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ABSTRACT 

The work presents some new algorithms realized recently in the package TESTAS. The package decides whether or not 
DFA is synchronizing, several procedures find relatively short synchronizing words and a synchronizing word of the 
minimal length. We check whether or not a directed graph has a road coloring that turns the graph into a synchronizing 
deterministic finite automaton (DFA). The algorithm finds the coloring if it exists. Otherwise, the k-synchronizing road 
coloring can be found. We use a linear visualization of the graph of an automaton based on its structural properties. 
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1. Introduction 

The problem of synchronization of a DFA is natural and 
various aspects of this problem were touched upon the 
literature. Synchronization makes the behavior of an 
automaton resistant against input errors since, after detec-
tion of an error, synchronizing word resets the automaton 
back to its original state, as if no error had occurred [1,2].  

The early version of the package TESTAS was de-
scribed in [3] in 2003. There exists some interest in the 
original algorithms of the package, sometimes even quite 
exotic [4]. The features of the package are considered 
also favorably for educational purposes: “The Road Col-
oring Conjecture makes a nice supplement to any dis-
crete mathematics course” [5]. 

A problem with a long story is the estimation of the 
minimal length of a synchronizing word, (černy’s con-
jecture). Jan černy found in 1964 [6] n-state complete 
DFA with shortest synchronizing word of length (n − 1)2 
for alphabet size q = 2. The problem can be reduced to 
automata with strongly connected graph. The best known 
upper bound is now equal to n(7n2 + 6n − 16)/48 [7]. 
černy’s conjecture together with the road coloring prob-
lem belong to the most fascinating problems in the theory 
of finite automata [8,9].  

The package decides whether or not DFA is synchro-
nizing, several procedures find relatively short synchro-
nizing words (O(n3d) time complexity in the worst case) 
and a synchronizing word of the minimal length (non- 
polynomial algorithm) [3,7,10]. The space complexity is 
quadratic. These procedures were successfully checked, 
in particular, in the program that has studied all transition 
graphs of automata with 10 states or less in a search of 
long synchronizing words [10]. The size of the set of 

studied objects was about 1020. 
Imagine a map with roads which are colored in such a 

way that fixed sequence of colors, called a synchronizing 
sequence, leads to fixed place whatever is the starting 
point. Finding such a coloring is called road coloring 
problem. The roads of the map are considered as edges of 
a directed graph. 

The road coloring conjecture [11-13] was stated over 
forty yeas ago for a complete strongly connected directed 
finite graph with constant outdegree of all its vertices 
where the greatest common divisor (gcd) of lengths of all 
its cycles is one. The edges of the graph being unlabelled, 
the task is to find a labeling that turns the graph into a 
deterministic finite automaton possessing a synchroniz-
ing word. 

The problem was mentioned in “Wikipedia” on the list 
of the interesting unsolved problems in mathematics 
many years ago. The positive solution of the road color-
ing problem [14,15] is a basis of a polynomial-time im-
plemented algorithm of O(n3) complexity in the worst 
case. The space complexity is quadratic. 

For arbitrary complete graph the program finds k- 
synchronizing (or generalized [16]) road coloring [17]. 

The visualization of the transition graph of an automa-
ton is an important tool for the study of automata. A tool 
for the visualization of the inner structure of a digraph is 
without any doubt an interesting matter, not only for the 
road coloring problem but also for a wide range of ap-
plications on directed graphs with labels on edges. For 
these reasons, the visual perception of the structural 
properties of an automata is an important goal. 

The visualization algorithm is linear in the size of the 
automaton [17,18]. This property of the package is handy. 
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2. Preliminary 

As usual, we regard a directed graph (digraph) with let-
ters assigned to its edges as a finite automaton, whose 
input alphabet  consists of these letters. The graph is 
called a transition graph of the automaton. The letters 
from  can be considered as colors and the assigning of 
colors to edges will be called coloring. 

A path in a digraph G is a sequence of edges e1, ···, ek 
such that the end vertex of ei is the start vertex of ei+1 for 
i = 1, 2, ···, k − 1. The path is called a cycle if e1 = ek. 

A digraph is strongly connected if for every pair of 
vertices q, p there exists a path from q to p. An arbitrary 
digraph consists of some strongly connected components 
(SCC). An SCC is sink if from every vertex of digraph 
there exists a path to vertex of the SCC. 

