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Abstract 
Genome sequencing is the process of determining in which order the nitro-
genous bases also known as nucleotides within a DNA molecule are arranged. 
Every organism’s genome consists of a unique sequence of nucleotides. These 
nucleotides bases provide the phenotypes and genotypes of a cell. In mathe-
matics, Graph theory is the study of mathematical objects known as graphs 
which are made of vertices (or nodes) connected by either directed edges or 
indirect edges. Determining the sequence in which these nucleotides are 
bonded can help scientists and researchers to compare DNA between organ-
isms, which can help show how the organisms are related. In this research, we 
study how graph theory plays a vital part in genome sequencing and different 
types of graphs used during DNA sequencing. We are going to propose sev-
eral ways graph theory is used to sequence the genome. We are as well, going 
to explore how the graphs like Hamiltonian graph, Euler graph, and de Bruijn 
graphs are used to sequence the genome and advantages and disadvantages 
associated with each graph. 
 
Keywords 
DNA Sequencing, Hamiltonian Graph, Euler Graph, de Bruijn Graph,  
Nucleotide 

 

1. Introduction 

In 1953, two scientists, J.D. Watson and F.H.C. Crick [1] established the 
double-helix model for the DNA molecule after combining chemical and physi-
cal data. DNA is a short name for DeoxyriboNucleic Acid and according to this 
proposed model, the DNA molecule is made out of two antiparallel strands 
which are connected together by two or three hydrogen bonds and helically 
twisted. Within these nucleotides encode the genetic information of all living 
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matter, the human beings included. 
There are four different types of nucleotides bases in DNA which are guanine 

(G), thymine (T), adenine (A) and cytosine (C). Within these bases, adenine bonds 
with thymine and guanine bonds with cytosine. Genome sequencing hence is the 
process of figuring out in which order are these nucleotides bases arranged in the 
genome. Rapid advancements in genome sequencing have made understanding 
genome sequencing essential for many biological studies, other research areas that 
use genome sequencing and a variety of applied fields like biotechnology, foren-
sic biology, and diagnostics. The journey with genome sequencing began in 1977 
[2] when Frederick with his colleagues proposed a method on chain-termination 
inhibitors. Sanger sequencing is known to deliver 99.99% base accuracy that is 
crucial for optimum validation in the field of genetics. It is considered the gold 
standard when the job is to understand how the genes carry out information 
(The Genomic Services Company, 2020). 

Sanger sequencing was used in the Human Genome Project to determine the 
sequences of relatively small fragments of human DNA (900 bp or less). These 
fragments were used to assemble larger DNA fragments and, eventually, entire 
chromosomes. Edwin Southern [3] introduced a new genome sequencing ap-
proach where the genome is sequenced by hybridization (SBH). SBH is an ap-
proach whereby a collection of overlapping oligonucleotide sequences is assem-
bled together to determine an organism’s DNA sequence. Through the efficient 
method of SBH, scientists are able to gather information on the genomes of dif-
ferent species and organisms for the future development of biological sciences, 
medicine, and agriculture. Among the scientists of algorithmic approaches to 
SBH we can distinguish Y.P. Lysov with his colleagues [4] and Pevzner [5], who 
formulated the problem as finding a Hamiltonian path and an Eulerian path, 
respectively. Next Generation Sequencing is yet another genome sequencing 
method and is a powerful platform that has enabled the sequencing of thousands 
to millions of DNA molecules simultaneously (Margulies, Egholm, & Altman 
[6]). 

The methods of sequencing have become a game-changer in modern biologi-
cal and medical fields. DNA sequencing has accelerated not only biological re-
search and discovery but also enhanced medical diagnostics and treatment of 
diseases. This article will focus more on methods for DNA sequencing which use 
concepts of graph theory. 

Before we dive into the graph theory approaches in genome sequencing, let’s 
briefly understand what graph theory is and definitions of key words used in 
graph theory. 

Graph Theory is a mathematical representation of a network and it describes 
the relationship between lines and points. A graph consists of some points and 
lines between them. The length of the lines and position of the points do not 
matter. Each object in a graph is called a node. A graph G is a set of vertices, 
called nodes v which are connected by edges, called links e. Thus G = (v, e). 

https://doi.org/10.4236/ojdm.2023.132004


S. Chikomana, X. X. Hu 
 

 

DOI: 10.4236/ojdm.2023.132004 41 Open Journal of Discrete Mathematics 
 

Vertex is an intersection point of a graph. It denotes a location such as a city, a 
road intersection, or a transport terminal (stations, harbors, and airports). Edge 
is a link between two nodes. An edge denotes movements between nodes. It has 
a direction that is generally represented as an arrow. If an arrow is not used, it 
means the link is bi-directional. 

2. Genome Sequencing Using Hamiltonian Graph 

In this section, we show the genome sequencing by using Hamiltonian graph. A 
connected graph G is called Hamiltonian graph if there is a cycle which includes 
every vertex of G and the cycle is called Hamiltonian cycle. Hamiltonian 
walk-through graph G is a walk that passes through each vertex exactly once. We 
first show two very famous Theorems for Hamiltonian graph, which the proofs 
can be found in [7]. 

Theorem 2.1. (Dirac’s Theorem) states that if G is a simple graph with n 

vertices, where n ≥ 3, If ( )deg
2
nv ≥  for each vertex v, then the graph G is Ha-

miltonian graph. 
Theorem 2.2. (Ore’s Theorem) states if G is a simple graph with n vertices, 

where n ≥ 2 if deg(x) + deg(y) ≥ n for each pair of non-adjacent vertices x and y, 
then the graph G is Hamiltonian graph. 

