi=zen,
i=0 Jj=0 1<i<ky 1< j<k,

Then C,.,, (Ls)=C° is a partition of the space,
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Bn1+nz .
Theorem 1. If s is a divisor of 2"—1, and 2" -1
is a divisor of § for any positive integer, »>1, then

n

C,(L,s) and Cn(l, -

-1 .
" are partitions of the space,

B".

Proof. It follows from the theorem’s condition that
n=m-r. Let us apply induction method with respect
tom.

For m=1 we present B" in the form,

B = (CO U(B")\CO), where C, =0. Then we have the

trivial partition, C, (1, 2 - 1) ,of B".

Let us assume that for m there is the partition,
Cmr(l,Z"—l of the space, B™ .

Applying Lemma 2 with respect to the partition,
c,(1,2’ —1), of B" and cm,,(1,2’—1) of B™, we ob-

tain the partition, C (1,2"—1), for BV Conse-

m+1

quently, there exists the partition,

C, (L2 -1)={C,.C,,-+-,C,} of B",where
2" -1

s
We consider C, (l,s):{C(?,Cf’,-.-,Cg}, where
271 ana C] is defined in the following way:
s
CCO UCU =Lpl= .s.
() 2 -1

It is easy to prove that C, (l,s) satisfies conditions (1)
and (2) and, consequently is a partition of B”".

Q.E.D.

Now we prove the existence of the partition, C, (1,s,),
2" -1

r_1°

The statement holds true for n <4 . Let us assume that
the statement holds true for all m <n as well, and prove
itfor n.

We present B”

where s, =

=B"-B", where
ro__ —
B —{xo,xl,n-,xz,._l},xo =0.

M , then

ir _11 is an integer. Consequently, 5=

integer. As 2" —l=(2’ —1)(

As s, is aninteger, and s, —1=

also is an

Slzjlj, according to the

assumption, there exists the following partition of the
space, B":
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Cm(l,sz lj {c.clc}.

We consider C, (1,s,)= {CS,CIO,. ) .,C;il} , where

C =(xxB"Ux,xC’).C,c B"i=0,2" -1
As: C,NC; #0,fori#j,0<i,j<2" -1, and
3 x=0,|C|=5,|C| =5, for all i=1,2"—1

xeC;

, then it is
enough to prove that 221 |C[| =2". We write:
i=0
2 21 21
Ylc|=1+ Tl =1+ X |(x xB" Ux, <)
i=0 i=l i=1
2" -1
=1+
i=1

2" -1
B"|+ Y |c|=2".
=1

Thatis, C, (1,%} is a partition of B".

Q.E.D.

Now we are going to describe the construction of the
group code set algorithm and that of the channel sets,
using the partition of the set from the ND space into
“zero” subsets. It is proved that any code of the con-
structed set corrects all errors of every additive channel
in the set of the respective channels.

An additive channel is given by the set of vectors of
errors, A={y,,,"*,¥,} < B"; any vector, y, at the
exit of such a channel has the form: y=x® y,, where
xe€B" is the initial vector, y, € 4, and @ is the ad-
dition operation with respect to mod2 [3].

The neighbourhood of the order of ¢ of the vector,
x e B", with respect to CeB" is defined in the fol-
lowing form [4]:

C (x):{x0 ®y,x,eC™(x),ye C},C0 (x)=x.
As
tation: C' =

C'(x)| does not depend on x, we use the deno-
c’ (x)|,x eB".

The code, V, corrects the errors of the additive channel,
A= { YosVis'""s ym} , if the following conditions are pro-
vided:

A (v,)NA (vj): @, where v, v, eV, #v,.

Classical boundaries of Hamming and Varshamov-

Gilbert for the power of the code, V, correcting the errors
of the additive channel, 4, have the following form [5]:

2'1

e

The main task for the given channel, A, is the con-
struction of the maximum volume code correcting the
errors of the channel, A .

The code V' < B" is called perfect for the additive
channel, 4 < B”", if the following condition is satisfied:
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n

2
== @

The code, V < B", is called quasi-perfect for the
channel, 4c B", if for any of Cc A4*(0)\A4'(0), the
code, V ,is perfect for the channel, 4AUC.

