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ABSTRACT 

Many problems of discrete optimization are connected with partition of the n-dimensional space into certain subsets, 
and the requirements needed for these subsets can be geometrical—for instance, their sphericity—or they can be con- 
nected with certain metrics—for instance, the requirement that subsets are Dirichlet’s regions with Hamming’s metrics 
[1]. Often partitions into some subsets are considered, on which a functional is optimized [2]. In the present work, the 
partitions of the n-dimensional space into subsets with “zero” limitation are considered. Such partitions allow us to con- 
struct the set of the group codes, V, and the set of the channels, A, between the arbitrary elements, V and A, having cor- 
recting relation between them. Descriptions of some classes of both perfect and imperfect codes in the additive channel 
are presented, too. A way of constructing of group codes correcting the errors in the additive channels is presented, and 
this method is a further generalization of Hamming’s method of code construction. 
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1. Introduction 

Let  0,1В   be a Galua field of two elements and  
be a linear vector space on that field. We consider the 
family of the subsets, , satisfying  

nB

 0 1, , ,n kC s s s C  i
the following conditions for all 0,i k : 

1)  ;n
iC B

2) 
,i jC C i j   ;              (1) 

3) ;i iС s  
4)  (summation is with respect to ). 0

ix C
x



 mod 2

The first three properties are usual for partition of the  

subset, , and the last “non-zero” one reflects  
0

k

i
i

С С



the specificity of the further usage for constructing of the 
correcting codes.  

The case, 

,nC B                   (2) 

is particularly important, because it leads to constructing 
of the perfect codes. 

Below, the term, partition of the set,  0 1, , ,n kC s s s , 
is used in the sense of (1), i.e. it is the partition into 
“zero” subsets. 

The problems of existence, constructing and partition 
of  0 1, , ,nС ks s s  for the given 0 1, , , ks s  s

 
and п 

have not only combinatorial-set interest, but also that in 
connection with correcting code construction. It is wor- 
thy to note that in correcting code theory the decoding 
regions form partitions of the space, , if decoding 
region pairs do not overlap each other. Consequently, 
some code classes—particularly, the perfect codes in the 
additive channel—make it possible to construct the parti- 
tions, 

nB

 0 1, , ,nС ks s s . Below, in the examples with 

0 1s   we leave out the subset, , which is the zero 
vector, . 

0C
0

Example 1.  4 6,6С С С , ,

0

2 3С0 1 ,С

1

1 1 0

0

1

0

1,3,
4B

3

1 1

1 0 0 0

0 1 0

1 0 1

0 1 0

1 1 1

0 0

0 0 1

0 0 0

С 

 is the par-
tition of , if: 

1 2

1 0 0

0 0
1 1 1 1

, ,
1 0 1

0
0 1 1

1 1 1

1

1

0
.

1 1

0

1

С С

 
 
         
  

   
  
 

 
 
 
 
 
 
 
  
 
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Example 2.    4 0 1 2 3 4 51,3,3,3,3,3 , , , , ,С С С С С
4B

С С












 is the partition of the space, , if: 

1 2

3 4

5

1 1 0 0 0 0 1 1

0 1 0 0 , 0 0 0 1 ,

1 0 0 0 0 0 1 0

1 1 1 1 1 0 1 1

0 1 0 1 , 1 1 0 1 ,

1 0 1 0 0 1 1 0

0 1 1 1

1 0 0 1 ,

1 1 1 0

С С

С С

С

  
     
  
  
  
     
  
  
 
   
 
 

 

Example 3.    4 0 11,5,5,5 , , ,С С С С
4B

2 3С



 is the par-
tition of the space, , if: 

1 2

3

1 0 0 0 1 1 0 0

0 1 0 0 1 0 1 0

, ,0 0 1 0 0 1 0 1

0 0 0 1 1 1 1 0

1 1 1 1 1 1 0 1

1 0 0 1

0 1 1 0

0 0 1 1

1 0 1 1

0 1 1 1

С С

С

   
   
   
    
   
   
   
   
 
 
 
 
 
 
 
 

 

It is seen from the above examples that the space, , 
can be partitioned in many ways with respect both to the 
number and the power of the subsets. 

nB

From the partition, , of the set, , 

one can obtain the partition, 

 0 1, , , kC C C
0

k

i
i

C



0

k

i j
i

C С



 C

, taking the subset,  

jС , away from . 0 1, , , kC C 
We present (without proof) the following lemma that 

describes some trivial properties of the partition, 
.   0 1 0 1, , , , , ,n kC s s s C C C 

z C


2

k

1 2 1, ,i jz C z z  Lemma 1. For every  the fol-
lowing takes place: 

a) ; 1 2 0z z 

b) ; 
2

1
\

0
jz С z

z z


 

c) ; 
1

2
\

0
iz С z

z z


 

d) . 
   1 2\ \

0
i jz С z C z

z





If i js s 1,  
for 2, ,j k i 

0 0 1, , , .n


k

, we will take  
 С , , ,n is s s C s s s   

Then we consider the partitions,  0 ,nС s s , taking into 

account that the necessary condition of their existence is 
the evenness of the number, s , if 0s  

The following construct of the direct product allows 
building new partitions out of the given ones: 

is odd. 