A finite directed strongly connected graph with con-
stant outdegree of all its vertices where the gcd of lengths 
of all its cycles is one will be called an AGW graph (as 
introduced by Adler, Goodwyn and Weiss). 

An automaton is deterministic if no state has two out-
going edges of the same color. In complete automaton 
each state has outgoing edges of any color. 

If there exists a path in an automaton from the state p 
to the state q and the edges of the path are consecutively 
labeled by = 1···k, then for s = 1. k є + we shall 
write 

q = ps 

Let Ps be the set of states ps for p є P, s є +. For the 
transition graph Г of an automaton let Гs denote the map 
of the set of states of the automaton. 

The word s є + is called a synchronizing word of the 
automaton with transition graph Г if 1s  . 

A coloring of a directed finite graph is synchronizing 
if the coloring turns the graph into a deterministic finite 
automaton possessing a synchronizing word. 

Let the integer q denote the size of alphabet and let n 
be the number of nodes. 

3. Algorithms for Testing Synchronizing 
Automata 

The package TESTAS presents three distinct versions of 
polynomial time algorithm for synchronizing word based 
on different approaches [3,10,17]. The algorithms have 
O(n3d) time complexity in the worst case. 

Every version finds synchronizing word of length near 
minimal. The last statement is a result of a lot of experi-
ments. For instance, no synchronizing word of length 
greater than n2 was found. As for synchronizing word of 
minimal length, the problem is NP-hard [8]. 

The Algorithm for Synchronizing Word of 
Minimal Length 

The algorithm is a revision of an algorithm for finding 

the syntactic semi-group of an automaton on the base of 
its transition graph [19]. The first step is a verifying of 
the existence of a sink state in Г. It is a necessary condi-
tion for to be synchronizing. We verify the relation of 
reachability  and form on the vertices of Г a quadratic 
table of reachability (  2

O q ) time and space com-
plexity). Then let us find all sink states of Г (The col-
umns of the table of reachability with equal elements.) 
The graph without sink has no synchronizing word. Oth-
erwise, we continue. 

For every pair of states ((p, q)), let  mini-
mal length synchronizing word. (

us find their

 2
O q   time and 

space complexity). Let us denote the length of this word 
by l(p, q) and let l(M) be the length of the synchronizing 
word of mapping M. Obvious is the following. 

Proposition 1 Let L be an upper bound of the length of 
synchronizing word of a pair of states. Then any mapping 
M such that the states p, q belong to M and l(p, q) > L 
does not belong to any sequence of mappings of minimal 
length synchronizing word. 

Then by use an algorithm of polynomial time and 
space complexity let us find some synchronizing word 
and create a sequence of mappings M for every synchro-
nizing word obtained on this way. 

Proposition 2 Let L be an upper bound of the length of 
synchronizing word. Let S  M be two mappings, M is 
obtained by help of word of minimal length k, S belongs 
to some sequence of mappings of minimal length syn-
chronizing word. Then the mapping M could belong to a 
sequence of mappings of minimal length synchronizing 
word only if k + l(S)  L. 

Mappings of the graph of the automaton induced by 
the letters of the alphabet of the labels are considered. 
They correspond to semi-group elements. Mappings with 
the same set of vertices are identified. Distinct mappings 
are saved. For this aim, any two mappings are compared, 
so we have   1 2O n n   steps. We exclude mappings 
that do not satisfy the conditions of propositions 1, 2. So 
we have 

2 ) operations for the proposition 1 and 
 O S ) operations for the proposition 2 on every step 

of creation of the set of mappings. Let us notice that the 
size of the syntactic semi-group is in general not poly-
nomial in the size of the transition graph. Therefore the 
time and space complexity of the algorithm is not poly-
nomial in the size of the graph in the worst case. Finding 
synchronizing word of minimal length is NP-hard [7]. 
Nevertheless, the use of the propositions 1 and 2 can es-
sentially reduce the number of considered mappings. 
With any mapping let us connect a previous mapping and 
the letter that creates the mapping. On this way, the path 
on the graph of the automaton can be constructed. Any 
synchronizing mapping of the set of vertices presents a 
synchronizing word. The word can be restored from let-
ters connected with mappings. 

Copyright © 2012 SciRes.                                                                                OJDM 



A. N. TRAHTMAN 47

The algorithm founds a list of all words (elements of 
syntactic semi-group) of length k where k is growing. 
The first synchronizing word of the list is a synchroniz-
ing word of the minimal length. 