In other words, the quasi-perfect code, V', for the
channel, A, satisfies the conditions:

1) Al(vl.)ﬂAl(vj):Q,vl,vjeV,vl.;tvj;
2) 4’ (v)=B", where 4 =A4UC.

vel
We denote by [n,/,4] the group code, from B", of
the order, /, correcting all the errors of the additive
channel, A4 .
We define the product of the Boolean matrix,
H= {aij} , or the dimension, mx n , and the vector,
x"=(xx,--x,)" , in the following way:

Hx' =(zz,---z,), where z,=) a,x, (summation
j=l1
is with respect to mod?2).

Any (0,1) matrix, H, having the dimension, (n—/,n),
is called checking for the code, [n,l, 4], if for all code
vectors and only for them the following equality takes
place:

Hx" =0,
where all operations are carried out with respect to mod 2
([6D.

To build the code, V, correcting the errors of the addi-
tive channel we use the following construct connected
with the partitions presented above. First we build the
additive channel, then the group code correcting the er-
rors of that channel.

Let (s,=0,s,"-,s,) be the negative integers and
there be the set, {io :O,i],n-,ip}g{O,l,n-,k}, where
iy <y <iy <<,

We consider the matrices, g, , of the following form:

E-ecmnie i iy i, |,
a. =
Evu E_’,ecnI/I,ie{1,2,---,k}\{il,iz,---,ip}.

Here E is the unit matrix of the order, s,, and E
is the logic negation of E .
We build the channel, 4 < B", where

! _
n, = Zsj,l =0,k, is composed of the vectors,
j=0

x, =0" 0" where ie {io,il,-'-,i p} , and is from all

lines of the Boolean matrix given in the following way:
a, 0

a,
O]

0 a,

Example 4. We build a channel for the case:

Copyright © 2013 SciRes.

5o =0,8 =2,8, =2,5, =4,5, =5,

and iy = 0,i, = 1,i, =2,i; = 4.

115

Using the definitions of the numbers, n,, and the

vectors, x, , we obtain:

nO :0,}’11 :2}}12 :4’}13 :8,}14 213,

x, =07, x, =1°0",x, =0°1°0”, x, = 0°’.

As ay e {E,E} ; then the channels, 4,4, B"  have

the following form:

Al
0000000 0
1000000 O
01100000 0
00100000
00010000

00000
00000
00000
00000
00000

0000{100 O
0000j010
0000(001
0000000

00000
00000
00000
00000

0000000
0000000
0000000
0000000 O
11000000
00110000
00000000
AZ
00000000
1000 0000
01|00 0000
001010000
000110000

0
0
1
0000000 O
0
0
0

10000
01000
00100
00010
00001

0000|0111
0000(10 11
0000f11O0T1
0000f1 110

00000
00000
11111

00000
00000
00000
00000
00000
00000
00000

00000
00000

00000000
00000000O0
00000000O0
00000000
00000000
11000000
00110000
00000000

10000
01000
00100
00010
00001

00000
00000
11111
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NB 1. The block, a,, for constructing the channel is
defined in two ways for all ie{il,iz,---,ip}; cones-

quently the set, A(io,il,---,i p) , of such channels has the
following power:

=2kp,

‘A(io,il,---,ip)

Let

k
n= }log2 ZE,.[,whereEi ={

i=0

s +1,1fie{i0,i1,-~~,ip}

S, otherwise

1

It is obvious that n, <2"—-1—-p and the above de-
scribed channel, A, has the power:

|4|=n, +1+ p. (6)

Let C,(5,.5.5)={C,.C,,---,C,} be one of the
partitions described above. We transform the family,
C, (55,5 ), in the following way: we take from
each C,,ie{iy,i, ~,i,;, a vector, z, and throw it
away, keeping all other vectors in their former form. We
denote the obtained family by {50,51,~--,(_7k} , where:

G _{C,.\z,.,ifie{io,il,---,ip}
C

i°

. otherwise.
NB 2. The set, C_',, depends on the choice of the vec-

tor, z,,from C,, and the checking matrix,
H(z, z, ,~-,z,.p)=(C_'lT c, - @T), defines the code,

ip > i
V(zl.o,zil;n,zl. ), one to one; consequently, the set of
P
the codes,

V (igsiineead, )
= {V(zio,zil,...,zip ),zi/ € Cl./,j = 0,1,"',p},

has the power:
k
[URREN ES § k!
i=1

We consider the group code, V e V(io,il,---,ip), from
B" having the checking matrix, H € H »
and the additive channel, A4 e A(io,il,'--,ip) .