Objective: Use overlapping DNA reads in order to reconstruct the original 
genome sequence. 

When having our fragments of the genome they often overlap. We are able to 
make use of this overlap and stitch them together. Assuming our fragments (of-
ten referred as mers) are 3 molecules long (3-mer). For instance, we could have 
fragments such as AAT, GCG, CAA. By also assuming they overlap with two 
molecules. This means the fragment AAT must be followed by a fragment be-
ginning with AT e.g., ATT. We create a Hamiltonian graph where each node is a 
fragment. And there is an edge going from a node to another when they only 
overlap by two nucleotides bases. So, the node AAT would have an edge con-
necting it to ATT. 

Example 1: Let S = {AAT, GCG, GCA, ATG, TGG, TGC, GGC, GTG, CGT, 
CAA} be a multiset of all 3-long nucleotides of a DNA sequence. Let’s construct 
a network that represents the overlap information in our reads. Each k-mer 
nucleotide from the multiset becomes a vertex (as depicted in Figure 1); two 
vertices are connected by a directed vertex if the k − 1 rightmost nucleotides of 
first vertex overlap with the k − 1 leftmost nucleotides of the second one. 

First, we create a node for each read. e.g., GTG. Prefix: First two nucleotide of 
a read (GTG). Suffix: Last two nucleotide of a read (GTG). Note: Different 3-mers 
may share a prefix/suffix: ATG, TGA, CTG. As shown from Figure 1 DNA reads 
are aligned and ready to be joined using overlap reads from prefix to suffix. 

Figure 2 shows how to connect these DNA nodes based on the prefix and suf-
fix. As illustrated from Figure 2 with nodes ATG and GTG connecting to nodes 
TGC and TGG based on the overlapping part of the nucleotide. 

https://doi.org/10.4236/ojdm.2023.132004


S. Chikomana, X. X. Hu 
 

 

DOI: 10.4236/ojdm.2023.132004 42 Open Journal of Discrete Mathematics 
 

 
Figure 1. Aligning the 3-mer nodes. 

 

 
Figure 2. Connecting DNA nodes based on prefix and suffix. 

 
From the diagram in Figure 3, we can clearly see a completed graph when 

connecting all nodes with the same prefix to the node with the same suffix and 
shows how the genome sequencing is done using the Hamiltonian approach. 
Now we need to deduce the order of the DNA and for us to do so we need to 
follow the path on the diagram that takes us from where we started. Our Hamil-
tonian cycle will be: ATG → TGG → GGC → GCG → CGT → GTG → TGC → 
GCA → CAA → AAT → ATG. Therefore, our genome from this reconstruction is 
ATGGCGTGCAAT. 

Example 2: Let H = {TGC, TTC, GCT, TCC, CTA, CCA, TAG, CAA, AGT, 
GTT, AAT, TTT, ATA} be a multiset of all 3-long nucleotides of a DNA se-
quence. From the given reads of DNA above, let’s reconstruct the original gene 
sequence using Hamiltonian cycle. 

Using the steps in example 1, constructing a network that represents the over-
lap information in our DNA reads will give the diagram above, as depicted in 
Figure 4. Therefore, from the re-arranged graph above, as depicted in Figure 5, 
Graph H has Hamiltonian path: TGC → GCT → CTA → TAG → AGT → GTT → 
TTT → TTC → TCC → CCA → CAA → AAT. From reconstructing Graph H, our 
genome is TGCTAGTTTCCAAT. 

If we find a path that visits every node once (a Hamiltonian path) we have a 
found an ordering of the fragment that makes up the whole DNA sequence. 
Sadly, finding a Hamiltonian path isnot easy (it is classed as an NP-Complete 
problem). 
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Figure 3. Complete Hamiltonian Graph of example 1. 

 

 
Figure 4. Hamiltonian graph of H. 

 

 
Figure 5. Re-arranged Hamiltonian path of H. 

3. Genome Sequencing Using Eulerian Graph 

In this section, we show the genome sequencing by using Eulerian graph. 
A connected graph G is called a Euler graph, if there is a closed trail which in-

cludes every edge of the graph G. A Euler path is a path that uses every edge of a 
graph exactly once. A Euler path starts and ends at different vertices. A Euler 
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circuit is a circuit that uses every edge of a graph exactly once. A Euler circuit 
always starts and ends at the same vertex. 

A connected graph G is a Euler graph if and only if all vertices of G are of even 
degree, and a connected graph G is Eulerian if and only if its edge set can be de-
composed into cycles. Objective: From a given set, S, in reads, use Eulerian ap-
proach to reconstruct the genome sequence. 

Using genome reads, make a node for each unique prefix or suffix. From the 
set of (l-1)-mers, which are substrings of some of the l-mers in our set S, will 
make up the vertices. Whenever there is a node which has a prefix v and suffix is 
w, connect the node v to node w. If the final l-1 elements of node v and first l-2 
elements of node w match and the union of node v and node w is in set S, then 
node v and node w are connected by a directed edge. 

In order to reconstruct the shortest sequence string using the Eulerian path, a 
set of (l-1) mer strings (i.e., strings having length less by one from given strings) 
are taken into account. 

