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Abstract 
 
In order to decrease the fluid drag on an underwater robot manipulator, an optimal trajectory method based 
on the variational method is presented. By introducing the adjoint variables, which are Lagrange multipliers, 
we formulate a Lagrange function under certain constraints related to the target angle, target angular velocity, 
and dynamic equation of the robot manipulator. The state equation (the partial differentiation of the La-
grange function with respect to the state variables), adjoint equation (the partial differentiation of the La-
grange function with respect to the adjoint variables), and sensitivity equation (the partial differentiation of 
the Lagrange function with respect to torques) can be derived from the stationary conditions of the Lagrange 
function. Using the state equation, we can calculate the state variables (angles, angular velocities, and angu-
lar acceleration) at every time step in the forward time direction. These state variables are stored as data at 
every time step. Next, by using the adjoint equation, we can calculate the adjoint variables by using these 
state variables at every time step in the backward time direction. These adjoint variables are stored as data at 
every time step. Third, the sensitivity equation is calculated by using both the state variables and the adjoint 
variables. Finally, the optimal trajectory of the manipulator is obtained using the sensitivities. The proposed 
method is applied to the problem of two-link manipulators. It can obtain the optimal drag reduction trajectory 
of the manipulator under the constraints mentioned above. 
 
Keywords: Robot Manipulator Dynamics, Optimal Trajectory, Adjoint Variable Method, Euler-Lagrange 

Equation, Fluid Drag Force, Calculus of Variations 

1. Introduction 
 
Presently, we are facing serious environmental problems 
such as global warming and abnormal climatic condi-
tions, which are closely related to the ocean. Therefore, 
the establishment of ocean study technology is extremely 
important. Since the 1990s, researchers have investigated 
the development of underwater robot manipulators for 
oceanic studies [1-6]. 

In an extreme environment such as the abyssal ocean, 
it is difficult to supply energy to manipulators. However, 
because of fluid tractions, the energy consumption of an 
underwater manipulator is greater than that of a manipu-
lator in air. In order to reduce the energy consumption, it 
is important to determine the optimal trajectory to reduce 
the drag on the manipulator. 

Optimal time control for a manipulator trajectory was 
studied in the 1970s [7,8]. Kahn and Roth first presented 

an optimal time control method based on kinematic dy-
namics [9]. Vukobratovic and Kiranski presented an op-
timal time control method based on dynamic program-
ming [10]. Townsend et al. presented optimal control by 
approximating a function [11]. Lee et al. presented the 
formulation of a genetic algorithm based on trajectory 
planning [12]. Constantinescu et al. presented a method 
for determining smooth and time-constrained optimal path 
trajectories for a robot manipulator [13]. These studies 
were carried out with the objective of constructing an 
optimal time trajectory for a manipulator, from its initial 
position to the target position. On the other hand, Eiji 
presented a method for determining the minimum energy 
trajectory of an underwater manipulator [14]. Uno et al. 
presented a minimum torque change model [15] 

A method for drag reduction control has not been de-
veloped thus far. A marine robot has energy limitations 
during its operations. Therefore, drag reduction control 
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under an extreme environment is crucial for low energy 
consumption. 

In this study, we propose an optimal trajectory method 
for reducing the drag on the manipulator. As the ma-
nipulator moves from its initial position to the target po-
sition, the fluid generates an external force on the ma-
nipulator. A method based on the variational principle is 
developed to determine the optimal trajectory to reduce 
the drag. This method is called the adjoint variable me- 
thod. The adjoint variable method is based on a varia-
tional method. By introducing Lagrange multipliers 
called adjoint variables, we transform the constrained 
optimization of the cost function into the unconstrained 
optimization of the Lagrange function. The cost function 
is defined as the fluid drag on the manipulator. The La-
grange function is formulated under the constraints of the 
robot manipulator dynamics. The stationary conditions 
(the state equation, adjoint equation, and sensitivity 
equation) are derived from the Lagrange function. An 
algorithm is developed on the basis of the stationary 
conditions. First, the state variables (the angle, angular 
velocity, and angular accelerations) are calculated by 
using the state equation in the forward time direction and 
stored as data at every time step. Next, by using the state 
variables at every time step, we calculate the adjoint 
variables by using the adjoint equation in the backward 
time direction. Finally, the sensitivity (gradient) is cal-
culated at every time step, and the time history of the 
joint torques is determined. 