Lemma 2. If  
1

1,nС s
 

and  
2

1,nС s
 

are the parti- 
tions of the sets,  and , respectively, then there 
are 

1nВ 2nВ
 

1 2

Proof. 
1,n nC s

 
partitions of the subset, .  1 2n пВ

Let: 

   
 2 2

0

,

,n k

 

 
1 10 1

0 0
0 1

1, 1,

1, , ,

n kС s С С С С, , ,

,

2
,n s

С s С С



 С




 

where: 

  0 s1 2 1 1 2

2

, , , ,1 , , , , ,

1 .

i i i j j j
i s jС x x x i Сk y y y

j k

  

 

 
 

Let us represent the direct product-set, , in the 
form of the matrix: 

0
iС С j

   

s   

1 1

1

.

i j j

i j j
s s

x y x

x y x

 
 
 
 
 
 



 



1
i

s

i

y

y

           (3) 

For every pair, . We define the sets, 0,i jС С 1 , , s
ij ijC C , 

in the following way: 
a) For every 1 21 ,1 ,1p s i j kk ,       the set, 
p

ijC , contains only one element of any line and any col-
umn of matrix (3), and it satisfies the following con- di-
tion: no pair of all the sets, p

ijC , is overlapped and every 
one of these sets has the power, s; that is: 

b) 1 0
0 0 1;, 0,i iC С С i k    

c) 1 0
0 0 2.,  0,j jC С С j k    

Let us consider the set: 

 
   

0
1

0 1 2

, 1, 1,

, 0, 0, .

p
ijС C i k p s

C i j k

  

 

2

1 1
0

1, ,

,i j

k

C

, j

k 
 

From definition of p
ijC  and if 

1 2 21, , 1, , 1, ,j k 1,i k j k p s 

j

 and those of 
1 1
0 0,iC C  if 1 2 ,k1, ,  1,i k j   we have: 

0
p

ijx C

x


  (summation is with respect to ), mod 2

and as: 

0

1 2
1 2

1 2

, ,, ,

0 0

0 0 1 ,1

1 2 .

ij
i j pi j pС С

k k
n n

i j i j
i j j k

С С

С С С С





   

  

    



  

  1p p
ij

i k

C

 

 

Then  
1 2

01,n nC s  C  is a partition of the space, 
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1 2n nВ  . 
Theorem 1. If s  is a divisor of , and 2 1n  2 1r   

is a divisor of  for any positive integer, , then  s 1r 

 1,nС s  and 
2 1

1,
2 1

п

n rС
 
  



0

 are partitions of the space,  

nB

n m
m

B С



. 
Proof. It follows from the theorem’s condition that 

. Let us apply induction method with respect 
to . 

r

For  we present  in the form,  1т 
r

rB
  0 \rB С , where . Then we have the  0 0С 

trivial partition, , of .  1, 2 1r
rС  rB

Let us assume that for  there is the partition, m
1, 2mrС

1, 2r
rС

1r   of the space, . mrB
Applying Lemma 2 with respect to the partition,  

1 , of Br and  1, 2 1r
mrС   of , we ob- mrB

tain the partition,    1 1,2 1r
m rС   , for . Conse-   1m rВ 

quently, there exists the partition, 
   0 11 , , ,r

n kС С С    пB1, 2 С  of , where 

2 1
2 1

n

rk  . 

We consider  where     0 0 0
0 11, , , , ,n pС s С С С 

2n

p 1

s


 , and  is defined in the following way: 0
iС

 
0 0
0 0 1

1

, , 1, ,
2 1

l

i i l j r
j

.
sС С С С i p l 



   
  

It is easy to prove that  1,nС s  satisfies conditions (1) 
and (2) and, consequently is a partition of .  пB

Q.E.D. 
Now we prove the existence of the partition,  11,nС s ,  

where 1

2 1

2 1

n

rs 



. 

The statement holds true for . Let us assume that 
the statement holds true for all m  well, and prove 
it for n . 

4n 
n  as 

mWe present , where n rВ В В 

 0 1 02 1
, , , , 0.r

rВ x x x x


   

As 1s  is an integer, and 
 

1

2 2 1
1

2 1

r m

rs


 


, then  

2 1

2 1

m

r



 is an integer. Consequently, 1 1

2r
s 

 also is an 

integer. As   1 1
2 1 2 1

2
m r

r
s    

 

 , according to the  

assumption, there exists the following partition of the 
space, : mB

 0 0 01
0 1 2 1

1
1, , , , .

