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ABSTRACT 

We prove that a Cayley digraph on the direct product of dihedral groups D2n × D2m with outdegree two is Hamiltonian if 
and only if it is connected. 
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1. Introduction 

1.1. Definitions 

For a finite group G and a subset S of G, the Cayley 
digraph  is the directed graph with vertex set 
G and arcs from v  to vs  for each v  and 

( ; )Cay G S
G s S . 

The set S is often called the connection set of the digraph 
, and this digraph is connected if and only if 

 is a generating set for G. The connection set S is said 
to be minimal if it is a minimal generating set of G, and it 
is said to be minimum if it is a minimal connection set of 
minimum cardinality. A Hamilton cycle (path) in a di- 
graph of with n vertices is a directed cycle (path) with n 
vertices. A digraph is said to be  Hamiltonian if it has a 
Hamilton cycle. 

(Cay G
S

; )S

Each arc in  of the form  is la- 
belled 

( ; )Cay G S ( , )v vs
s , and called an s-arc. A Hamilton cycle in 

 can be specified by the sequence of vertices 
encountered or by the sequence of arcs traversed. In the 
latter case, it is often more convenient to list the labels of 
the arcs, rather than the arcs themselves, since for each 
vertex there is exactly one out-arc with label  for each 

( )Cay G; S

s
s S . An ordered sequence 1 2 , , , ns s  s  of the arc 
labels encountered in a Hamilton cycle is called a Hamil- 
tonian arc sequence. Since Cayley digraphs are vertex- 
transitive, any cyclic shift of a Hamiltonian arc sequence 
of a Cayley digraph is also a Hamiltonian arc sequence 
of the digraph, and traversing a Hamiltonian arc se- 
quence of a Cayley digraph starting from any vertex will 
yield a Hamilton cycle of the digraph. For convenience 
and brevity, we sometimes omit the commas and 
brackets from an arc sequence. For an arc sequence x, the  

symbol tx  denotes the concatenation of  copies of t
x . If vs w  for some  and ,v w G s S , we some- 
times write 

sv w  

to denote the fact that there is an s-arc from  to w  in 
. 

v
( ; )Cay G S

For an integer , the symbol 2n  denotes the 
dihedral group of order . For  this is the group 
of symmetries of the regular -gon under the operation 
of function composition, and it has the presentation 

2n  D
2n 3n 

n

2, ,e F 1, nR F R e F  RF R , where R is the coun- 
terclockwise rotation of 360 n  and F  is a reflection 
across any axis of symmetry. For n = 2 the same present- 
ation can be used to define D4. Note that . 4 2  2D

1.2. History and Layout of the Paper 

One fundamental problem is that of determining which 
Cayley digraphs are Hamiltonian. This is a longstanding 
problem which can be traced back to bell ringing, or 
campanology, since the orders in which a set of church 
bells may be rung form a group, and a Hamilton cycle in 
a Cayley digraph of this group gives a sequence of these 
bell ringing orders which is pleasing to the ear. The 
problem is longstanding mainly due to its difficulty. 
There are several good surveys on the problem, including 
[1-3], which discusses recent progress and current direc- 
tions in the more general related problem of finding 
Hamilton cycles and paths in vertex-transitive graphs. 

One of the first elegant results on the problem of the 
Hamiltonicity of Cayley digraphs is due to Rankin [4], 
who determined which connected Cayley digraphs on a 
group  with connection set G ,a b  are Hamiltonian, 
in the case where 1ab  is a normal subgroup of .  G
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This solves the problem for Cayley digraphs with two 
generators for a class of groups which includes the 
Abelian groups, and some Cayley digraphs on solvable 
groups with two generators. In Section 2 we prove the 
following theorem. 

Theorem 1.1. A Cayley digraph on 2 2n m  with 
outdegree two is Hamiltonian if and only if it is con- 
nected. 

D D

This is a new result since such digraphs do not satisfy 
the hypothesis of Rankin’s result. We first prove that if 

2 2n m  is generated by two elements then both  
and m are odd, and the proof makes use of the following 
result due to Gaschütz in 1955 [5]. 

D D n

Proposition 1.2. (Gaschütz [5]) Let 1  and 2G  be 
groups. If 1 2G G  is finite, then G  is generated 
by two elements if and only if each of the groups 

G
G 

   1 2 1 2  is generated by two ele- 
ments, where  is the intersection of the maximal 
proper normal subgroups of  for .  

2, ,G G G R G RG G

m

m

1

 iR G

iG 1,2i 

2. Direct Products of Dihedral Groups 

In this section we prove Theorem 1.1. We make use of 
the following lemma. 

Lemma 2.1. If 2  is generated by two ele- 
ments, then both  and  are odd.  