We prove that the group code, V < B™, having H
as its checking matrix corrects all errors of the channel,
Ae A(io,il,n-,ip) ,ie. V=[n,n,—n,A]. To prove this
it is enough to show that forany x,ye A4, x#y takes
place: x®@yglV .

Let x=(xx,-x,),y=(»),y ), where
x,y,€B% forall i=1k.Itis easy to show that:

al< o5 -1h v < fo.5, -1},
i,je{l,2,--,k}.

i()aip"'aip >

)

Hence, taking into account that
H= (ClT C,) N ) has the dimension: nxn, , and

Copyright © 2013 SciRes.

the column numbers of the sub-matrix, (:.T , coincide
with those of matrix (5), where the block, a,, is located,
we obtain:

H(x@y)T :_Zk:(?(xi@yif :i(xi ('Byi)ci

We have from the definition of the channel, A4 :

a) There exists an i from {1,2,---,k}, such that for
all je{l,2,--,k}\i the vector, x;, is zero;

b) There exists a j from {1,2,---,k}, such that for
all ie{l,2,--,k}\j the vector, y, is zero.

Hence, we obtain, taking (8) into account, that there
exists a pair, i,/ e{l,2,---,k}, for which:

H(x@y)T =x,C, @yjéj. 9)

It follows from the construction of the matrix, H ,
that all the columns are different; consequently, for any
vector, zeV , the equality, Hz' =0, takes place if the
||z|| -weight of the Hamming vector, z, is more than two
x. Therefore, we consider x,y€ 4 for which
||x @ y" >2.

The following cases are possible:

a) The vectors, x,y, are the lines of matrix (5). Then
we obtain from (7):

ol e {15 -1 [ € 1.5, -1

Hence, taking (9) into account, we obtain that there
exist such vectors, z €C,z, €C,, that:

if ||x,|| =1, "yj " =1,
H(x@y)T: z® ; z,if”xi”:l,"yj":Ej—l,
2eC)\z

> ziffol=51

zeCi\z1UC\zp

z,®z,,

=5 -1

We obtain, applying Lemma 1: H (x @ y)T #0, ie.
x®@yel.

b) Only one of the vectors, x,y, is a column of matrix
(5). Then we have from (7):

[l e {15 -1, | = {05, -1,

Hence, taking (9) into account, we obtain that there
exist the vectors, z, €C,,z, € C; such that:

z, if x| = 1[|| =0,

7@ ) z,1f||xi||=1,||y/||=sj—1,
ZEC/\Zz

PR

zeCi\z

Z z,if"x,.":Ei—l,"yj":Ej—1.

zeC\71UC;\z,

H(x®y) = if =5 -1y, =0,
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Applying Lemma 1, we get: H(x S) y)T =0, ie.
x@yel.

¢) Both vectors are not the lines of matrix (5). Then we
have from (7):

Il 0.5 -1} ] = {05, -1}

Taking (9) into account, we get that there exist such
vectors, z, € C,z, € C, rthat:

> oz iffx]=5-1, y./'":O’
zeCj\z;
H(x@y)T = Z z, if ||xl.||:0,||yj||:§/ -1,
zeCj\zy
> z,if"x,.":E,.—l, yj":E/.—l.
2eCi\51UC;\zy ’

Again, applying Lemma 1, we get that for any vectors,
x,yed,x#y ,takes place:

H(x@y)T;tO,T.e. (x®y)eV.

consequently, V=[nk,nk —n,A]. As a result, we have
that every code, V e V(io,il,---,ip), corrects the errors

of any channel, 4 , of the set, A(io,il,--~,i ) . Further-
more, if C,(s,,5,,++,5,) is a partition of B", the fol-
lowing takes place: n, =2"—1—p. Hence we have, tak-
ing (6) into account, that the code, V =[n,,n, —n,A],
satisfies the condition (4), that is, it is perfect. In result,
we get the following statement.

Theorem 2.1f C, (s, 5,,-+,8,) ={C,,C,,-+,C,}, then
every group code, V e V(io,il,n-,ip) corrects all errors

of any channel, AeA(iO,il,--~,ip), ie.
Vz[nk,n,t —n,A].
Corollary 1. If Cn(so,sl,---,sk):{CO,CI,---,Ck} is a
partition of B", then every group code,
VeViy,i,--,i p), corrects the errors of any channel,

Ae Aliy,i,,-,i ) and it is perfect.