2
rm r

sC C C


   
 

 C  

We consider    0 0 0
1 0 1 2 1

1, , , , rnС s C C C


  , where  

 0 , , 0, 2m п r
i i i i iC x B x C C B i 1.    

r

  

As: 0, for ,0 , 2 1,i jC C i j i j      and  

1 10, , , for all 1, 2 1
i

rx C s C s ii i
x C

     , then it is  

enough to prove that 
2 1

0

2
r

n
i

i
C





 . We write: 

 
2 1 2 1 2 1

0

0 1 1

2 1 2 1
0

1 1

1 1

1 2 .

r r r

r r

m
i i i i

i i i

m n
i

i i

C C x B x

B C

  

  

 

 

     

   

  

 

 iC
 

That is, 
2 1

1,
2 1

п

n rС
 
  

 is a partition of . пB

Q.E.D. 
Now we are going to describe the construction of the 

group code set algorithm and that of the channel sets, 
using the partition of the set from the ND space into 
“zero” subsets. It is proved that any code of the con- 
structed set corrects all errors of every additive channel 
in the set of the respective channels. 

An additive channel is given by the set of vectors of 
errors,  0 1, , , n

mA y y y B 

ky

 ; any vector, , at the 
exit of such a channel has the form: , where 

 is the initial vector, , and  is the ad- 
dition operation with respect to  [3]. 

y
kyy x 


2

nx В A
mod

The neighbourhood of the order of t  of the vector, 
, with respect to  is defined in the fol- 

lowing form [4]: 

nх B nС B

      1 0
0 0, , ,t tС х x y x С х y С С х .x      

As  t  does not depend on x , we use the deno- С х
tation:   , .t tС С х х B  n  

The code, V, corrects the errors of the additive channel, 
 0 1, , , mA y y y  , if the following conditions are pro- 

vided: 

   1 1 ,i jА v А v    where  , ,i j i jv v V v v  .

Classical boundaries of Hamming and Varshamov- 
Gilbert for the power of the code, V, correcting the errors 
of the additive channel, A, have the following form [5]: 

2 1

2 2n n

V
A A

  . 

The main task for the given channel, A , is the con- 
struction of the maximum volume code correcting the 
errors of the channel, A . 

nThe code V  is called perfect for the additive 
ng condition is satisfied: 

B
nA Bchannel, , if the followi
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1

2
.

n

V
A

                  (4) 

The code, , is called quasi
ch

nV B
n , if f

-perfect for the 
annel, A B or any оf    2 10 \ 0C A A , the 

code, V , is perfect for the channel, A C . 
 code, , foIn o r words, the quasi-perfect  Vthe r the 

channel, A , satisfies the conditions:  

1)    1 1
1, , , ;i j j i jA v v  A v v v V v   

2)  2
1

n

v V
A v B



 , where 1A A C  . 

We denote by  , ,n l A  the group code, from , of 
th

nB
e order, l , correcting all the errors of the additive 

channel, A . 
We def  thine e product of the Boolean matrix, 
 ijа , or the dimension, т п , and the vectН
T

1 2

or, 
T

nx x x x , in the follo way: wing 

 T
1 2 ,mНx z z z   where 

n
x

1
i ij

j
z a


j  (summation  

is with respect to  
H, ing the dimension, 

mo 2 ).d
Any (0,1) matrix, hav  ,п l n , 

is called checking for the code,  , ,n l A , if for all  
vectors and only for them the following equality takes 
place: 

 code

T 0,Нx   
where all operations are carried out with respect to mod 2 

V, correcting the errors of the addi- 
tiv

([6]). 
To build the code, 
e channel we use the following construct connected 

with the partitions presented above. First we build the 
additive channel, then the group code correcting the er-
rors of that channel. 

Let  0 1 k0, , ,s s  s
the set, i

We consider the ma

 be the negative integers and 
there be 

ng form: 

 0 1

trices, a , of the followi

  0, , , 0,1, ,pi i k  , where 

0 1 2 pi i i i    . 

i

 
   

1 2

1 2

если, , , ,E i i i i   ,

или если, 1,2, , \ , , , .

p
i

p

а
E E, i k i i i
 

  
 

Here is the unit matrix of the order, E  is , and E  
is

 , where 
 the logic negation of E . 
We build the channel,  kпA B

0

, 0, ,
l

l j
j

п s l k   is com vectors, 


posed of the  

0 1 0i i i k iп s s n n
ix  

lines of the Boole
, where , and is from all 




.              (5) 

Example 4. We build a channel for the case: 

 0 1, , , pi i i i 
x given in the foan matri llowing way: 

1 0a 

2

...

0 k

a

a

 
 


 

0 1 2 3 40, 2, 2, 4, 5,s s s s s

0 1 2 3and 0, 1, 2, 4.i i i i
    

   
 

Using the definitions of the numbers, , and the 
ve

in
ctors, ix  , we obtain: 

1 20, 2,n n 0 3 4

13 2 11 2 2 9 8 5
0 1 2 4

4, 8, 13,

0 , 1 0 , 0 1 0 , 0 1

n n n

x x x x

   

   
 

.