Using this optimal trajectory algorithm developed in 
three phases (state analysis, adjoint analysis, and sensi-
tivity analysis), we resolve the problem of the two-link 
manipulator. The effectiveness of the algorithm is then 
verified by comparing it with the optimal time control 
methods described in the literature. 
 
2. Theory 
 
2.1. Variable 
 
In this paper, the two-dimensional motion of a manipu-
lator with respect to the x-y plane is considered, as shown 
in the Figure 1. The links are arranged in the shape of a 
circular cylinder. The manipulator consists of two links 
that are connected by joints. The coordinates at each 
joint are defined. The joints and links are numbered from 
the base to the tip. 

The angles with respect to joint i are defined as 

1,2q i i                   (1) 

The angular velocities with respect to joint i are de-
fined as: 

1,2q i i                   (2) 

1q

2q

0x

0y

0z

1y
1x

2y 2x

1r

1l

2r
2l

Joint 2
Joint 1

Link 2

Link 1
 

Figure 1. Two-link manipulator. 
 

The angular accelerations with respect to joint i are 
defined as 

1,2q i i                   (3) 

In this study, the variables obtained from Eq.(1) to 
Equation (3) are called state variables (q = ( 1 2 1 2  

1 2 )). The penalty parameters with respect to the angle 
and angular velocity are defined as 

, , , ,q q q q 
,q q 

1,2,3, 4i i                (4) 

Variables with respect to the angular accelerations 
( ) are defined as 1 2,q q 

1,2i i                   (5) 

The variables obtained from Equation (5) are called 
adjoint variables (λ=(λ1, λ2)). The torques with respect to 
joint i are defined as 

1, 2i i                   (6) 

The masses with respect to link i are defined as 

1,2m i i                  (7) 

The diameters with respect to link i are defined as 

1, 2d i i                  (8) 

The lengths with respect to link i are defined as 

1,2l i i                  (9) 

The lengths from the centroid of a link to joint i are 
defined as 

1, 2r i i                 (10) 

The drag coefficients with respect to link i are defined 
as 

1, 2C i i                (11) 

The density of the water is defined as 

                      (12) 
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The translational veloci
de

               (13) 

The sign function sgn(x) is def

ties with respect to link i are 
fined as 

1,2v i i  

ined as 

 
0

sgn 0 if 0

1 if 0

x x

x

1  if x 
 
 

       (14) 

In order to derive the dynamics of an underwater robot 
m

em 

 order to minimize the cost function under certain con-

anipulator, the external force exerted by the fluid drag 
needs to be added to the robot manipulator dynamics. 
The fluid drag on an object is proportional to the square 
of the object’s speed [16]. The fluid drag always has a 
positive value in the calculation of the robot manipulator 
dynamics. With respect to the motion direction of the 
manipulator, the fluid drag acts in the opposite direction 
in a real environment. Therefore, the sign of the fluid 
drag direction has to be determined according to the mo-
tion of the manipulator. The motion direction of the ma-
nipulator can be identified by the sign of the translational 
velocities. 
 

.2. Probl2
 
In
straints, a Lagrange function is formulated by introduc-
ing the adjoint variables. The input data are the time his-
tories of the torques (τ1, τ2) from the start time 0 to the 
end time t. The optimal trajectory is searched for in the 
set of inputs. After determining the values of τ1 and τ2, 
the angle, angular velocities, and angular accelerations 
are determined using the state equation from start time 0 
to the end time t. The tip of the underwater manipulator 
moves from the initial position to the target position. The 
objective of this study is to reduce the fluid drag by the 
2D trajectory of the manipulator. The cost function is 
defined as 

1 2J D D  N                             (15) 

(16) 
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     2 2 2      

 3 2
1 1 1 1 1 sgn

6
D C d l q q1


                       (17) 

2 2
22 22l l

q l l q q
  

    2
2 2 2 2 1 1 2 1 1 2 1 2

2
22
2

2 3 3

                        
3

D C d l l l l

l
q

    
   


 