Example 3: Let H = {AAT, TGC, CAA, GCT, CCA, CTA, TCC, TAG, AGT, 
TCC, TTT, TTC} be a multiset of all 3-long nucleotides of a DNA sequence. We 
create a node for each distinct prefix/suffix i.e., CTA we get the prefix CT and 
the suffix TA. By completing finding the distinct prefix and suffix we get the fol-
lowing V = {AT, GC, CT, CC, AA, TG, TT, CA, AG, GT, TC, TA}. 

As illustrated above,(as depicted in Figure 6), prefix AA connects to the suffix 
AT with an edge AAT as the DNA read also prefix CT connects to the suffix TA 
with an edge CTA as the DNA read. By completing the diagram connecting 
these prefixes to suffix we can show in Figure 7. 

From the diagram above (as depicted in Figure 7), the numbers mark the Eu-
lerian path that we will be followed when reconstructing this genome from 
k-mer DNA reads and by using the overlaps DNA reads we can produce the 
path table (as depicted in Figure 8). 

The path table above (as depicted in Figure 8) illustrates how we can recon-
struct our original genome using DNA reads overlaps and we got our genome 
using Eulerian path TGCTAGTTTCCAAT. 
 

 
Figure 6. Multigraph with AAT and CTA. 
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Figure 7. Complete Eulerian path of H. 

 

 
Figure 8. Eulerian path table of H. 

 
Comparing between Hamiltonian approach and Eulerian approach, the only 

difference is when using a computer, it can easily find the Eulerian cycle very 
fast compared to when using Hamiltonian cycle. 

4. Genome Sequencing Using de Bruijn Graph 

A sequence’s k-mer components can be efficiently represented using a de Bruijn 
graph. Despite the fact that de Bruijn graphs can be applied to a variety of issues, 
we will focus on nucleotide sequences in this article. Around the 1940s, Nicolaas 
de Bruijn, a Dutch mathematician, became interested in finding the shortest 
circular string of characters that encompasses all conceivable substrings of the 
same length in a particular alphabet. He came up with a solution that entailed 
creating a graph with all of the possible (k − 1)-mers as the nodes. If the (k − 
1)-mer in node A is a prefix and that in node B is a suffix of the k-mer, then each 
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k-mer was an edge directed from node A to node B. Finding a path through the 
graph that passes over each edge exactly once, or an Eulerian trail, was the sug-
gested answer. Our genome reads are fragmented into smaller fragments of a 
given size k. A node for each (k − 1)-mer from k-mers for each k-mer in k-mers 
is formed and an edge is used to connect its prefix node with its suffix node. 

Let’s illustrate with an example below. 
Example 4: Let M = {TGT, AAT, TGG, ATG, TGC, ATG, TAA, ATG, GTT, 

CAT, CCA, GGA, GCC, GAT, GGG} be a multiset of all 3-long nucleotides of a 
DNA sequence. Take all distinct (k − 1)-mers from the set of k-mers, here k = 3. 
i.e., TGC, TGG → TG, GC, GG. Construct a multi-graph with nodes being (k − 
1)-mers; draw an edge between two (k − 1)-mers only if the two (k − 1)-mers are 
taken from the same read. i.e., AAT & ATG (as depicted in Figure 9). 

This method guarantees that the graph will have a Eulerian trail, by following 
the Eulerian trail and joining the nodes will thereby reconstruct our original ge-
nome sequence. A graph similar to this will be displayed (as depicted in Figure 
10). 

As illustrated in Figure 10, each edge is this graph corresponds to a length-3 
length input string. Through this network, a Eulerian path is traced, and there-
fore as a result, we are able to reconstruct our original genome sequence table (as 
depicted in Figure 11). 

Using a Eulerian walk crossing each edge exactly once gives a reconstruction 
of the genome. After funding the walk, our genome will be  
TAATGCCATGGGATGTT. 
 

 
Figure 9. Multigraph with AAT and ATG. 

 

 
Figure 10. Complete de Bruijn graph of M. 

https://doi.org/10.4236/ojdm.2023.132004


S. Chikomana, X. X. Hu 
 

 

DOI: 10.4236/ojdm.2023.132004 47 Open Journal of Discrete Mathematics 
 

 
Figure 11. The reconstruction of the original genome sequence table of M. 

5. Conclusions 

When it comes to solving biological problems and making medicine, graph 
theory plays a vital role and it’s necessary for this generation to understand it. 
DNA sequencing was critical in mapping out the human genome, which was fi-
nished in 2003, and is now a crucial tool for many fundamental and practical re-
search applications.  

This paper discussed how graph theory is used in genome sequencing and 
showed some of the graph theory graphs that are used and showed some graph-
ical representation of those methods and some step by step on how the methods 
are used. 

When using Hamiltonian approach, as the DNA reads increase, finding a 
Hamiltonian path is not easy (it is classed as an NP-Complete problem). Euler 
approach is a better approach than Hamiltonian approach in genome sequenc-
ing because nowadays with massive growth in genetics finding the Euler cycle 
does not take a long time. Sadly, in real life there are some other problems that 
make this process harder. One example is if a fragment occurs multiple times in 
a sequence.  

The de Bruijn graph approach has proven to be a better method in genome 
reconstruction compared to Euler approach and Hamiltonian approach. 