2nD D
mn

Proof: Since any dihedral group is generated by two 
elements, Proposition 1.2 implies that  is ge- 
nerated by two elements if and only if 

2 2nD D

   2 2 2 2n n m mD R D D R D  is generated by two ele- 
ments, where  and 2m  denote the inter- 
sections of the maximal normal subgroups of 2n  and 

2m , respectively. If n  is even and , then the 
normal subgroups of  

 2nR D  R D 
D

= 2n D

2 1
2 , , ,n

nD R F R e F e FRF R     

are 
2 2  (for 0 1), , ., ,k k n R F R RFR     

Thus the intersection of the maximal normal sub- 
groups of 2n  is D   2

2nR D R . On the other hand, if 
 is odd, then the normal subgroups of 2n  are all of 

the form 
n D

 kR  for 1 , and so in this case 
there is only one maximal normal subgroup, namely 

1k n  

 2nR D R . Note that 2
2 2( 1)n n  and  D R  D 

2 2n . Thus Proposition 1.2 implies that if  
and  are both even then  is generated by 
two elements if and only if 2( 1) 2( 1)n m  is generated 
by two elements, and if exactly one of n or m is even, say 
n is even, then  is generated by two elements 
if and only if 2( 1) 2n  is generated by two elements. 
Using induction and the fact that 4 2 , we 
conclude that if n  or  is even and 

D R  
m

n

2m

2 2nD D
D  

D

m

D

m2 2nD D
D  

m
2 

D


2n D  is 

generated by two elements, then either 

2 2 2 2       or 2 2 2   

2 2n mD D

 is generated by two 
elements, a contradiction. Hence both  and  must 
be odd. 

n m

Proof of Theorem 1.1: If a Cayley digraph is Hamil- 
tonian, then it is certainly connected. Conversely, if a 
Cayley digraph on   of outdegree two is 
connected, then 2 2n mD D  is generated by two elements. 
Let     ,B B1 2 1 2  be a generating set for 

2

,,S A A
2n mD D . By Lemma 2.1, both m  and  must be 

odd. If i

n
A  and i  are both rotations in  for some B 2nD

 1, 2i , then S does not generate 2n m , a con- 
tradiction. Hence at least one of 

2 D

i

D
A  and i  is a 

reflection for . If 1 1 2

B
=i 1,2 , , 2 ,A B A B  are all re- 

flections, then every element in ,a  an ordered pair 
of reflections or an ordered pair of rotations, a con- 
tradiction. If a rotation in 

b  is

 1, 1A B  does not generate the 
cyclic subgroup of rotations of 2n , or if a rotation in D
 2 2,A B

D
 does not generate the cyclic subgroup of rota- 

tions of 2m , then S does not generate all of 2 2n mD D , 
a contradiction. Thus any 2-element generating set  
must have one of the following two forms: 

S

1)     , , ,n m n mF b F RS a R 
2n n

 for reflections 
F D  and 2m mF D , and rotations R 2n D n  and 

2m mR D  or orders  and , respectively. n m
We will show that  

  22 11 mn na b a
  

is a Hamiltonian arc sequence in   2 2 ,Cay D a b ;n mD . 
Each element of m2 2nD D  may be written uniquely in 
the form  kR F ,i j

n nR F m m
 where , 0 n 0 <k m<i  , 

and 0 , < 2j  . For convenience, we will represent the 
element  k F 

a
,i jR F R

= 0j
1j

n n m m
 by the ordered string . 

Following the arc labelled  from a given vertex  
of the digraph increases the value of  by 1 modulo  
if , decreases the value of  by 1 modulo  if 

ijk
ijk

i n
i n

 , fixes the value of , increases the value of  by 
1 modulo 2, and fixes the value of . Similarly, 
following the arc labelled  from a given vertex  
of the digraph increases the value of  by 1 modulo  
if , decreases the value of  by 1 modulo m  if 

, fixes the value of , increases the value of  by 
1 modulo 2, and fixes the value of . 

j

b




k

ijk
k m

k
j

i

= 0
= 1

1na
Starting for the identity vertex 0000 and following the 

sequence  , we form a path which visits each vertex 
of the form , for which  and   have the same 
parity, exactly once. Now following  we extend 
this path to visit each vertex of the form  where 

00i 

mod 2i

i
1nba

11i 
 

02i 

  11 1 mn na ba

. Again following , we visit each vertex 
of the form  where . Continuing in this 
way, starting from 0000 and following the arc sequence  

1n

d 2
ba
moi 

  , we form a path which visits each vertex  
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G. ANDRUCHUK  ET  AL. 90 

of the form 

 of the form
w following a

n   

with x
ina-

0000. Hen

Hamiltonian arc sequence. This arc sequence is show
Figure 1 for the case where  and 

ijk
. S
  where both mod 2i    and 
tarting from the last vertex on this path  mod 2j k

and following the arc sequence  1ba  , we visit each  
mn

vertex of the form ijk  where 2i  and  
mod 2j k . In total, starting fr identity vertex  

mod 
om the 

0000 and fo
2 1m

llowing arc sequence  1 1n na b a  , we  

form a path which visits each vertex ijk  
exactly once, where mod 2i   . No c a  

 
r

first


from the last vertex on this path, we land on the  
vertex ( 1)1( 1)1n m  path of the form ijk  
with mod 2i   . Now repeating the arc sequence  

 1 1na b we visit each vertex of the form  

 of our 

2 1m
a ,



ijk
mod 2i    

)001 . Thu
llowing arc

exactly once, and finish on the verte  
s we have formed a Hamilton path. F  ( 1n 

lly, fo  a , we land back on the identity vertex 
ce the complete arc sequence 

      22 1 2 1 2 11 1 1 1 1m m mn n n n n na b a a a b a a a b a
        is a 

n in 
= 5n = 3m .   