(18) 

where the parameters a, b, c, and d in Equation (16) are 
constants. The first and second terms in Equation (16) 
are the constraints with respect to the target angle a of 
joint 1 and target angle b of joint 2, respectively. The 
third and fourth terms in Equation (16) are the con-
straints with respect to the target angular velocity c of 
joint 1 and target angular velocity d of joint 2, respec-
tively. Equations (17) and (18) represent the fluid drag 
on link 1 and link 2, respectively (see Appendix A). In 
order to simplify the formulation of the adjoint variable 
method in this study, it is assumed that the inequality 

1 1l q    2 1 2 0l q q    is satisfied at all times. The La-
grange function is defined as 

1 2 1 1 2 2D D N F FL J F             (19) 

where equations F  and F  co1 2 nstitute the state equation. 
This state equation represents the robot manip

quation of the Lagrange function 
int variable λ is called the state 

ulator dy-
namics. In this study, a weak formulation is applied to 
the Lagrange function by the time integration of the state 
equation. The Lagrange function can also be formulated 
by a strong formulation that satisfies the equation at 
every time step. 
 
2.3. State Equation 
 
The partial differential e

ith respect to the adjow
equation: 

1
1 1 1

d
0 0

L L L
F


     

dt  
      


       (20) 

     

2
2 2 2

d
0 0

d

L L L
F

t  
     

      
      

Equations (20)-(21) represent the robot d
nipulator as 

      (21) 

ynamic ma-

     ,M q q C q q f q             (22) 

The parameters M, C, f, and τ represent the i
trix, vector of the coriolis and centrifugal
fo

nertia ma-
 forces, drag 

rce, and joint torque, respectively. By using the pa-
rameters in Appendix B, Eqaution (22) is written as 

56 2 1 13 1

32 2 2 14 2

AA A q A

AA B q A




         
                  




    (23) 

Equation F is defined as 
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2 3 2 5 2 14 2 13

1 11 1

3 6 2 13 6 14

1 1

2 2

1 1 1

262

1 1

0
          

0

2 2 2 5

A A B A A A B

A AF q

A

F q A A        


 A A A A A A

A A

B A

A A

AA

A A




   
            

  
  

   
 
              
 
 



(24) 

where parameters A1 – A14, B1, and B2 are discussed in 
Appendix B and Appendix C. 
 
2.4. Adjoint Equations 

uler-Lagrange equations 
erived from the stationary condition of the Lagrange 

ons are derived as 




 
The adjoint equations are the E
d
function. The adjoint equati

1 1

d
0

d

L L

q t q

  
     

             (25) 

2 2

d
0

d

L L

q t q

  
     

             (26) 

The time derivation of the adjoint variable λ1 is de-
rived from Equation (25) (see Appendix D). 

   1 1 1 3 1 4 1 5 16

2 10 2 7 2 5 2 16 2 17
1

1 1

2
      

2 7 10 6 2 17 6 5 2 16
2

1 1

2 2

2
      

t q a q c B q B A

A A B A A B r A B A

A A

   

 


 (27)

A A A A A A A B r A

A A

  



      




  
  

 

  

 

The time derivation of the adjoint variable λ2 is de-
rived from Equaiton (26). 
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1      
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1
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The condition of the end time tf is derived from the 
partial differential equation of the Lagrange function 
with respect to the state variables as 


  

 


       (28)

   
1 2

0, 0
f fL t L t

q q

 
 

             (29) 

  0 1,i ft i    2              (30) 

 
2.5. Sensitivity Equations 
 

rtial differential equation of the Lagrange function 
with respect to the torque τ is calle

on: 

The pa
d the sensitivity equa-

ti

 1 2 2 2d B AL L     
   1,( ) 0 0k

L
G t

  
 

   
 

1 1 1 1dt A    

(31) 

 

 1 2 2 6
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d
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d k
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 
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(32) 

where the subscript (k) represents an iteration, as sh
in the Figure 2. The time histories of the torques are 
iteratively modified from the time histories of the initial
torques. The algorithm determines the optimal trajectory 
by minimizing the Lagrange function. Finally, Gi,(k)

own 

 

(t) (I 
= 1, 2) reaches zero if the subscript (k) represents a suffi-
cient number of iterations. 
 