NB 3.1f C,(1,s)={C,,C,}, then the above described
method of building of group codes is the Hamming
method of group codes correcting the errors of the chan-
nel, 4={0",010""";i=1,2,--,n-1}.

Let us choose ,( in the above described
algorithm of constructing the set of channels, taking into
account the following condition:

{1,2,-~-,k}\{i0,i1,--~,i }g{i\s, is an odd number}.

{io,in'”ai

_We build the set of channels,
A(io,il,-~-,ip)gA(io,il,~~-,ip), in the following way;

any channel, AeZ(iO,il,---,z is composed of the

)4 2
vectors, x, =0"""1"0"% ™" i e {io,il,-~~,ip} , Where

I _
n, = Zsj,l =0,k, being of all lines of the Boolean ma-

J=1

Copyright © 2013 SciRes.

trix given in the following way:
a, 0

a

0 a,

Here g; is a matrix of (sl.xsl.) dimension, having

the form:
. :{E,ifie{il,iz,u-,ip},

E, otherwise.

It is obvious that the above described procedure of con-
structing uniquely defines the set, A(io,i,,---,i p) , of the

nonzero channels for which: ‘A (io,il,---,ip )‘ =1.

Consequently, the following holds true.
Corollary 2. If C,(s,,5,,-*+,5,) is a partition of the

space, B", then the perfect code, TVEV(iO,iI,"-,l

)4 2
corrects the errors of the zero channel, A (io,il,‘--,ip .

Corollary 3. The perfect code, V' =[n,/, 4], uniquely
defines the partition:

C, (1,27 =1,2"")={0", 4'(0)\0, 4' (x),x e ¥\ 0}

of the space, B",if A is the zero channel.
Example 5. We consider the partition,
G, (1,3,4)={0,C,,C,}, where:

1
c =0
1

=)

0
0/,C,=
0

- o = O
_—— O O
L

Choosing {zo,zz}z{O,(lll)}, we get the checking
matrix, (C_’IT C, ):
1 0010
0100 1]
001 11
Consequently, the corresponding perfect code:
V{zy,2,} ={(000000),(100110),(010101),(110011)}

corrects the errors of the zero channel, 4, of the fol-
lowing form:

00 00O
1 00 O O
0 1{0 0 O
0 01 0 O
0 0[O0 1 O
0 0[O0 0 1
00 1 11
1 1000

In result, we get the code, V{ZO,ZI,Z2} =[5,2,A]. As
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all A'(x) for xeV{z),z,z,} are zero sets and they
partition the B’ , we get the partition,

Cs(1.7.8)={0,4'(0)\0,4' (x).x € ¥ (2.2,.2,)\0}

Now we can get the following perfect code and the

partition from the above partition in a similar way.

Consequently, Corollaries 1 and 2 and 3 allow us to
build the sequence of the partitions of the space and, the
sequence of the perfect codes, as well.

Example 6. We have from Example 1 the partition,

C,(1,3,6,6)={C,,C,,C,,C,}, of the space, B*.

_Using this partition for p =0, we get the matrix,
(cr o a):

[

S O = O =

0

S O = = O

0

11010

10101
000111

0000O00O0

Which is the checking matrix of the perfect code,
[15,11, 4], where the channel, 4 e A4(0), has the form:
00

0

0

O = = = O

1
1
1
1

(=)

_—O O =

1
1
0
Ll
0
1

Y )

—_ O = =

O O o I o T o I o M o R G M e B IR o | RS R e R G

SRONCONO ©F @ @ © & & S| —ilic

—_ m O =

1

_—0 = = O

_— o = O

0

0

[ S s T S S

S = = =

0

1

O = O = =

0

—_ = m = O

000
000
110
1 01

CSRONOCRC!  © @ | @l I © ©HC S E =l ins

ORNONCHEO OO =i = = == O S OIS,

S O ©O O O O = = = O =l O © O

S O ©O O O O~ = = O = =IO O © O
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O O O O O O|= © = = = =10 O O O

S O O O O QOO = === = O O O O
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CSHONCHO = @ @ ® @ © @ S O © &

CSRONORE O ©| © I© ©F © © IO O © O O]