As  3 ,a E E 13
1 2,A A B; then the channels, , have 

th  forme following : 
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NB 1. The block, , for constructing the channel is 
defined in two r all ; cones- 
quently the set, 

iа
ways fo  1 2, , , pi i i i 
 0 1, , , pA i i  i , 

: 
of such channels has the 

following power

 0 1, , , 2 .k р
pА i i i   

Let 

 0 1
2

0

1, if , , ,
log ,where

, otherwise 

k
i

i i
i i

ps i i i i
n s s

s

         



 

It is obvious that and the above de- 
scribed channel, 

2 1п
kп p    

A , has the power: 

1 .kA п p                  (6) 

Let   0 1 0 1, , , , , ,n kС ks s s C C C   
ns described above. We transfor

be one of the 
partitio m the family, 

 0 1, , ,n kС s s s
each 

, in the following way: we take from 
0 1, , , ,i pC i i i i 

keeping all other 
te the obtained family

,  a vector, , and throw it 
away, vectors in their former form. We 
deno  by 

iz

 0 1, ,, kС C C , where: 

 0 1,if ,

wise.

i i
i

C z i i i
C

  

NB 2. The set, 

\ , ,

, other

p

i

i

C


 

iC , depends on the choice of the vec- 
tor, , from , and the checking ma ,  iz iС trix

   0
, ,iz z

 
1

T Т Т
1 2, ,

pi i kН z C C C   defines the code,  

one to one; consequently, the set of 
0 1
, , , ,

pi i iV z z z  
the codes, 

 0 1, , ,

, ,

pV i i i

z z C



  0 1
, , , 0,1, , ,

p j ji i i i iV z z j p   
 

has the power: 

 0 1
1

, , , !.
k

p i
i

V i i i s


  

We consi he group code,  0 1, , , ,pV V i i i   from 
kпB   matrix, 

der t
having the checking H H ,  0 1, , , pi i i , 

and the additive channel,  0 1, , , pА A i i i  .  
We prove that the group co aving de, kпV B , h H  

as its checking matrix corrects all errors nnel,of the cha  
 0 1, , , pА A i i i  , i.e.  ,k kV п п ,n .А   

,x y
To prove th

 th
is 

it is enough to show at for any А , x y  takes 
place: x y V  . 

Let    1 2 1 2,k kx x x y y y y   , where  
, i

x
s

i ix y B  for all 1,i k . It is easy to show that:  

   0,1, 1 ,js 

 1, 2, , .k 
   (7) 

0,1, 1 ,

,

i i jx s y

i j

  

Hence, taking into account that  
 Т Т Т

1 2 kН C C C   has the dimension: kп п , and 

the column numbers of the sub-matrix, T
iC

ia
, coincide 

with those of matrix (5), where the block, , is located, 
we obtain: 

     TT

1 1

.

k k

i i i i i
i i
k k

i i j j

T

1 1i j

iH x y  C x y x y C

x C y C

 

 

 

 

 
   (8) 

W e chan

 

e have from the definition of th ne



l, A : 
a) There exists an i  from  1,2, ,k , such r 

all
 that fo

  1,2, , \j k i   the vector, jx , is zero; 
b) There exists a j  from  1,2, ,k , such that for 

all  1,2, , \i k j   the vec or, o. 
Hence, we obtain, taking (8) i unt, that there 

exists a pair, 

iy  is ze
nto acco

t r

 , 1, 2, ,i j k  , for which: 

 TH .ji i jx y x C y C       (9) 

It follow he co

       

s from t nstruction of the matrix, H , 
r any that all the columns are different; consequ tly, fo

vector, 
en

z V , the equality, , take lacT 0Нz  s p e if the 
z -wei he Hamming , is m re than
х.

ght of t vector, z o  two 
 Therefore, we consider ,x y A  for which  

2x y  . 
The following cases are possible: 
a) The vectors, ,x y , are the lines of ma x (5). Then 

we obtain from (7): 
tri

   1, 1 , 1, 1i i jx s y s j  

Hence, taking (9) into account, we obtain tha
exist such vectors, 

  

t there 

1 1 2, ,jz C z C   that: 

 
2\

, if 1,

j z

i i jz x s y

 

1 2\ \i jz C z C z 

We obtain, ma 1: H x

1 2 , if 1, 1,iz z x y
  

T
, if 1, 1,i j

z C
H y z x y s




   1

1.

j

j

j

x z

s



   

  

 applying Lem i.e. T
0,y   

. x y V   
b) Only ,x y ,one of the vectors,  

(5
is a column of matrix 

). Then we have from (7): 

   1, 1 , 0, 1 .i i jx s y sj     

ence, taking (9) into account, we obtain that there 
exist the vectors, 1 ,i jz C z

H

2 C   such that: 

 
2

1\

1, 1.

iz C z

i
z C

s y s





    
 1 2

\

\ \

1, 0,

, if 1, 0,

, if

j

i j

j

z C z

i i j

i j j
z C z

y

H x y z x s

z x





      




 

1, if iz x  


1

T

, if 1, 1,i j jz z x y s   





y
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Applying Lemma 1, we get: i.e.  T
0,H x y   

.x y V   
c) Both vectors are not the lines of m en we 

have from (7): 
atrix (5). Th

   0, 1 , 0, 1 .i i j jx s y s     

Taking (9) into account, we get that there exist such 
vectors, 1 2,i jz C z C  тthat: 