2.6. Steepest Descent Method 
 
The time histories of the torques are modified by the 
gradient as 

Using Equation (29), we obtain the following equa-
tions: 

            1, 1 1, 1,k k kt t G   t      (33) 

     t t       2, 1 2, 2,k k kG  t     (34) 

er to robustly converge to the optimal trajec-
tory and to avoid numerical vibration and di
this study, the parameter α is set to 0.1. 
 
3.

The data of the 
every time step are stored in the PC 
econd phase, using the state variable at 

The value of the coefficient α should be sufficiently 
small in ord

vergence. In 

 Algorithm 
 
The algorithm is shown in the Figure 2. In the first phase, 
the state variable (q) is calculated from the start time to 
he end time in the forward direction. t

state variable at 
emory. In the sm

every time step, we can calculate the adjoint variables (λ) 
from the end time to the start time in the backward direc-
tion. The adjoint variables are also stored at every time 
step. In the third phase, by using the state variable and 
adjoint variable, we obtain sensitivity G, which is the 
gradient of the Lagrange function, at every time step. 
The time histories of the torques are modified by using 
the steepest descent method. Finally, the results are visu-
alized in the case where the position of the manipulator 
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Figure 2. Algorithm. 
 
almost agrees with the target position. In the case where 
the position of the manipulator does not reach the target 
position, this algorithm returns to the first phase. 

method 
r reducing the drag on a manipulator. Using this 

rag reduction trajectory can be obtained. 
he optimal trajectory obtained by the drag reduction 

optimal trajectory obtained by the time optimal control 
method described in the literature [17] (see Appendix E). 

e time optimal control method, the manipulator 
requires a minimum amount of time to move from the 
Using th

 
4. Results 
 
In Section 2, we formulated the adjoint variable 
fo
method, the d
T
control method can be verified by comparing it with the 

initial position to the target position. 
 
4.1. Calculation Conditions 
 
Two trajectories for manipulators located at different 
initial positions are calculated using both the time opti-
mal control and the drag reduction control. These two 
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are summarized in 
able 1. 

origin (0, 0). The 
aximum and minimum values for both torque 1 and 

37, B2 = 0.3033, and B3 = 0.1482 in the litera-
tu

gures show angle 1 and angle 2, respec-
vely. Angle 1 (q ) constantly converges to the target 

s away from 
e target angle. After that, by rapidly closing to the tar-

itial a

calculation conditions are defined as case 1 and case 2. 
The initial and objective positions 
T

The edge of link 1 is fixed at the 
m
torque 2 are set to ±30 (N) and ±10 (N), respectively. The 
initial parameters are summarized in Table 1. The solver 
is applied to the Runge-Kutta method. The time span is 
set to 0.001. The time histories of the initial torques, τi,(k) 

(I = 1,2), are constantly defined as zero. The parameters 
B1 = 4.53

re [17] are used in the manipulator computing model 
(see Appendix B). The density ρ is set to 1.0. The drag 
coefficients, C1 in link 1 and C2 in link 2, with respect to 
the circular cylinder are each set to 0.1. The lengths, L1 
of link 1 and L2 of link 2, are each set to 1.0. The diame-
ters of the cylinder, d1 and d2, with respect to link 1 and 
link 2 are each set to 0.01. The penalty parameters, ε1 ~ ε4, 
are set to 5. 
 
4.2. Computational Results in Case 1 
 
The trajectories for case 1 are shown in the Figure 3 
(time optimal control) and the Figure 4 (drag reduction 
control). The end time is 0.81. The time histories of the 
angles are shown in the Figure 5. The black and red 
lines in the fi
ti 1

angle. During the first 0.4 s, angle 2 (q2) i
th
get angle, the time optimal trajectory using the inertia 
force is created. As shown in the Figure 7, the angular 
velocities ( 1 2,q q  ) almost become zero at end time tf and 
satisfy the constraint condition. In link 1 of the manipu-
lator, the angular velocity 1q  increases monotonically 
during approximately the first 0.4 s. After that, the angu-
lar velocity 1q  decreases monotonically in order to sat-
isfy 1 0q  . In link 2 of the manipulator, the angular 
velocity 2 0q   from 0 s to 0.4 s. After that, the angular 
 

Table 1. In nd target conditions in case 1 and case 2. 