CRONENCO © ©| Ol ©OF © © OO ©F OO
COR=RCRCl Sllc| @ e e e @S SIS &
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B

—_ O O O O © © © © © © © © © ©

Example 7. We use the partition,
C,(1,3,6,6)={C,,C,,C,,C,} as in the preceding exam-
ple and we build the C,,C,,C, for
p=L{ip.i,} ={0.3},2, =(0011) :

O

O

S = O =

0

S = = O

0

O = = O =

oS O

—_—O O =

KoY

= e = T
e = e e L =)
— = e OO

O = O = =

Then we build the matrix, (C_'lT c, C; ) :

11010
10101
0001T11
000001

1
1

1
0
0
1

0
1
1
1

1000
0100
1010
1

1
1
0
11101

which is the checking matrix of the code, [14,10,4],
where A 1is one of the channels in the set, A(0,3) . For
instance:

0

S O O O OO O O o o= = O

0

S O O O O O O O O o ol o —=Co

0

S O O O O O O O o o oo —= = o

0

S O O O Of=m = === OO0 O O O

0

S O O O OoOf= = = = O o O O O

0

S O O O O = = O = O O O O

0

S O O O O = O = = =[O O O O

0

S O O O O O O = = = =l O O O

Corollary 4. If C, (5,5,

partition of the space, B", and for s

takes place

S./'l =S
the gr

i

— o © O = O O O O O O O o o O
—_— o © = O Ol O O O O O o o o O
— o PO O OO O O O O O O o o O
— O O O O[O O O O O O O o o O

—_—— OO O O RO O OO0 O O o o o o

0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
5¢)

Cy,Cpo+,C,} isa
me integer, /<k

o

:SI.[:3,{il,i2,"',ip}g{jlajb'”’j/}’ then

oup code with the checking matrix, H € H(p) is
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1-quasi-perfect.

Example 8. We consider the partition,
C,(1,3,6,6)={C,,C,,C,,C;}, of the space, B* of ex-
ample 1.

1 100
C=/10 0 0,
01 00
1 010
0110
C, - 1 11 1 ’
1 0 01
01 1 1
1 1 01
1 011
0101
c - 1 110 .
0011
0010
00 01
_For p=1 and {iy-i,} ={0,1},z, =(1100), we build
(OGN ON
a:(l 0 0 Oj’
01 00
1 010
01 10
C,=|1 11 1|,
1 0 01
1 101
1 011
01 01
53: 1 110 .
0 011
0010
00 01
Then we build the matrix, (C_‘IT C, (_?3T)
1010110101
01011010T11
0011100101
0000111110101

Which is the checking matrix of the code, [14,10,A] s
where A is one of the channels in the set, A(O,l) . For
instance:

Copyright © 2013 SciRes.

S O O O O O o oo o o oo o
S O O O O oo O o0 o o~ o o
S O O O O oo o o0 o = oL o o
S O O O O oo o o0 = O oL o o
S O O O O oo = O O O oL o o
S O O O O Ol O O O O O 1L’ o O
—_— === = OO OO O O O O O O
—_— === O RO O O O 0O O O O O
_— == O = =R O O O O 0 O O O O
—_ O = = = PO O O O O O O O O
S P = = = PO O O O O o o o o

— O O O O O O O O O O o oL -
SO= = O = = =IO O© O O O © O O O

S O O O O O oo O~ O O O oo o

1 0 0 O 0 00 0O 0 0

Now we are going to consider the case, s, =s,i=1,k.
The interest in this case is due to the following circum-
stances. According to Theorem 1, existence of a partition
in B" depends only on the parameters, n and s, and this
simplifies the algorithm of both code and communication
channel described in §2. Besides, in the case, s, =s,
classification of building both codes and channels is sim-
plified as well.

It follows from theorem 1 and theorem 2 (§1, §2) the
following.

Theorem 3. If § adivisorof 2"—1,and 2" -1 isa
divisor of s, for any positive integer, »>1, and if
Ae A(z’o,il,-n,ip) , then there exist the perfect codes,

2" -1

[n,n,—n,A], for k= ,s; =s, and for

2" -1

k=2"-1s, =—1, where n, =2"-1-p,0< p<k.

”

The proof is similar to the one for Theorem 2.

In the following two examples, we build two different
channels and the codes corresponding to both, using the
parameter, p(p=0,p=2).