True, assembly approaches based on de Bruijn graphs start rather counter- 
intuitively, by replacing each read with a collection of all-overlapping sequences 
of a shorter, fixed length, but this is a popular way for genome assembly. Al-
though the de Bruijn assembler is a famous way to perform assembling, there are 
significant obstacles for de Bruijn genome assembly, including sequence error, 
unequal sequencing depth, repetitive parts, and processing expense. 
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Abstract 
In this note, we first derive an exponential generating function of the alter-
nating run polynomials. We then deduce an explicit formula of the alternat-
ing run polynomials in terms of the partial Bell polynomials. 
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1. Introduction 

Let nS  be the symmetric group of all permutations of [ ]n , where [ ]n  = {1, 
2, … , n }. An alternating run of a permutation ( ) ( ) ( )1 2σ σ σ σ= ∈� nn S  is 
a continuous maximal monotone increasing or decreasing sequence. For exam-
ple, the permutation 3175246 has four alternating runs 31, 17, 752 and 246. Let 
( ),R n k  denote the number of permutations in nS  with k alternating runs. 

The study of alternating runs of permutations was initiated by André [1], who 
found that the numbers ( ),R n k  satisfy the recurrence relation 

( ) ( ) ( ) ( ) ( ), 1, 2 1, 1 1, 2= − + − − + − − −R n k kR n k R n k n k R n k       (1) 

for , 1≥n k , where ( )1,0 1=R  and ( )1, 0=R k  for 1≥k . The reader is re-
ferred to [2] [3] [4] for the recent studies on this topic. For 1≥n , we define 

( ) ( )1
1 ,−

=
= ∑n k

n kR x R n k x . Then by using (1), one can deduce the following re-
currence relation 

( ) ( ) ( ) ( ) ( )2
2 1 12 1 ,+ + +′= + + −n n nR x x nx R x x x R x             (2) 

with initial value ( )1 1=R x . The first few terms of ( )nR x ’s are given as follows: 
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( )2 2 ,=R x x  

( ) 2
3 2 4 ,= +R x x x  

( ) 2 3
4 2 12 10 ,= + +R x x x x  

( ) 2 3 4
5 2 28 58 32 .= + + +R x x x x x  

In a series of papers [5] [6] [7], Carlitz studied the generating functions for the 
numbers ( ),R n k . In particular, Carlitz [5] proved that 

( )
( )

( )

2
2 2

20 0

1 sin 111, .
! 1 cos 1

∞
−

= =

 − + −−  + =  + − − 
 

∑ ∑
n n

n k

n k

x z xz xR n k x
n x x z x

      (3) 

As a dual of (3), the first result of this note is the following. 

Theorem 1. Let ( ) ( )10,
!

∞
+=

= ∑
n

nn

tR x t R x
n

, we have 

( ) ( )( )
( )( )

1 1 cosh
, ,

1 1 cosh
x z

R x t
x z
− +

=
+ −

 

where 21arccosh 1 = − − 
 

z t x
x

. 

Let { } 1≥i n
x  be a sequence of variables. The partial Bell polynomials , :n kB =

( ), 1 2 1, , ,n k n kB x x x − +�  are defined by the generating function 

,
1

1 ,
! ! !≥ ≥

 
=  

 
∑ ∑

kn i

n k i
n k i

t tB x
n k i

 

or equivalently defined by the series expansion 

( ), 1 2 1
1 1 1

exp 1 , , , ,
! !

j n n
k

j n k n k
j n k

t tu x u B x x x
j n − +

≥ ≥ =

 
= + 

 
∑ ∑ ∑ �  

with 0,0 1=B  and ,0 0=nB  for 0>n . We refer the reader to [8] [9] [10] for 
some applications of the partial Bell polynomials. 

Corollary 1. Let ,n kB  be the partial Bell polynomials. When ( ) ( )1 221
−  = −

i

ix x  
for each 1i ≥ , we have 

( ) ( ) ( ) 1
1 ,

1
2 1 ! 1 .− −

+
=

= − +∑
n n k k

n n k
k

R x x k x B  

Proof. Let ( ) 2arccosh 1 1= − −z x t x . By Theorem 1, we get 

( )cosh 1x z −  

( ) ( ) ( )( )

( ) ( )
( )

2 2 2 2

2 2

2
1 1 1 1

1

cosh 1 sinh 1 sinh arccosh 1

1 1e e e e
2 2

1 1 ,
!

t x t x t x t x

i
i

i
i

t x x t x x x

x x

tx y
i

− − − − − −

∞

=

= − − + − − −

−
= + + − −

= − + −∑
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where ( ) ( )1 221 .
i

iy x
+  = −  Therefore, 

( ) ( )( )
( )( ) ( )

( )

( ) ( ) ( )

1

0 1

1 1 cosh 1 2, 1
1 1 cosh 1 cosh 1

1 21
1 1 1

!

1 2 1 1 1 ,
1 1 !

i
i

i
i

ki
k k i

i
k i

x z x xR x t
x z x x z

x x
x tx y

i

x x tx x
x x i

∞

=

∞

= ≥

 − + −
= = +  + − + − 

 
 −  = +
 +

− + − 
 

 −
= + − + − + +  

∑

∑ ∑

 

where ( ) ( )1 221
−  = −

i

ix x , and the desired result follows immediately. 

In the next section, we first prove Theorem 1 and then give an explicit formu-
la of ( )nR x .   

2. The Proof of Theorem 1 and an Explicit Formula of ( )nR x  

A proof Theorem 1: 

Proof. Multiplying both sides of (2) by 
!

nt
n

 and summing over all 0≥n , we 

get 

( ) ( ) ( ) ( ) ( )2 3, , ,
2 , .