 Parameter Initial condition Target condition

1q  –π/3 0.0 

2q  0.0 0.0 

1q  0.0 0.0 
Case 1 

0.0 0.0 

Case 2 

0.0 0.0 

2q  

1q  π/3 0.0 

2q  –π/6 × 5 0.0 

1q  0.0 0.0 

2q  

–2
–1.8
–1.6
–1.4
–1.2

–1
–0.8
–0.6
–0.4
–0.2

0

0 0.5 1 1.5 2 2.5

Meter (m)

M
et

er
(m

)

 

Figure 3. Trajectory of two-link manipulator for time op-
timal control in case 1. 
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M
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Figure 4. Trajectory of two-link manipulator for drag re-
duction control in case 1. 

 

 

Figure 5. Time history of angles for time optimal control in 
case 1. 
 
velocity , and it decreases in order to satisfy the 
constraint, 

2 0q 
2q 0  

me
at end time tf. The time history of the 

torques for the ti  optimal control is shown in the Fig-
ure 9. The maximum torque of +30 (Nm) acts on joint 1 
during approximately the first 0.4 s. After that, in order 
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to meet the end constraint condition,  the inverse 
maximum torque of –30 (Nm) The maxi-
mum torque of –10 (Nm) acts  0.0 s to 
0.15 s. After that, the inverse maxim ue of +10 
(Nm) acts on joint 2 during 0.19 s - . Again, the 
maximum torque of –10 (Nm) acts on 

The drag reduction trajectory and t e history of 
angles are shown in Figure 4 and Fi pectively. 
The end time tf is 1.08 s. The angle s a constant 
value of zero. By avoiding any extr ment of the 
manipulator, a trajectory from sition to the 
end position is created for minimum

The time history of the angular vel shown in 
the Figure 8. Equaiton (40) is angular ve-
locity increases monotonically proximately

The angular velocity  to zero 

1 0q  ,
acts on joint 1. 
on joint 2 from

um torq
0.50 s

joint 2. 
he tim

gure 6, res
q2 ha

a move
the initial po

 drag reduction. 
ocity is 

satisfied. The 
 during ap

1

remains close

1q  

y. 

 
the first 0.4 s. After that, in order to satisfy the constraint 
condition, 0q  , angular velocity q  decreases mono-

nicall
1

to 2q  
by adjusting torque 2 at joint 2. 
 

 

Figure 6. Time history of angles for drag reduction control 
in case 1. 
 

 

 

Figure 8. Time history of angular velocities for drag reduc-
ion controt

 
l in case 1. 

 

Figure 9. Time history of torques for time optimal control 
in case 1. 
 

The time history of the torques for the drag reduction 
control is shown in Figure 10. The maximum torque of 
+30 (Nm) acts on joint 1 from 0.0 s to 0.4 s. After that, 
by loading the inverse torque, torque 1 is adjusted such 
that 1 0q 

0
. In the case of torque 2, in order to satisfy 

2q   and 2 0q 
positive torque and the negati

, alternative torques using both the 
ve torque act on joint 2. 

 
4.3. Computational Results in Case 2 
 
For case 2, as shown in Table 1, the trajectory of the 
manipulator obtained by the time optimal control is 
shown in the Figure 11. The end time is 0.71 s. The tim

nverges to the target angle. During 
e first 0.2 s, angle 2 (q2) is away from the target angle. 

After that, by rapidly closing to the target angle, a time 
optimal trajectory is created using the pullback force 

e 
histories of the angles are shown in the Figure 13. The 
angle q1 constantly co
th

Figure 7. Time history of angular velocities for time optimal 
control in case 1. 
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obtained by the inertia force. 
The time histories of the angular velocities are shown 

in the Figure 15. In link 1, the absolute value of the an-
gular velocity  increases monotonically during ap-
proximately th 0.35 s. 

After that, the absolute value of angular velocity 
decreases monotonically in order to satisfy

 1q
e first 

1q  
 1 0q 
 the first 
. 