Example 9. Using the partition,
C,(1,3)={C,.C,,--,C5}, of the space, B* we have
from example two:

1100 0010
C,=l0 1 00[,C={000 1|
100 0 0010
1111 101 1
c,=|0o 1 0 1[,Cc=1 10 1|
1010 0110
01 11
C.=[1 00 1|
1110
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For p=0, we get the checking matrix, 01 00011110O0T171
(¢ o o o a). 1000010011101
1010001011100T1°1 00 oo o
110000110011 10°1 oot iorotollo
000101101101101 which is the checking matrix for the perfect code,
13,9, 4|.
00011011011011°0 [ We C(])nsider the channel, AeA(0,1,3):
which is the checking matrix for the perfect code, 0000O0O0OOOOO0OOO0O
[15,11,A], where the channel, AEA(O) , has the fol- 1 0/l000OOOOOOUOUO OO0
lowing form: 0 1/0 0000000000
000O0O0OOO0OOOOO0OOO0OO0OOQO 0oo11/l000000°00
01 1{0 00O0O0O0O0OO0OO0OO0OO0OOQO 0010 1/l00 000000
1 01/0000O0O0O0OO0O0OO0OO0TO0 0o 110lo0o00000°00
1 10/{000O0O0O0O0OO0OO0OO0OOQO0 0000Ol10l000O0TO0O0
00 0f0O1 1(0 0 O0O0OOO0OO0OGO0OO0 000O0O0OO0 11000000
0001 01{]000O0O0O0OO0O0OO 000O0O0OOTOI0OT1 110 00
0001 1 0Oj]OOOOOOO0OO0OO 000O0O0OGOGOIL o110 00
00O0OO0OGOflL O0|0OO0O0OO0O0OO 000O0O0OGO0OOIL 1 0l0o0o0O0
00O0O0OO0OOOT1 0|0 0O0O0O0O0OO 0000O0OO0OOOGOTUOI1 00
00O0O0OO0OOOOT1|00O0O0O0OQO0 0000O0O0OOOOTUOO0T10
000O0OO0OO0OO0OOO0O(O0OT1 1|0 00O 0000O0OO0OUOOOTUOl0O0°1
00O0O0OO0OOO0OGO®O(L O1|0O00O0 11 00000O0OO0O0OO0TO0O
0000O0OO0OO0OO0OTO(L 1T 0Jj0O00O0 000001 1000UO0TU00O0
0000000000O0O0O0|L 0O At the end of the present paper we consider the group
000O0OO0OOOOOOO0OO|]0OT1 O perfect codes built through the partition, Cn(l,s), for
000000000000[00T p= 2 -1 and correcting the errors of the channel,
Example 10. Using the partition, AeA(SO,l,---,k), in the space, B",i=2"-1-p.

= e 4 1
G (1’ 3) - {CO ’_C1 — ’_C5 }_’ Of thE space, &, we build from Example 11. We consider the partition,

example the C,,C,,C,,C,,C,,C; for the set, C (1 2”—1)={C0 B"\CO} for p=1 and

{io’i"iz} - {0’ 1’3} » and for the vectors, C_’1 = (B" \CO)\(IO”'] ) . We take the case, n=4.
2, =0,z =(1100),2z, =(0101).

00011100O0T1T10T11
0100 - (0011 o [ 100100110101
C,:(loooj,02:0001, 'l o10010101101T11
oo 00100101 101111
1111 1011 C" is the checking matrix of the group perfect code,
Q:( J, C,=/1 10 1], [14,10,4], where A= 4(0,1) has the following form:
1 010
01 1 0 0 0 v v e 0
1 0 v eer e 0
01 1 1
— 0 1 0
C.=[100 1|
1 110
Then we build the matrix, 0 0 v oo e 1
(C_‘IT ¢, C¢f Cf QT): 11 e eee e 1

Copyright © 2013 SciRes. OJDM
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Let us have a closer look at the group perfect code,

2" -1
, of course, for

[nk,nk —n,A] , where n, =2"-1-

the case that the C,(1,3)={C,,C,,---,C,} is a partition

n

of the space, B". Then for k= 2 , the channel,

Ae A(O,l,-- k) has the following form:

00 00
1 0 00
0 1 00
00 - 0

11 - 00
00 1 1 0
00 0 0 -« «oo v 11

Taking this and Corollary 4 into account, we get:
The perfect code, [nk N, — N, A] is a quasi-perfect
code in the additive channel:
A={0%,010" " i=0,n, -1},
2" -1 2" -1
b k = b

ifn, =2"—1- 3

A= A4(0,1,-,k).