∂ ∂ ∂
= + + −

∂ ∂ ∂
R x t R x t R x t

tx xR x t x x
t t x

 

Hence 

( ) ( ) ( ) ( ) ( )3 2, ,
1 2 , .

∂ ∂
− + − = −

∂ ∂
R x t R x t

x x tx xR x t
x t

 

This is a non-homogeneous linear partial differential equation, and the corres-
ponding characteristic equation is 

( )
( )3 2

d ,d d .
2 ,1

= =
−− −

R x tx t
xR x tx x tx

 

It is easy to find that its two independent initial integrals are 

( )2
1 2

1 1arccosh 1 , , .
1

xt x c R x t c
x x

+  − − = =  − 
 

Since ( ) ( )1,0 1= =R x R x , we have 

1
2

1

1 cosh
,

1 cosh
+

=
−

cc
c

 

which yields the desired formula. 

Theorem 2. Let 0> >b a  be two constants. When 
( )1 2−   =  

 

i

i
ax
b

 for each 

1≥i , we have 

https://doi.org/10.4236/ojdm.2023.132005


Y. N. Feng, Z. Wang 
 

 

DOI: 10.4236/ojdm.2023.132005 52 Open Journal of Discrete Mathematics 
 

2

, 1,1, , , ,
n k

n k
a a aB
b b b

− 
  

 
  
    

 

�  

( ) ( )
2

2

0 0

1
2 .

! 2

n l q lk k k l n

l q

k la b a b aq l
l qk b b b a

−−

= =

   −    − + = − −           −        
∑ ∑     (4) 

Proof. By the definition of partial bell polynomial, let 
( )1 2−   =  

 

i

i
ax
b

 have 

2

, 1,1, , , ,
!

n k
n

n k
n k

a a a tB
b b b n

− 
  

≥

 
  
    

 
∑ �  

1
2

1

sinh cosh
1 1
! ! !

sinh cosh
!

cosh ln
!

( 1)

k

ki
i

i

kk

k

kk

k

k

a ab t b t
b ba t b

k b i k a aa

b a aa t b t b
k a b b

b a a bb a t b
k a b b a

− 
  

≥

    
                = = + −         
  

    
= + −            

  +
= − + −   −   

−
=

∑

( )
0

1 cosh ln .
!

lk k l l

l

kb b a a a bt
lk a b b b a=

     − +  − +         −      
∑

 

Note that 

( ) ( ) ( )( ) ( ) ( )( )

0

1 1cosh e e e e .
2 2

α β α β α β α βα β + + + − − +

=

 
+ = + =  

 
∑

llt t q t l q tl
l l

q

l
t

q
 

So we get 

( ) ( )( )2

0

1cosh e .
2

α βα β − +

=

 
+ =  

 
∑

l
q l tl

l
q

l
t

q
 

It is clear that 

( ) ( ) ( )( )2

0

d cosh 1 2 e .
d 2

α βα β
α − +

=

+  
= − 

 
∑

m l l m q l tm
m l

q

t l
q l

qt
 

Differentiating the both sides of the following expression with respect to t, 

2

, 1,1, , , ,
!

n k
n

n k
n k

a a a tB
b b b n

− 
  

≥

 
  
    

 
∑ �  

( ) ( )
0

1
1 cosh ln ,

!

lk k k l l

l

kb b a a a bt
lk a b b b a=

   −   − + = − +         −      
∑  

we arrive at 
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( )
2

, 1,1, , , ,
!

n k
n m

n k
n k

a a a tB
b b b n m

− 
−  

≥

 
  
   −  

 
∑ �  

( ) ( )

( ) ( ) ( )

( )

0

0 0

cosh ln
1

1
!

1 11 2
! 2

exp 2 ln .

m l
lk k k k l

m
l

l mk k k lk l m
l

l q

a a bd t
k b b ab b a
lk a dtb

k lb b a aq l
l qk a b b

a a bq l t
b b a

=

= =

 +
+   − −  −   = −         

   −    − = − −                   
  +

⋅ − +   −   

∑

∑ ∑  

Taking the limit 0→t , we get the desired result. 
According to Corollary 1, we know that the coefficients of the corresponding 

Bell polynomials should be real numbers, so if formula (4) satisfies the condi-
tions and is meaningful, we need to make 0>a , 0>b  and 0− >b a . 
Therefore, we can obtain 0> >b a . 

Set 21= −
a x
b

. Then 

1 1 ,
2 22

−
− = − − = −

b a a x
bb

 

21 1 1 .
1

−
+ + −

= =
−

−

a
b a xb

xb a a
b

 

Combining Corollary 1 and Theorem 2, we get the following result. 
Corollary 2. We have 

( ) ( ) ( )

( )

21
1 2

1 0

2
2

0

12 1 1
21

1 12 .

−
−

+
= =

−

=

    = − + −    −    

   + −
 × −      

∑ ∑

∑

nkn kn k
n

k l

q l
l n

q

k xR x x x
lx

l xq l
q x

         (5) 

We note that the explicit formula of ( )1+nR x  given by Corollary 2 is very 
useful. With the use of formula (5), we can directly calculate the value of 
( ),R n k  for any given n and k, rather than relying on the recurrence relation. 