The algorithm is valid for both complete and non- 
complete graphs. The time complexity of the considered 
procedure is  2O qn  with O n   space complexity. 

4. The Algorithm for Synchronizing 
Coloring 

The positive solution of the road coloring problem [14,15] 
is a base of a polynomial-time implemented algorithm of 
O(n3) complexity in the worst case. The study uses the 
following theorems. 

Theorem 1 [14] Let every vertex of a strongly con-
nected directed graph Г have the same number of outgo-
ing edges. Then Г has synchronizing coloring if and only 
if the greatest common divisor of lengths of all its cycles 
is one. 

Theorem 2 [9,14] Let us consider a coloring of an 
AGW graph Г. Let  be the transitive and reflexive clo-
sure of the stability relation on the obtained automaton. 
Then  is a congruence relation,   is also an AGW 
graph and a synchronizing coloring of   implies a 
synchronizing recoloring of Г. 

The input of the algorithm is a graph with an arbitrary 
coloring. The algorithm changes some colors of edges of 
the graph. At the end of the work of the implemented 
version, on the screen appears the layout of the graph 
without coloring and then in a second of artificial delay 
the desired coloring appears. 

The Algorithm for k-Synchronizing Coloring 

A k-synchronizing word of a deterministic automaton is a 
word in the alphabet of colors at its edges that maps the 
state set of the automaton at least on k element subset. A 
coloring of edges of a directed strongly connected finite 
graph of a uniform outdegree (constant outdegree of any 
vertex) is k-synchronizing the coloring turns the graph 
into a deterministic finite automaton possessing a k- 
synchronizing word. 

The solution of the problem of k-synchronizing color-
ing based on the method from [14] appeared first in [20] 
and repeated later independently in [16]. 

Some consequences for coloring of an arbitrary finite 
digraph as well as for coloring of such a graph of a uni-
form outdegree are a matter of our interest. The minimal 
value of k for k-synchronizing coloring exists for any finite 
digraph and so a partially synchronized coloring can be 
obtained. The polynomial-time algorithm for k-synchro- 
nizing coloring has also O(n3) complexity at worst and 
quadratic space complexity [17]. 

5. The Visualization 

The layout of the deterministic graph is demonstrated by 
a high-speed visualization program. The visualization of 
the transition graph of the automaton is an important help 
tool of the study of automata. However, the visibility of 
inner structure of a digraph without doubt is a matter of 
interest not only for the road coloring, the range of the 
application may be significantly wider and includes all 
directed graphs with labels on edges. The visual percep-
tion of the structure properties of the graph is an impor-
tant goal. 

Crucial role in the visualization plays the correspon-
dence of the layout to the human intuition, the perception 
of the structure properties of the graph and the rapidity of 
the appearance of the image. The automatically drawn 
graphical image must resemble the last one of a human 
being and present the structure of the graph. We use and 
develop for this aim some known approaches [21,22]. 

The algorithm for the visualization is linear in the size 
of the automaton. This algorithm successfully solves a 
whole series of tasks of the disposal of the objects. Thus 
the linearity of the algorithm is comfortably and impor-
tant. The pictorial diagram demonstrates the graph struc-
ture highlighting strongly connected components, paths 
and cycles. So this kind of visualization can be consid-
ered as a structure visualization. 

Our main objective is a visual representation of a di-
rected graph with labels on its edges and, in particular, of 
the transition graph of a deterministic finite automaton 
based on the structure properties of the graph. Among the 
important visual objects of a digraph one can mention 
paths, cycles, strongly connected components, cliques, 
bunches etc. These properties reflect the inner structure 
of the digraph. The strongly connected components (SCC) 
are here of special significance. 

We choose here a cyclic layout [21,22]. According to 
this approach the vertices are placed at the periphery of a 
circle. Our modification of the approach considered two 
levels of circles, the first level consists of strongly con-
nected components, the second level corresponds to the 
whole graph with SCC at the periphery of the circle. The 
visual placement is based on the structure of the graph 
considered as a union of the set of strongly connected 
components. 