2. Addenda Zero M atrices

In this addenda, we consider the connection between the
zero sets and the deadlock tests [7]. For the further dis-
cussion, it is more convenient to consider the set of vec-
tors as a matrix having those vectors as its lines of the
given set.

Let F, be the space of the (mxn) matrices on
Galua field.

Definition. The matrix, C e F, is called null-matrix
if the sum of its lines is a zero vector. Moreover, the ma-
trix, CeF,, is called regular if all its columns are dif-
ferent. It is obvious that the regular matrix corresponds to
the subset of power, m,in B".

Problem 1. Describe the set, P, , of regular matrices.

Problem 2. Find the number of the null-matrices.

Problem 3. Describe the partition of B", through the
zero subsets.

Examples.

1) If m=1, then the C:(O") is the regular null-
matrix.

Copyright © 2013 SciRes.

2) If m=2, then there doesn’t exist a regular null-
matrix.
3) If m=3, then the following matrices are regular
null-matrices:
10
C,=|0 1|, C=(CC,), where C, is any regular
1 1

null-matrix of F;'.
4)If m=4, then:

_— O = O
_— o = O

where C, is any regular null-matrix £}’ .
5) Let m=5, then the regular null-matrices are as
follows:

and C=(CC,),

a
Il
- - o o o
- o = o o
- o o = o

where C, is an arbitrary null-matrix in £;".
Now we consider the following set of matrices, F, :

We introduce in F, partial order, requiring:

C, <C,,If the matrix C, can be obtained from C,,
taking away some set of columns.

Definition. The matrix, C in the class, P, , is called

extreme (or deadlock) if for C,<C it follows that

G =C.

Examples.

6) We describe all extreme matrices in P, :
0 00 0 00 0 00
0 0 1 1 00 1 00

=01 0|,G=|1 0 1,C=110
1 00 1 10 1 01
1 11 1 11 1 11

Definition. The two matrices, C, and C, in F
are called equivalent if C, can be obtained from C,
by permutation of lines and columns (this equivalency is
denoted by: C,~C,).

Examples.

7) The matrices, C, and C; in example 6 are equi-
valent, because C, is obtained from C, by the per-
mutation of the 2nd and 3rd columns.
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In connection of the above definition, we use the fol-
lowing coding of the matrices of F,'. We numerate all
the columns of the length m , choosing, for instance, the
lexicographical order.

Let the corresponding numeration be, LI,LZ,---,LZ,,,.
Then we put a vector of the length, 2" into correspon-
dence with CeF! . We get L(C)z(}/ly2 Vo) s
where y, is the number of the columns equal to L, in
the matrix, C. We call the vector, L(C), column vec-
tor of the matrix, C . Then the following is obvious:

Statement. If the matrices, C;, and C, are equiva-
lent, then L(C,)=L(G,).

Now we describe all extreme matrices for a fixed m.
We denote the set of all such matrices by P . The ele-
ments of the class, P!, have the following properties:

DIf CeP! ,then 2">m.

This property follows the fact that all the lines of the
matrix, C are different.

2)If CePy, then for L(C) :(;/172 '--7/2,,,) we have:
¥, S1L1<i<2",

Indeed, if y, 227 then there are identical columns in
the matrix, C . But then we can take one of them away,
and the lines in the obtained matrix will again be differ-
ent, and this means that C ¢ P’ .

HIf Ce P”? , there is neither regular, nor unit columns
in the matrix, C.

This statement is proved similar to the preceding one.

4) Each of the columns of the matrix, Ce P!, has
even number of units..

This follows the fact that the matrix is a null-matrix.

The significance of the introduced definitions and the

Copyright © 2013 SciRes.

above results is that they make possible to obtain any
matrix just adding some null-matrix to P, . This is due
to the fact that taking away columns out of any matrix,
CeP, leadstoamatrix, C, €P..

Conclusion. Obtaining the matrices, P, out of the
matrix, C e P, , is a problem of building deadlock tests

m

for the given matrix, C [7].
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