Here we provide an example to illustrate the application of Corollary 2, where all 
calculations are obtained using Mathematica 12.1. 

Example 3. Let 

( )
2

2

,
0 0

1 12 .
2

−

= =

     + −   = − −            
∑ ∑

q llk l n
n k

l q

k lx xW q l
l q x

 

Consider the case 1 4≤ ≤n , we have 
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( )
( ) ( )

2
1,1

2
2,1 2,2

2 2 2
3,1 3,2 3,3

22 2 2
4,1 4,2 4,

2

3 4

3

,4

1 ;

1, 2 2 ;

1 , 6 1 , 6 1 ;

1, 14 8 , 36 1 , 24 1 .

W x

W W x

W x W x W x

W W x W x W x

= − −

= − = −

= − − = − = − −

= − = − = − + = − +

 

Thus 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

1
1 21

2 1,2
1

12 1 2
3 2,2

1

3
3 21 2 3

4 3,2
1

24 1 2 3 4
5 4,2

1

12 1 2 ;
1

12 1 2 4 ;
1

12 1 2 12 10 ;
1

12 1 2 28 58 32 .
1

k
k

k
k

k
k

k
k

k
k

k
k

k
k

k
k

R x x x W x
x

R x x x W x x
x

R x x x W x x x
x

R x x x W x x x x
x

−
−

=

−
−

=

−
−

=

−
−

=

 = − + = − 

 = + = + − 

 = − + = + + − 

 = + = + + + − 

∑

∑

∑

∑
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Abstract 
In this study, we consider the problem of triangulated graphs. Precisely we 
give a necessary and sufficient condition for a graph to be triangulated. This 
gives an alternative characterization of triangulated graphs. Our method is 
based on the so-called perfectly nested sequences. 
 
Keywords 
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1. Introduction 

It is well known that graph theory provides simple, but powerful tools for con-
structing models and solving numerous types of interdisciplinary problems and 
possesses a wide range of applications [1]. Indeed graphs and graph theory can 
be used in several areas such as software designs, computer networks, social net-
works, communications networks, information networks, transportation net-
works, biological networks, managerial problems and others. 

In 1736, the problem of the Königsberg bridges was considered as the first 
problem that laid the foundation of graph theory. Since the start of interest in 
this well-known problem several questions and problems have arisen. 

Regarding the topic of this note, triangulated graphs form an important class 
among graphs. Since the end of the last century, a lot of work has been done in 
the theory of triangulated graphs (which we will define properly below). In some 
references triangulated graphs are variously called rigid circuit graphs [2], chor-
dal graphs [3] or monotone transitive graphs, like in [4]. 

Triangulated graphs can be characterized in a number of different ways. See [2] 
[4] [5] [6] [7] [8]. We recall that a vertex v of a graph G is said to be simplicial if 

How to cite this paper: Najar, H. and 
Gargouri, R. (2023) A Remark on the Cha-
racterization of Triangulated Graphs. Open 
Journal of Discrete Mathematics, 13, 55-62. 
https://doi.org/10.4236/ojdm.2023.132006 
 
Received: January 18, 2023 
Accepted: April 25, 2023 
Published: April 28, 2023 
 
Copyright © 2023 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/ojdm
https://doi.org/10.4236/ojdm.2023.132006
https://www.scirp.org/
https://doi.org/10.4236/ojdm.2023.132006
http://creativecommons.org/licenses/by/4.0/


H. Najar, R. Gargouri 
 

 

DOI: 10.4236/ojdm.2023.132006 56 Open Journal of Discrete Mathematics 
 

v together with all its adjacent vertices induces a clique in G. An ordering 

1 2, , , nv v v�  of all the vertices of G forms a perfect elimination ordering of G if 
each ,1iv i n≤ ≤ , is simplicial in the subgraph induced by 1, , ,i i nv v v+ � . In [2], 
we find a necessary condition for a graph G to be triangulated which is the exis-
tence of simplicial vertex. In [6], Fulkerson and Gross, state that a graph G is 
triangulated if, and only if, it has a perfect elimination ordering. Precisely, Ful-
kerson and Gross showed that the class of triangulated graphs is exactly the class 
of graphs having perfect elimination orderings. Thus when the input graph G is 
not triangulated, no perfect elimination of it exists. Rose et al. in [9] treat the 
question of triangulated graphs and also give several characterizations of mi-
nimal triangulations. In [10] the author gives a new representation of a triangu-
lated graph called the clique-separator graph, whose nodes are the maximal cli-
ques and minimal vertex separators of the graph. 

At the end of this section we mention that triangulated graphs have applica-
tions in several areas such as computer vision [11], the solution of sparse sym-
metric systems of linear equations [12], database management systems [13] and 
knowledge-based systems [14]. At the end of the paper, we collect two main 
consequences of triangulated graphs. Another consequence of triangulated 
graphs is the problem of finding a maximum clique. Indeed, in a triangulated 
graph we get the answer in polynomial time, while the same problem for general 
graphs is NP-complete. More generally, a triangulated graph can have only li-
nearly many maximal cliques, while non-chordal graphs may have exponentially 
many [15].  

Basic Concept of Graph Theory  

In this section, we will enumerate and explain the basic definitions and the ne-
cessary terminology to make use of graph theory. There is a great variety in how 
different authors presented the basic definitions of the graph theory. Indeed 
there are many roughly equivalent definitions of a graph. 