2)     , , ,n m n n mS a F R b F R F    for reflections 

2n nF D  and 2m mF D , and rotations 

2mR D  or orders n  and m , respect
his 

2n n

m  ively. 
case, we show that  

2n

R D  and 

is a Hamiltonian arc sequence in 

In t

 2 1ma b   

  2 2 ; ,n my D D a b . 
 arc sequence traces out a 

ices,


First we will prove that this

Ca

walk in   2 2 ; ,n mCay D D a b  which visits all vert  
then we will show that this walk is closed. Note that each 
vertex o tten uniquely in the form 
 ,i j k

n n m m

f this graph can be wri
F R F R  where 2,i k  , nj  and m  . 

he arc se ence  22 1 nma b  visits all ver- To see that t qu

tices of the digraph, notice that starting at any vertex 
 ,i j k

n n m mv F R F R   and following quence 2 1ma arc se  , 
we visit all vertices in the coset of a  which contains 

 from v , if the vertex v . Hence, starting x  reach  

arc sequence  2 1

ed by  
sma b  and the vertex y  reached by 

arc sequence  lie in different cosets of  2 1 tma b  a   

whenever 10 < 2s t n   , we can conclude that the  

of the digraph. Su
 

arc sequence a walk which visits  

all vertices ppose, for the sake of con- 

  traces out 22 1 nma b  

tradiction, that x  and y  lie in the same coset of a . 
We have 

  
 ( 1)

, ai j k
n n mF R F R




mmod 2 ( ) mod ( 1) mod ,,

m

i j n k
n n m mF R F R 

 

  
 ( 1) mod 2 ( 1) mod ( 1) mod 2 od

,

,,

bi j k
n n m m

i j n k
n n m m

F R F R

F R F R    




 

m m

It is easy to see that traveling by a sequence of -arcs 
doesn’t change the exponen

  
 

2 1

( 1) mod ( 1) mod 2 ( 1) mod

,

.,

ma bi j k
n n m m

i j n k m
n n m m

F R F R

F R F R



   




 

a
t of mF . Also, eac e a 

vertex travels by an a-arc, its first coordinate alternates 
be

h tim

tween ( 1) mod 2 ( ) modi j n
n nF R   and i j

n nF R , and each time a 
vertex travels by the arc sequen 2 1ma b , its second 
coordinate alternates between ( 1) mod 2 ( 1) modk m

m mF R    and 
k

m m

ce 

F R . H

 

ence 

 



and 

. 

Since 



2 1

(

,
m s

i j k a b
n n m m

i j s

F R F R

F R











 
)mod ( )mod2 ( 1)mod

( )mod ( )mod2

,  odd,

,  even,

n k s m
n n m m

i j s n k s
n n m m

sF R

sF R F R

  

 






 

   

 
 

2 1

( )mod ( )mod2 ( 1)mod

( )mod ( )mod2

,

,  odd,

,  even,

m t
i j k a b

n n m m

i j t n k t m
n n m m

i j t n k t
n n m m

F R F R

tF R F R

tF R F R



   

 













x  and  are in the same coset of y a , y  
can be d  reache  from x  

an
through a sequence of 

which s not ge the exponent of
a -arcs, 

doe  ch  mF  in the 
second co rdinate hus  

(mod 2)k s k t

o . T

    

and so  
(mod 2).s t                (1) 

since the exponent of  in xAlso, nF  and  are 
can be reached from 

y
equal, y  x  by a sequence of a- 

at  arcs of even length. This implies th

(mo )j s j t nd    

and thus 
(mod ).s t n  

Since 0 < 2 1s t n   , this implies , so t s n 

(mod 2t s n ).   

But then d we have   since is odn  

1 (mod 2),t s   

w  ( athich contradicts 1). We conclude th  x  and  lie 
in different cosets of

y
 a , and so th ed he  

e he  

 is closed, 

e walk trac by t

arc sequence   visits every vert x of t di- 

graph. 
To show the walk we choose an initial vertex 

22 1 nma b  

 n n m m,i j kv F R F R bserve that  and o
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    , , ,a = R F b = F R5 3 5 3 . The label ijkl  Figure 1. Hamilton cycle in the Cayley digraph on D10 × D6 with connection set 

denotes the vertex  i j k lR F R F5 5 3 3, . 

 

 

    , , ,a = F R b = F R F5 3 5 5 3Figure 2. Hamilton cycle in the Cayley digraph on D10 × D6 with connection set . The label ijkl  

denotes the vertex  ,i j k lF R F R5 5 3 3
. 

 

     
22 1 ( 2 ) mod ( 2 ) mod 2, ,

nmi j k i j n n k na b
n n m m n n m mF R F R F R F R

     

which reduces to th
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