 
1\

T

, if 1, 0,
i

i j
z C z

z x s y


   





2

1 2

\

\ \

 , if 0, 1,
j

i j

i

i j j
z C z

z C z

H x y z x y




    





 

Again, applying Lemma 1, we get that for any vectors, 

, if 1, 1.i i j j
z C

z x s y s


    




s

, ,x y А x y   , takes place: 

, т.е.  T
0Н x y   x y V  . 

consequently,  , ,k kV п п n А 
de, , , ,V V i i 

. As a result, we have  

that every co , corrects the errors  

of any channel, 

 0 1 pi

A  , of the set,  0 1, , , pA i i i . Further- 
more, if  0 1, , ,n kС s s s  is a partit fol- 

es place: 2 1пп p   .  tak- 
ion of nB
Hence we have

, the 
lowing ta ,
in

k k
g (6) into account, that the code,  , ,k kV п п n А  , 

satisfies the condition (4), that is, it is perfect. In result, 
we get the following statement.  

Theorem 2. If k  then  

ev

annel, 

  0 1 0 1, , , , , , ,n kС s s s С С С 
ery group code,  0 1, , , pV V i i i   corrects all errors  

of any ch 0 1, , ,  ,pA A i i  i  i.e.  
 , ,k kV п п n А 

Corollary 1. If 
. 

  0 1 0 1, , , , , ,n kС s s s С С С 
hen every group code,  
, corrects the errors of any 

k  is a 
partition of , t

channel,  

пВ
, i 0 1, , pV V i i

 0 1, , , pA A i i i   and it is perfect. 

, then the above described 
method of  codes is the Hamming 
me
nel

NB 3. If  1,C s  0 1,n C C
 building of group

thod of group codes correcting the errors of the chan- 
,  10 ,0 10 ; 1, 2, , 1n i n iA i n    . 

ose  0 1, , , pi i iLet us c  in thho e above described 
algorithm of const  of channels aking into 
account the following conditi

ructing the set , t
on: 

     0 11, 2, , \ , , , \ is an odd number .p ik i i i i s  

We build the set of channels, 
 0 1, , , ,  0 1, , ,p pA i i i   in the foll ing way;  

any channel, 

i A i i ow

 0 1, , , ,pА A i i i    is composed of the 

vectors,  0 10 1 0 , , , ,i i i k iп s s п п
i p ,x i i i i     where  

1

, 0, ,
l

l j
j

п s l k


   being of all lines of the Boolean ma- 

tri ng way: 




x given in the followi

1 0a 

2

...

0 k

a

a



 
 
 

 

Here ia  is a matrix of  i is s  dimensi ing 
th

on, hav
e form


: 

 1 2, if , ,E i i i  
, ,

, otherw

p
i

i
a

E
 

ise.

It is obvious that the above described procedure of con- 
structing uniquely defines the set,  0 1, , , pA i i i , of the 

no

 

r which: nzero channels fo  0 1, , , 1.pi i i   

Consequently, the following holds true. 
Corollary 2. If 

A

 0 1, , ,nС ks s s
п

 
the perfect code, 

 of the zero channel, 

is a partition of the 
space, , then ,  

corrects the errors

В т  0 1, , , pV V i i i 
 0 1, , , pA i i i .  

C eorollary 3. Th  perfect code,  , ,V п l А , uniquely 
defines the partition: 

      11, 2 1 0, , \ 0n l
nC A A x x V 1, 2 0 , 0 \n l n 

п

  

, if of the space, В A  is the zero chann
Example 5

el. 
. We consider the partition,  

   3 11,3,4 0, , ,C C 2

1 2

0 0 1

1 0 1
0 1 0 , .

0 1 1
1 1 0

1 1 1

С С

 
 

           
 

 

C  where: 

1 0 0 

    0 2, 0, 11z z Choosing 1 , we get the checking  

m atrix, T T
1 2C : C

1 0 0 1 0

0 1 0 0 1

0 0 1 1 1

 
 
 
 
 

. 

Consequently, the corresponding perfect code: 

          10V z z   0 2, 000000 , 1001 , 010101 , 110011

corrects the errors of the zero channel, A , of the fol- 
lowing form: 

 
   0 1 2, , 5,2,V z z z A . As In result, we get the code, 
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 for  0 1 2, ,x V z z z
5 , we get the 

 

 1A xall  are zero sets and they 
partition, partition the B

      5 0, , \ 0x x V z z z 1 10, 0 \ 0,A A

n get the followi
 the above partition i

, Corollaries 1 a
sequence of the par

rfect codes, as 
 We have from 
 4 0 1 2, , , ,C C C C  

1 1 0 0

1 0 0 0 ,

1 0 1 1

0 1 0 1

1 1 1 0
.