Most commonly, a graph G is defined as an ordered pair ( ),V E , where 
{ }1, , ,nV v v= � �  is called the graph’s vertex-set or some times the node set and 
{ } { }{ }1, , , , | ,mE e e x y x y V= ⊂ ∈� �  is called the edges set. 

Given a graph G, we often denote the vertexset by ( )V G  and the edgeset by 
( )E G . To visualize a graph as described above, we draw dots corresponding to 

vertices 1, , ,nv v� � . Then, for all { }, 1, , ,i j n∈ � �  imagine a line between the 
dots corresponding to vertices ,i jv v  if and only if there exists an edge 

{ },i jv v E∈ . Note that the placement of the dots is generally unimportant; many 
different pictures can represent the same graph as it is given in the example be-
low Figure 1. 

A subgraph is a concept akin to the subset. A subgraph has a subset of the 
vertex set A V⊆ , a subset ( ) { }{ }, : ,E A x y E x y A= ∈ ∈  of the edge set E, and 
each edge’s endpoints in the larger graph has the same edges in the subgraph. 
We denote it by ( ) ( )( ),G A A E A= . 
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Figure 1. Two different representations of same graph. 

 
Two vertices are said to be adjacent if there is an edge joining them. Given 

x V∈ , the set of all adjacent vertices in G is denoted by ( )Adj x , 

( ) { }{ }, , .Adj x y V x y E= ∈ ∈                       (1) 

The word incident has two meanings: On the one hand, an edge e is said to be 
incident to a vertex v if v is an endpoint of e. On the other hand, two edges are 
also incident to each other if both are incident to the same vertex. A set C of ver-
tices is a clique if every pair of vertices in C are adjacent. A clique of a graph G is 
a complete subgraph of G. 

A path is a sequence of edges 1, , Ne e�  (also denoted ( )1, , nv v�  such that 

ie  is adjacent to 1ie +  for all i from 1 to 1N − , ie  relates iv  to 1iv + . Two 
vertices are said to be connected if there is a path connecting them. A cycle is a 
path such that the last edge of the path is adjacent to the first and visits each ver-
tices once (in some references they call this elementary cycle). 

In a simple graph each edge connects two different vertices and no two edges 
connect the same pair of vertices. Multi-graphs may have multiple edges con-
necting the same two vertices. An edge that connects a vertex to itself is called a 
loop. Two graphs G and G' are said to be isomorphic if there is a one-to-one 
function from (or, if you prefer, one-to-one correspondence between) the vertex 
set of G to the vertex set of G' such that two vertices in G are adjacent if and only 
if their images in G' are adjacent. Technically, the multiplicity of the edges must 
also be preserved, but our definition suffices for simple graphs, which are graphs 
without multiple edges or loops. 

Definitions 
A graph is called triangulated if every cycle of length greater than three possesses 
a chord, i.e. an edge joining two non-consecutive vertices of the cycle. A vertex x 
of a graph ( ),G V E=  is called perfect in G if ( )Adj x = ∅  or { } ( )( )x Adj x∪  
is a clique. For A V⊆ , we denote by ( )P A  the set of all perfect vertices of A 
in ( )G A  (Figure 2). 

Let ( ),G V E= , be a graph. A sequence ( )n n
U

∈  of subsets of ( )V , is said to 
be perfectly nested on ( ),G V E= , if it satisfies the following three conditions 

1) 0U V= . 
2) n∀ ∈ , 

1 .n nU U+ ⊆  

3) n∀ ∈ , ( )nP U ≠ ∅ , and 
( )1\n n nU U P U+ ⊆ . 
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Figure 2. Perfect vertices. 

 
We say that the sequence is stationary perfectly nested, if furthermore the 

three last conditions, there exists 0 0n ≥  such that we have ( )n nP U U= , for 
any 0n n≥ .  

2. The Results 

Proposition 1 Let ( ),G V E=  be a graph and ( )A P X⊂ . Then the follow-
ing items are equivalents: 

1) ( ),G V E=  is triangulated; 
2) ( )\G V A=  is triangulated. 
Proof. It is clear that 1) implies 2). 
For the other sense, let us consider A ≠ ∅ . Let ( )1, , nC v v= �  be a cycle in 
( ),G V E= . There are two possibilities [(a)]. 

1) If \C V A⊆ , then C has a chord. 
2) If C A∩ ≠ ∅ , there exists { }0 1, ,i n∈ �  such that 

0i
v A∈ . As 

0i
v  is a 

perfect vertex, then ( )0i
Adj v C∩  is a clique and so, C has a chord. So 

( ),G V E=  is triangulated. 
Theorem 2 Let ( ),G V E=  be a graph. Suppose that there exists a perfectly 

nested sequence on ( ),G V E= . Then ( ),G V E=  is a triangulated graph. 
Proof. Let ( )1 2, , , , 4nC v v v n= ≥� , be a cycle in the graph ( ),G V E= . Let 

( )n n
U  a perfectly nested sequences. There exists n∈ , such that 

1, .n nC U C U +⊆   

So, 
( ) .nC P U∩ ≠ ∅  

This ensures that there exists a perfect vertices ( )nx C G U∈ ∩ . So C has a 
chord. 