Clearly, the curve edges (used, for instance, in the 
package GraphViz [23,24]) hinder to recognize the cycles 
and paths. Therefore, we use only direct and, hopefully, 
short edges. Some priorities of the layout are changed 
and, in particular, is eliminated the goal of reducing the 
number of intersections of the edges. It was an important 
aim in some algorithms [24]. The intersections of the 
edges are even not considered in our algorithm. This ap-
proach gives us an opportunity to simplify essentially the 
procedure and to reduce its complexity. 
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Our main intent is only not to stir by the intersections 
of the edges to conceive the structure of the graph. The 
intersections are placed in our algorithm far from the 
vertices due to the cyclic layout [21,22] we use. The area 
of vertices differs of the area of the majority of intersec-
tions. 

Visualization Algorithm 

The strongly connected components (SCC) are of special 
significance in the algorithm. Thus our first step is the 
selection of the SCC. The quick linear algorithm for 
finding SCC [25] is implemented in the program. All 
SCC are placed on the periphery of a big circle and are 
ordered according to the size [18]. So strongly connected 
components can be easily recognized by the observer. 
The pictorial diagram demonstrates the structure of the 
graph and the visualization can be considered as a kind 
of a structure visualization. 

According to the cyclic approach, the vertices ar-
ranged in a circle of SCC in the graph layout. 

The periphery of a circle of SCC is the most desirable 
area for placing the edges because the edges in this case 
are relatively short. We choose the order of the vertices 
of the SCC on the circle according to this purpose. The 
length of some edges can be reduced in such a way. It 
also helps to recognize paths and cycles on the screen. 

Otherwise, the edges between distinct SCC are rela-
tively longer than the inner edges of strongly connected 
components. 

The problem of the placing of the labels near corre-
sponding edges is sometimes very complicated and fre-
quently the connection between the edge and its label is 
not clear. Our solution is to use colors on the edges in-
stead of labels and exclude the placing of labels. 

The set of loops of arbitrary vertex is placed around 
the vertex with some shift that depends on the size of the 
set. The problem of parallel edges is solved analogously, 
the origins of the edges must belong to the vertex. The 
complexity of the algorithm shows the following. 

Lemma 1 The time and space complexity of the visu-
alization algorithm described above is linear in the sum of 
states and edges of the transition graph of the automa-
ton. 

The transition graph of any deterministic finite automa-
ton is accepted by the visualization algorithm. The transi-
tions graphs of non-complete automata also can be re-
produced. 

6. Input of Data in the Package 

The input file is an ordinary txt file for all algorithms 
used in the package TESTAS. We open the source file 
and then check different properties from menu bar. The 
graph is shown on the display by help of a rectangular 

table. More precisely, the transition graph of an automa-
ton as well as an arbitrary directed graph with distinct 
labels on outgoing edges of every vertex is presented by 
the matrix (Cayley graph): 

vertices X labels 

First two numbers in input file are the size of alphabet 
of labels and the number of vertices. The integers from 0 
to n – 1 denote the vertices. i-th row is a list of succes-
sors of i-th vertex according to the label in the column 
(number o the vertex from the end of edge with label 
from the j-th column and beginning in i-th state is placed 
in the (i,j) cell). The User defines the data: the number of 
nodes, size of the alphabet of edge labels and the values 
in the matrix. For example, the input 2 6 1 0 2 1 0 3 5 2 3 
2 4 5 presents the Cayley graph with 2 labels and 6 ver-
tices and the next input 2 5 1 0 2 1; 3 5; 3; presents the 
Cayley graph (non complete) with 2 labels and 5 vertices. 
The values are divided by a gap. The semicolon corre-
sponds to empty cell of the table. 

The graph from Figure 1 with matrix representation in 
Table 1 and the graph from Figure 2 with matrix repre-
sentation in Table 2. 
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Figure 1. Cayley graph with 2 labels and 6 vertices. 
 

Table 1. Matrix representation. 

 letter a letter b 

vertex 0 1 0 

vertex 1 2 1 

vertex 2 0 3 

vertex 3 5 2 

vertex 4 3 2 

vertex 5 4 5 
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Figure 2. Cayley graph (non complete) with 2 labels and 5 
vertices. 
 

Table 2. Matrix representation. 

 letter a letter b 

vertex 0 1 0 

vertex 1 2 1 

vertex 2  3 

vertex 3   

vertex 4 3 2 

 
An important verification tool of the package is the 

possibility to study the semi-group of an automaton. The 
program finds syntactic semi-group of the automaton, its 
size and generators. The semi-group is presented by a 
quadratic table of the form elements X generators (let-
ters). In the cell (i, j) is a product of element i and gen-
erator j. The first line of the table presents the size of the 
semi-group and the number of generators. 
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