0 0 1 1

0 0 1 0

0 0 0 1

С С
 
   

 
 
 
 
 
 
 
  
 

ition for 0p 

1, 2 . 

we ca ng perfect code and the 

titions of the space and, the 
well. 

e 6 Exam he partition, 

3C of the space, 

, we et the matrix,  

1,7,8С

Now 
partition from

sequence
Exampl

1,3,6,6

3С

Using th

n a similar way. 
Conseq nd 2 and 3 allow us to uently

 of the pe
.



is part

build the 

ple 1 t
  4B . 

0 

1 2 1 0 1
0 1 0 0   
   

1 0 1

1 1 1 1
,

0

0 1 1 1

1 1 0 1

 
 

  
 



 

0 1 1 0 
 

g
С Т Т Т

1 2 3С С : 

1 1 0 0 1 1 0 1 1 0 1 0 0 0 


1

0 1 1 0 1 1 0

1 1 1 0 1 0



1 0 1 1 1 0 0 0

0 0 0
, 

1 0 1 1 1 0

0 0 0 0 0 1 1 1 1 1 1 0 1 0 1
 
 





Which is the checking matrix of the perfect code, 
 15,11, А , where the channel,  0А A , has the form: 

 

Example 7. We use the ion, partit

   4 0 11,3,6,6 , , ,C C C C  2 3C as in the preceding exam-  

ple and we build the 1 2 3, ,С С С  for  
     3 0011z 0 11, , 0,3 ,p i i  : 

1 2

3

1 0 1 0

0 1 1 0
1 1 0 0

1 1 1 1
1 0 0 0 , ,

0 1
С

      
  1 0

0 1 0 0
0 1 1 1

1 1 0 1

1 0 1 1

0 1 0 1

.1 1 1 0

0 0 1 0

0 0 0 1

С

С

 
 
 

 
 

   
  
 

 
 
 
 
 
 
 
 

 

Then we build the matrix,  Т Т Т
1 2 3С С С : 

which is the checking matrix of the code, 

1 1 0 1 0 1 1 0 1 1 0 0 0

1 0 1 0 1 1 0 1 1 0 1 0 0

0 0 0 1 1 1 0 1 0 1 0 1 0

0 0 0 0 0 1 1 1 1 1 1 0 1

 
 
 
 
 
 

 

 14,10, А , 
where A  is one of the channels in the set,  0,3A or. F  
instance: 

 
Corollary 4. If    0 1 0 1, , , , , ,n kС s s s С С С 

e space, пВ , and for some integer, 
k  is a 

partition of th l k , 
takes place 

   
1 2 1 2 1 23, , , , , , , ,

lj j j p ls s s i i i j j     
the group code with the checking matrix, 

j  then 
 Н H p  is 
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1-quasi-perfect.  
Example 8. We consider the partition,  

2 3C , of the space, of ex-

For  and  we build 

   4 0 11,3,6,6 , , ,C C C C
ample 1. 

4B  

1 1 0 0 0 ,

0 1 0 0

С    
 

2

3

1 1 0 0

1 0 1 0

0 1 1 0

1 1 1 1
,

1 0 0 1

0 1 1 1

1 1 0 1

1 0 1 1

0 1 0 1

1 1 1 0
.

0 0 1 1

0 0 1 0

0 0 0 1

С

С

 

 
 
 
 
 

  
 
 
  
 
 
 
 
 

  
 
 
  
   

1p       0 1 1, 0,1 , 1100 ,i i z 
1 2, ,С С 3С : 

1

2

1 0 0 1
 
 

3

1 0 0 0
,

0 1 0 0

0 1 1 0

,1 1 1 1

1 0

0 1 0 1

1 1 1 0
.

0 0 1 1

0 0 1 0

0 0 0 1

С

С

С

 
  
 

 
 

 
 
 
 

  
 
 
  
 

 

Then we build the matrix, 

1 0 1 0 
 

1 1 0 1

1 1

 
 

 Т Т Т
1 2 3С С С

 

1 0 1 0 1 1 0 1 0 1 0 0 0

0 1 0 1 1 0 1 0 1 1 0 0 0

0 0 1 1 1 0 0 1 0 1 1 1 0

0 0 0 0 1 1 1 1 1 0 1 0 1

 



 
 

 




Which is the checking matrix of the code,  14,10, А , 

 
, 1,i .s s i k   

win
Now we are going to consider the case, 

The interest in this case is due to the follo
stances. According to Theorem 1, existence of a partition 
in depends only on the parameters, n and s, and this 
si lifies the algorithm of both code and communication 

described in §2. Besides, in the case, 

g circum- 

пB  
mp

channel is s , 
nnels is sim-classification of building both codes and cha  

plified as well. 
It follows from theorem 1 and theorem 2 (§1, §2) the 

following. 
Theorem 3. If  a divisor of  and s  2 1n  , 2 1r   is a 

divisor of s , for any positive integer, f 1 , and ir
 0 1, , , pA A i i i  , then there exi e perfect  st th codes, 

where A  is one of the channels in the set,  0,1A . For 
instance: 

 , ,k kп п n А , for 
2 1

, ,
n

ik s s
s


   and for  

2 1
2 1, ,

2 1

n
r

i rk s 
  


 where .k

The proof is similar to the one for Theorem 2. 
In the following two examples, we build two different 

channels and the codes corresponding to both, using the 
pa

2 1 ,0n
kп p p      

rameter,  0, 2p p p  . 
Example 9. Using the partition,  
   4 0 11,3 , , , ,C С С С 

from example two: 
5  of the space  we have 





, 4B

1 2

5

1 1 0 0 0 0 1 0

0 1 0 0 , 0 0 0 1 ,

1 0 0 0 0 0 1 0

1

1 ,

1 0 1 0 0 1 1 0

0 1 1 1

1 0 0 1 .