When V is infinite let us notice that we can construct triangulated graphs 
which do not have a perfectly nested sequence. Indeed for V = �  and 

{ }{ }, 1 ,E n n n= + ∈ , ( ),G V E=  is triangulated and ( )P V = ∅ . 
Theorem 3 Let ( ),G V E=  be a graph, with V being a finite set. Then, 
( ),G V E=  is triangulated if and only if there exists a stationary perfectly nested 

sequence on ( ),G V E= . 
Proof. For the proof, we need the following two basic lemmas: 
[4] Let ( ),G V E=  be a triangulated finite graph. Then ( )P V = ∅ . The 

proof of the last lemma is given in [4] by using the notion of the minimal sepa-
rators and elimination process. From a different point of view, we can see this by 
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noting that if we suppose that ( )P V = ∅ , starting with a non perfect point x it 
has necessary two adjacent points 1 1,x y  which themselves are non adjacent to 
each others. As V is a finite set, a typical end of the process should be in the form 
of Figure 3. At this step, as no point can be adjacent to a single point being a 
non perfect point it is adjacent to more than two points. This leads forcibly the 
existence of a non-chordal cycle of length of more than 3. So ( ),G V E=  is not 
triangulated. Let ( ),G V E=  be a connected graph. Let ( )A P V⊂ . Then, 

( )\G V A= , is also a connected graph. 
Proof. Let ( )A P V⊆ , and 1, \nv v V A∈ . As ( ),G V E=  is a connected 

graph, there exists a path ( )1, , nP v v= �  in ( ),G V E= , for any 
0i

v A P∈ ∩ , 
as 

0 1iv −  and 
0 1iv +  are in ( )0i

Adj v , we get that ( )0 01 1i iv Adj V− +∈ , by the defi-
nition of 

0i
v  being a perfect point. So we get a path  

( )0 01 1 1, , , , ,i i nP v v v v− +′ = � �  in ( )( )\ ,G V A E A= . 
Let us start by the proof of the necessary condition. By Lemma 2(`)@ we know 

that when ( ),G V E=  is triangulated, then ( )P V ≠ ∅ ; For ( )1V P V , we set 

2 1 1 1\ , .U U V U V= =with  

By Proposition 1, ( )( )2 2,G U E U  is a triangulated graph, so ( )2P U ≠ ∅ . Let 
( )2 2V P U⊆ , we set 

3 2 2\ .U U V=  

In the same way we construct the perfectly nested sequence. As the set V is fi-
nite by assumption we get the stationarity property using the result of Lemma 2, 
as at the end it remains only one or two perfect points. 

For the sufficient condition it is given by Theorem 2. 
Below we give an example where using our result we get the answer to the 

question of triangulated graph after only three steps. 
Let us end this section with the following remark. In this particular case, if we 

take a perfectly nested sequence in Theorem 3 with the property that for any 
1 i n≤ < , 1\ 1i iU U + = , 1nU =  we get the characterization given in [4], by 
taking 

{ }: 1, , .n Vα � �  

( ) { } ( ) { }1 1
1\ , .i i nU U i U nα α− −
+ = =  

 

 
Figure 3. Triangulated graph. 
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3. Some Consequences of Triangulation  

For completeness, below we collect some possible implications of our main re-
sult. In addition to the consequence given in the introduction which concerns 
the answer in polynomial time to some problems for triangulated graphs, the 
same problem for general graphs is NP-complete. Below we collect two more 
consequences of triangulated graphs.  

3.1. Directed Acyclic Graphs  

An orientation D of a finite graph G with n vertices is obtained by considering a 
fixed direction, either x y→  or y x→ , on every edge { }xy  of G. 

We call an orientation D acyclic if there does not exist any directed cycle. A 
directed graph having no directed cycle is known as a directed acyclic graph, we 
write DAG for short. DAGs provide frequently used data structures in computer 
science for encoding dependencies. The topological ordering is another way to 
describe a DAG. A topological ordering of a directed graph ( ),G V E=  is an 
ordering of its vertices as 1 2, , , nv v v�  such that for every arc i jv v→ , we have 
i j< . 

Let us consider an acyclic orientation D of G. An edge of D, is said to be de-
pendent (in D) if its reversal creates a directed cycle in the resulted orientation. 
Note that i jv v→  is a dependent arc if and only if there exists a directed walk 
of length at least two from iv  to jv . We denote by ( )d D , the number of de-
pendent arcs in D. A graph G is called fully orientable if it has an acyclic orienta-
tion with exactly d dependent arcs for every number d between ( )dmin G  and 

( )dmax G , the minimum and the maximum values of ( )d D  overall acyclic 
orientations D of G. An acyclic orientation with 6 dependents arcs (Figure 4). 

In [16], the authors show that all chordal graphs are fully orientable. Let us 
denote the complete r-partite graph each of whose partite sets has n vertices by 

( )rK n . As it is also known [17] that ( )rK n  is not fully orientable when 3r ≥  
and 2n ≥ . One deduces that the acyclic orientation ( )3 2K  given in the exam-
ple is not a triangulated graph. If we consider the graph of example 3, as it is a 
triangulated graph we deduce that it is a fully orientable graph. 

 

 
Figure 4. An acyclic orientation. 
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3.2. Chromatic Number  

A graph coloring is an assignment of labels, called colors, to the vertices of a 
graph such that no two adjacent vertices share the same color. 

1) A Clique number ( )Gω , is the maximum size of a clique in G. 
2) A Chromatic number ( )Gχ , is the minimum coloring number. 
For a general graph G, we have 

( ) ( ).G Gχ ω≥                            (2) 

For triangulated graphs, we have equality instead of inequality in Equation (2). 
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