. A
gular velocity  becomes during
s. After that, eter 

The tim e t
trajectory are shown in the Figure 17. The maximum 
torques of +30 (Nm) act on joint 1 during approximately 
the first 0.35 s. After that, the inverse torques act on joint 
1 so that 

The cl  torque 2 acts on joint 2 during the firs

. Again, the clockwise torque takes effect after 
.45

el
the co ion, a 

tra 
otion of the manipulator, the manipulator is prevented 

target angle. 
ink 2 of the manipulator moves in a straight path with 

n-
0.18 

al 

2q
param

e histories of t

2 0q   
 turns to 

o
2q
h

2 0q 
rques for the time-optim

1 0q  . 
ockwise t 

0.1 s. The counterclockwise torque takes effect from 0.1 
s to 0.45 s
0  s. 

For case 2, as shown in Table 1, the trajectory of the 
manipulator obtained by the drag reduction control and 
the time history of angles for drag reduction control in 
case 2 are shown in the Figure 12 and the Figure 14, 
respectiv y. The end time is 1.08 s. In order to reduce 

st funct small angle for q2 is selected at every 
time step. To prevent the generation of drag by any ex
m
from swinging link 2 with respect to the 
L
respect to the target position. 

The time histories of the angular velocities are shown 
in the Figure 16. Equation (40) is satisfied. The absolute 
value of the velocities, 1q , increases monotonically. 
After that, the absolute value of the velocities, 1q , de-
creases monotonically in order to satisfy 1 0q  . Angu-
lar velocity 2q  increases monotonically. After that, 2q  
decreases monotonically in order to satisfy 2 0q  .  
 

 

Figure 10. Time history of torques for drag reduction con-
trol in case 1. 
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Figure 11. Trajectory of two-link manipulator for t e op-
timal control in case 2. 
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Figure 12. Trajectory of two-link manipulator for drag- 
reduction control in case 2. 

 

 

Figure 13. Time history of angles for time optimal control 
in case 2. 
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Figure 14. Time history of angles for drag reduction control 
in case 2. 

 

 

Figure 15. Time history of angular velocities for time opti-
mal control in case 2. 

 

 

Figure 16. Time history of angular velocities for drag re-
duction con

 

Figure 17. Time history of torques for time optimal control 
in case 2. 
 

 

Figure 18. Time history of torques for drag reduction con-
trol in case 2. 

ure 18. The clockwise torque 1 takes effect during ap-
proximately the first 0.25 s. After 0.25 s, the counter-
clockwise torque takes effect. The clockwise and coun-
terclockwise torques act alternately. The clockwise torque 
acts on joint 2 during the first 0.2 s. The counterclock-
wise torque takes effect from 0.2 s to 0.4 s. After ap-
proximately 0.43 s, the alternative torque acts on joint 2. 
 
5. Conclusions 
 
We proposed the adjoint variable method for obtaining 
an optimal trajectory in order to decrease the fluid drag 
on a manipulator when the manipulator moves from its 
initial position to the target position. By considering hy-
drodynamic effects, we formulated the dynamics of an

s the fluid drag. By introducing the adjoint 

 
The time histories of the torques are shown in the Fig-

 
underwater robot manipulator. The cost function was 
defined atrol in case 2. 
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ariable, we formulated the Lagrange function under 
certain constraints, which consisted of the target angle, 
target angular velocities, and robot manipulator dynam-
ics equations. The gradient of the Lagrange function with
respect to the torque was derived from the stationary
condition. The algorithm was developed on the basis of 
the adjoint variable method. This algorithm can be suffi-
ciently converged to the optimum value under the c
straints, and it can determine an optimal trajectory to
reduce the fluid drag under the constraints. 

Simulation results showed that the performance ca
enhanced for the control of an underwater manipulato
By using this approach, we can use the motion to reduce
fluid drag. It may be important to note that significant
performance enhancement is achieved by the motion o

es 

v

 
 

on-
 

n be 
r. 