1 1 1 0

С С

С С

С

   
       
   
   

   
   
 
   
 
 

 3 4

1 1 1 1 1 0 1

0 1 0 1 , 1 1 0

  
     
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For , we get the checking matrix, 0p 
 T T

1 2 3 4 5C C C C C . 

which is the checking matrix for the perfect code, 

Т Т Т

1 0 1 0 0 0 1 0 1 1 1 0 0 1 1

1 1 0 0 0 0 1 1 0 0 1 1 1 0 1

0 0 0 1 0 1 1 0 1 1 0 1 1 0 1

0 0 0 1 1 0 1 1 0 1 1 0 1 1 0

 
 
 
 
 
 

 

 15,11, А , where the channel,  0А A , has the fol- 
: lowing form

 

Example 1 ing the partition, 
С , of the space, B4, we build from  

0. Us  
   4 0 11,3 , , ,С С С 

example the 
5

0 1 2 3 4 5, , , , ,С СС С С С  for the set,  

   0 1 2, , 0,1,3i i  , and for the vectors,  i
   0 1 30, 1100 , 0101 .z z z    

1 2

0 1 0 0
, 0

1 0 1

С С        
 

3 4

5

0 0 1 1

0 0 1 ,
1 0 0 0

0

1 0 1 1
1 1 1 1

, 1 1 0 1 ,
1 0 1 0

0 1 1 0

0 1 1 1

1 0 0 1 .

1 1 1 0

С С

С

 




 
          

 

 
   
 
 

 

Then we build the matrix, 

 Т Т Т T T
1 2 3 4 5C C C C C : 

, 

which is the checking matrix for the perfect , 

0 1

1 0 0 0 0 1 0 1 1 1 0 1

0 0 1 0 1 1 1 1 0 1 1 0 1

0 0 1 1 0 1 0 1 1 0 1 1 0

 
 
 
 
 
 

1 0 0 0 1 1 1 1 0 0 1

0

code
 13,9, А . 

nsider the channel, We co  0,1,3А A : 

 
At the end of the present paper we consider the group 

perfect codes built through the partition,  1,nС s , for  

2 1n

р
s


  and correcting the errors of the channel,  

 0,1, ,А A k  , in the space, ,nB n 2
ider the partition,  

1n p   . 
e consExample 11. W

   0 0, \ ,С В1, 2 1п п
nС   1p   and  С  for 

   1п . We take the case, 1 0\С \ 10пC В 4п  . 

T
1

0 0 0 1 1 1 0 0 0 1 1 1

1 0 0 1 0 0 1 1 0 1 1 1 0 1

0 1 0 0 1 0 1 0 1 1 0 1 1 1

0 0 1 0 0 1 0 1 1 0 1 1 1 1

C

 
 
 
 
 
 

. 

0 1

T
1C  is the checking matrix of the group perfect code, 

 14,10, A , where  0,1A A  

0 0  
has the following form: 

0

1 0 0

0 1 0

1

1 1 1


  
  

   
   

 
  

 

0 0 
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Let us have a closer lo  at the group perfect code,  ok

 , ,k kn n п А , where 
2 1

2 1
3

п
п

kn 
   , of course, for  

the case that the С  is a rtition  

of the space, . Then for 

   0 11,3 , , ,n kС С С  pa

nB 2 1n 
3

k  , the channel,  

 0,1, ,A А k   has the following form: 

0 0 0 0  
1 0 0  0

0 1 0 0

0 0 0 1

1 1 0 0

0 0 1 1 0 0

0 0 0 0 1 1


  





  
  

  



  

 

Taking this and Corollary 4 into account, we get: 
The perfect code,  , ,k kn n п A

annel: 
 is a quasi-perfect 

code in the additive ch

 

 

if 2 1 , ,
3 3

0,1, , .

kn k

A A k

10 ,0 10 , 0, 1 ,

2 1 2 1

k kn n ii
k

n n
n

A  i n   

 

2. Addenda Z

In  between the 
zero sets and the deadlock te urther dis- 
cussion, it is more convenie onsi et of vec- 
tors as a matrix havin ts lin of the 
given set. 