 
 

f 
the manipulator. 
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the coordinates (x0,y0,z0) 

0

 
Appendix A: Fluid Drag 
 
The underwater manipulator receives a reactive force 
when it moves to the target position. In this section, the 
fluid force on the manipulator is derived. In this study, 
the link is defined as a circular cylinder. The transla-
tional velocity with respect to 
(=(0,0,0)) of link 1 is given by 

1

1 0 1 1 1 1

1

0 0 0

0 0 0

0 0

x

x q

q

       
                    
              




v v ω x    (35) 

here the variable v0 represents the velocity on the 
round. In this study, the base is fixed at v0 = 0. The 
ariable ω1 is the angular velocity vector in link 1. The 
anslational velocity in link 2 is given by 

w
g
v
tr

 

1 2

1 1 2 1 2

0

    

0

20 0

0 0

0 0
2 1 2 2 1 1

x

l q        v v ω x

q q

     
    

           

l q x q q

 
    
  

  

     (36) 

Using Equation (35), we obtain the fluid drag in link 1 
as 

   1 2

1 1 0 1 1 1 1 10
  sgn d

2

l
C d x q x


   v ω x  

1 2 2
1 1 1 1 1 10

0

sgn( ) d
2

l
C d x q x q x


1

0

 
   
  

         (37) 

The function  1 1sgn x q  always becomes the function 
 1sgn q  because x1 > 0. Therefore,  1 1sgn x q   
 1sgn q  The integration in Equation (37) is not related 

to the function  1sgn q . Thus, Equation (37) becomes 

   3 2 3 2
1 1 1 1 1 1 1 1 1 1

1 1

0 0

1
sgn sgn

2 3 6
0 0

0

                                     

0
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 
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   
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 
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D

(38) 

The fluid drag in link 2 is (see next page) 
In this study, in order to simplify the formulation of 

the adjoint variable method, it is assumed to satisfy the 
inequality as 

 1 1 2 1 2 0l q l q q                  (40) 

n (39) bec
 
Appen

The variables used in this study can be defined as fol-
lows: 

2

Thus, Equatio omes (see next page) 

dix B: Definition of Variables 
 

2 2 2
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22 2 3 cosA B B q                            (43) 

2
2

3 3 1 sinA B q q                               (44) 

2
2

4 3 1 2 2 3 22 cos cosA B q q q B q q                    (45) 

2
2

5 3 1 2 2 3 22 sin sinA B q q q B q q                    (46) 

26 1 32 cosA B B q                            (47) 

27 3 22 sinA B q q                              (48) 

28 3 sinA B q                                (49) 

29 3 cosA B q                                (50) 

10 3 1 2sinA B q q                               (51) 

2
11 3 1 2cosA B q q                              (52) 

in 12 3 1 2 22 sA B q q q                         (53) 
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19 5 2 5 1 c 2osA B r B l  q                         (60) 

where the variables B1 – B8 are defined as follows: 
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Appendix C: Robot Manipulator Dynamics 
 
The translational acceleration, a1, of the barycenter in 
link 1 is as 
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The translational acceleration a2 of the barycenter in 
link 2 is given by 
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 

22
1 1 2 1 2 2 2 1 2

2
1 1 2 1 1 2 2 1 2

cos sin

sin cos

0

l q q l q q r q q

l q q l q q r q q

    
 

   
 
 

   
   



 

(70) 

The vect
with respect to the tip o
sents the rotation matri
coordinates (x1,y1,z1). The translational forces f1 and f2 
with respect to l

2

or ei represents the angular acceleration vector 
f link i. The matrix 1R  repre-
x from coordinates (x2,y2,z2) to 

2

ink 1 and link 2 are given by 

2 2 2m f a  D                (71) 

1
1 1 2 2 1m1   a R f D           (72) f

1where the matrix  represents the rotation matrix 
from the coord
(x2,y2,z2). 

1

2R
inates (x1,y1,z1) to the coordinates 

2 2
1 sin cos 0q q2 2 2

cos sin 0

0 0

q q 
   
  

R       (73) 

In this study, the buoyancy and gravity are ignored. By 
equilibrant moment of the relation between link 1 and 
link 2, it is derived as 
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2       (74) 

where the first and second terms on the right-
are 

 2 2 2 2 2 2 2    In I a ω ω f r  

hand side 

 

2

2 1 2 2 1 2

0 0 0 0x

z z

I

2 2 20 0 0 0

0 0
yI

I q q I q q

    
    

           
I       



α   (75) 

 
2

2 2 2 2

1 2 2 1 2

0 0 0 0

0 0 0 0

0 0 0

x

y

z

I

I

q q I q q

       
                 
                  

ω I ω  
0

0






(76) 

where the matrix I2 represents the inertia tensor of lin
The vector α2 represents the acceleration of link 2. 
equilibrant moment at joint 1 is derived as 

  (77) 

where the matrix I1 represents the inertia tensor of link 1. 
Th

 
The adjoint equations are derived. The v

are 

k 2. 
The 

  

 

1 1
1 2 2 1 1 2 2 1 1

1 1 1 1 1       

    

  

n R n f r R f r l

I α ω I ω
 

e vector α1 represents the acceleration of link 1. With 
respect to the z axis, moments n1 of the joint 1 and n2 of 
the joint 2 are defined as torques τ1 and τ2. Equation (24) 
is thus derived. 
 
Appendix D. Derivation of Adjoint Equations 

ariables 1q , 2q , 

1q , 2q , 1q , and 2q independent of each other. The 
partial differential equation of the Lagrange function 
with respect to q  is given by 

 

1

    1 1 3 1 4 10
1

2 10 2 7 2 5 2 16 2 17
1

5 16

1 1

1d 2 2

2
         

tL
t q a q c B q B A

q

A A B A A B r A B A

A

 




     



   
  

 
 

  


(78) 
1 1

2 7 10 6 2 17 6 5 2 16
2

2
         

A A

A A A A A A A B r A

A


 

  
 

The partial differential equation of the Lagrange func-
tion with respect to q  is given by 1

1
1

L

q


 


                  (79) 

The partial differential equation of the Lagrange func-
tion with respect to is given by 2q  

     2 2 4 20
2

1d 2
tL

t q b q d B A
q

 
    

  


 

2 12 2 5 2 18 2 18 19
1

1

2 12 2 18 19 6 5 2 18
2

1

         

         

B A A B r A B A A

A

A A A A A A B r A

A





  
  

 
  

  
 

   (80) 

The partial differential equation of the Lagrange func-
tion with respect to 2q  is given by 

2
2

L

5 18

q


 


                 (81) 

 
Appendix E. Derivation of Adjoint Equations 

. The parameters are defined as follows: 

 
The time optimal control method is described in the lit-
erature [17]. The Hamiltonian formulation is applied in 
time optimal control. Using a Legendre transformation, 
the Hamiltonian formulation is derived from the Lagran-

ian formulationg

1 1x q                  (82) 

2 1x q                  (83) 

3 1x q                  (8 ) 

4 2

 4

x q                   (85) 

The state equation is defined as 

3

1 14

2 22 3 2 5 2 2
1 2

1 1 13 3

4 42 5 3 6 62
1 2

1 1 1

d

d

x

x Sx

x SA A B A B A

A A Ax St

x SA A A A AA

A A A

 

 

 
        


     


       


     


    


     

  


(86) 

The cost function with respect to the time optimal con- 
trol is given by 

0 0
d 1d

t t
J L t N t N t N          (87) 

where the constraint N represe
and Equation (16). Using the a
3, 4), the Hamiltonian is defined as 

nts the constraint condition 
djoint variables pi (i = 1, 2, 

TH L p S              (88) 

where L represents 1 of the integrand in Equation (87). 
The adjoint equation is given by 

 
T T

Td

d

H
L

t

              

p
p S

x x 
  (89) 

The boundary condition of the adjoint equ
given by 

ation is 

   
   T

f

f

f

N t
p t

t


  
 


x

x
         (90) 

 


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The Hamiltonian Equation (89) is 

1 3 2 4 3 3 41H p x p x     p S pS       (91) 
1

H

1d

d
0p

 
                   (92) 

t x Using Equation (89), the adjoint equation is given by 
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p

A

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 
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(93) 
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4
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p p p
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
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 
  

A x
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4
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d

d
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1

p p p
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    p
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  
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
 

                                             (95) 

The constraint condition at the end time is given by 

    1 1 12f fp t x t a            (96) 

    2 2 22f fp t x t b           (97) 

0)      (98) 

The gradient is given by 

2BH
p p 2

3 4
1 11

3 4
2 1

A 

   3 3 32 (f fp t x t c  

   4 4 42 ( 0)f fp t x t d        (99) 
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