Let 

   

 

 

ero Matrices 

 this addenda, we consider the connection
or thests [7]. F  f

nt to c der the s
g those vectors as i es 

n
mF  be the space of the  m n  matrices on 

Galua field. 
Definition. The matrix, , is called null-ma ix 

if the sum of its lines is a zero vector. Moreover, the ma- 
trix, 
fere
the s , in 

 De h , of regular matrices.  
Problem 2. Find the number e null-matrices.  
Problem 3. Describe the partition of hrough the 

zero subsets. 
Examples. 
1) If , then the 

n
mC F

B
e set, P

tr

nC F
nt
ubset 

Problem 1.

m , is called regular if all its columns are dif- 
. It is obvious that the regular matrix corresponds to 

of power, n . m
scribe t m

of th
nB , t

1m   0nC   is the regular null- 
matrix. 

2) If 2m  , then there doesn’t exist a regular null- 
matrix. 

3) If 3m  , then the following matrices are regular 
null-matrices: 

2  where 2С  is any regular  

null-matrix of 

 1 1

1 0

0 1 , ,

1 1

C С С С
 
   
 
 

n
3F . 

4) If 4m  , then: 

1

0 1
C    or  2С С , 

0
 

 

0

1 0

1 1
 
 


2 1

1 0 0

0 1 0
,

0 0 1

1 1 1

C С

 
 
  
 


 

where is an2С  y regular null-matrix n
4F . 

5) Let 5m  , then the regular atrices are as 
follows: 

 and 

null-m

1

0 0 0

0 0 1

0 1 0

1 0 0

1 1 1

C

 
 
 
 
 
 
 
 

1 2С СС , 

where is an arbitrary null-matrix in 2С  5
nF . 

 ma mF  : Now sider the following set of trices, we con

1

n
m m

n
F F






 . 

We introduce in mF   partial order, requiring: 

1 2 ,C C If the matrix 1C  can be obtained from
king away some set of columns. 

 
ta

in the
  it llows that 

2C , 

Definition. The matrix, C  class, mP , is called 
extreme (or deadlock) if fo

 
r 2C C fo

2C C . 
Examples. 
6) We describe all extreme matrices in 

.

5P : 

1 2,0 1 0 1 0 1C С   
   3

0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 1 0 0

, 1 1 0С

     
     
     

  
  

 

1 0 0 1 1 0 1 0 1

1 1 1 1 1 1 1 1 1
     
     
     

Definition. The two matrices, 1С  and 2С  in n
mF  

are called equivalent if 1С  can be obtained from 2С  
by mu per tion of lines and columns (this equivalency is 
denoted by: 1 2~C C ). 

ta  

n of t

Examples. 
7) The matrices, 2С  and 3C  in example 6 are equi- 

valent, because 3C  is obtained from 2С  by the per- 
mutatio he 2nd and 3rd columns. 
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 m es 
In connection of the above definition, we use the fol- 

lowing coding of the atric of n
mF . We numerate all 

th o
le

, 

e columns of the length m , ch sing, for instance, the o
xicographical order. 
Let the corresponding numeration be 1 2 2

, , , mL L L . 
Then we put a vector of the length,  
de . We get 

2m

 L C
 into correspon-
 1 2nce with n

mC F
2m   , 

where i  
ix,

is f the c
  the vector, 

 t
. We call
he number o lumns equal to iL in 

the matr
o

C  L C , column vec- 
to

ent. If the matrices,  and  are equiva- 
lent, then 

r of the , C . Then the following is obvious: 
Statem

 matrix

1 2C С
   1 2L C

cribe all extrem
L C . 

Now we des e ma a fixed m. 
We denote the set of all such matrices by 

trices for 
0

mP . The ele- 
ments of the class, 0

mP , have 
1) If  , th

fact that all the lines of the 
iff nt. 

for 

the following properties: 
0

mC P
This property follows

en 2n m . 
 the 

matrix, C are d ere
2) If 0 , then mC P    1 2 2mL C      we have: 

1,1i  
Indee

2 .mi  
d, if i 2  ?

C . B
he 

eans t
0

 ns in 
the matrix, n we can take one of them away, 
and the lines in t obtained matrix will again be differ- 
ent, and this m hat  . 

 umns 

emen
h of the columns of the matrix, , has 

even number of units.. 
This follows the fact that the matrix is a null-matrix. 
The significance of the intr d definitions and the 

above results is that they make possible to obtain any 
matrix just adding some null-matrix to . This is due 
to the fact that taking away column any matrix, 

mP
s out of 

mC P  
Co

leads to a matrix, 
nclusion. Obtainin trices, 

0
1 mC P . 

g the ma 0
mP  out of the 

matrix, mC P

then there are identical colum
ut the

0
mC P

3) If m , there is neither regular, nor unit col
in the m rix, C . 

C P
at

This stat t is proved similar to the preceding one. 
4) Eac 0

mC P

oduce

, is a problem of bu ock tests 
for the gi

ontyev, G. L. Movsisyan and J. G. Margaryan, 
of N-Dimensional Space on GF(2) into Diri- 

 Ve AU

an, “Optimal Sets in 

itiv

and
n of Err tive Ch ,” Vestni

and J

, “ ,” 
ence, N , 1978,  189. 

 

ilding deadl
ven matrix, C  [7]. 
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