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Abstract 
Spatial autocorrelation is a measure of the correlation of an observation with 
other observations through space. Most statistical analyses are based on the 
assumption that the values of observations are independent of one another. 
Spatial autocorrelation violates this assumption, because observations at near- 
by locations are related to each other, and hence, the consideration of spatial 
autocorrelations has been gaining attention in crash data modeling in recent 
years, and research have shown that ignoring this factor may lead to a biased 
estimation of the modeling parameters. This paper examines two spatial au-
tocorrelation indices: Moran’s Index; and Getis-Ord iG∗  statistic to measure 
the spatial autocorrelation of vehicle crashes occurred in Boone County roads 
in the state of Missouri, USA for the years 2013-2015. Since each index can 
identify different clustering patterns of crashes, therefore this paper introduces a 
new hybrid method to identify the crash clustering patterns by combining both 
Moran’s Index and iG∗  statistic. Results show that the new method can effec-
tively improve the number, extent, and type of crash clustering along roadways. 
 
Keywords 

Spatial Autocorrelation, Moran’s Index, Getis-Ord iG∗  Statistic, Vehicle  
Crashes 

 

1. Introduction 

In many vehicle crash data, geographic relationships among crashes can exist, 
and this phenomenon is termed spatial autocorrelation, which is a measure of 
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the correlation of a crash with other crashes through space. Most statistical ana-
lyses are based on the assumption that the values of observations in each sample 
are independent of one another. Spatial autocorrelation violates this assumption, 
because samples taken from nearby locations are related to each other, and 
hence, they are statistically not independent of one another [1] [2]. Therefore, 
the consideration of spatial autocorrelations has been gaining attention in crash 
data modeling in recent years, and researchers have shown that ignoring this 
factor may lead to a biased estimation of the model parameters [3]-[12]. Taking 
the spatial autocorrelation into account in crash modeling can improve model 
parameter estimation, and the overall model fit [8] [13]. The spatial autocorrela-
tion phenomenon can be best summarized by the Tobler’s first law of Geogra-
phy that everything is related to everything else but those which are near to each 
other are more related when compared to those that are further away [14]. 

Spatial autocorrelation can be positive or negative among observations. Posi-
tive spatial autocorrelation occurs when observations having similar values are 
closer (i.e. clustered) to one another, and negative spatial autocorrelation occurs 
when observations having dissimilar values occur near one another [2] [15]. 
Two problems may be faced when sample data has a locational dimension: 1) the 
existence of spatial autocorrelation between the observations, and 2) the varia-
tion of this relationship over the space that could be described as spatial hetero-
geneity [16] or spatial non-stationarity [17]. Hence, spatial autocorrelation must 
be incorporated in modeling crash data to properly account for the effect of spa-
tial correlation and any unobserved spatial heterogeneity that may exist in the 
crash data. To assess spatial autocorrelation, a distance measure must be speci-
fied in order to define what is meant by two observations being close together. 
These distances are usually presented in the form of a weight matrix, which de-
fines the relationships between locations at which the observations occur [18]. If 
data are collected at n locations, then the weight matrix will be n × n with zeroes 
on the diagonal. The weight matrix is often row-standardized, (i.e. all the 
weights in a row sum to one), and can be constructed given a variety of assump-
tions [2], such as, a constant distance that represents the weight for any two dif-
ferent locations; a fixed weight for all observations within a specified distance; or 
k nearest neighbors. 

2. Background Literature 

The differences between the network autocorrelation and spatial autocorrelation 
were examined [1]. In this study, it was shown that the network autocorrelation 
could influence the values associated with a network link given its relationship to 
another link in the network. To account for these relationships, spatial autocor-
relation was only modeled between neighboring (adjacent) network links. The 
effect of spatial autocorrelation on traffic crashes was examined by geo-coding 
them to the nearest intersection or ramp, and then calculating different spatial 
statistics such as, mean, standard deviation, and standard deviational ellipse 
[19]. In another study the spatial autocorrelation of road segments was examined 
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by using the Moran’s Index [20], and it was found that a significant level of posi-
tive spatial autocorrelation existed in the data. When investigating spatial auto-
correlation among traffic crashes, [21] estimated a series of crash frequency 
models aggregated at the county level for the state of Texas. The rear-end crash-
es at signalized intersections were analyzed o model the spatial correlation be-
tween intersections [22]. In this study, three different correlation structures were 
considered: independent correlation, exchangeable correlation, and autoregres-
sive correlation, where the correlation decreases as the gap between intersections 
increases. The models proved that high spatial correlations exist between inter-
sections for rear-end crashes. A multivariate spatial modeling approach for 
excess crash frequency and severity was developed in cantons (counties) for 
Costa Rica [23], and results showed that the multivariate spatial model performed 
better than univariate spatial models. The study also reported that the effects of 
spatial smoothing due to multivariate spatial random effects were evident in the 
estimation of no-injury collisions. Generalized Poisson models were utilized [24] 
to explore the spatial autocorrelation of crashes, and found that spatial correlation 
sharply decreases at distances exceeding 7 km, and shorter road segments with 
high crash frequency tend to have higher spatial dependency. 

3. Global and Local Indices of Spatial Autocorrelation 

There are many indices or statistics that attempt to measure spatial autocorrela-
tion for count data, such as Moran’s index (also called Moran’s I), the Geary’s C, 
and the Getis-Ord G statistic. These indices can be computed as Globalor Local 
measures depending on the scope of the analysis. Global spatial autocorrelation 
measures the overall spatial autocorrelation of the entire study area, providing a 
single measurement of spatial autocorrelation for an entire data. Local spatial 
autocorrelation measures the spatial autocorrelation of individuals features and 
identifies the spatial patterns across the study area considering the relationship 
between individual features. Indices of spatial autocorrelation are based on the 
general index of matrix association (i.e. the Gamma Γ index). The Global Gam-
ma index consists of the sum of the cross products of the elements aij and bij in 
two matrices of similarity, using spatial similarity in one matrix and value simi-
larity in the other matrix, such that [25]: 

ij iji j a bΓ = ∑ ∑                        (1) 

Using different value similarity would result in different indices. For example, 
setting ij i ja x x=  would result in Moran’s I statistic, and setting ( )2

–ij i ja x x=  
would result in Geary’ C index [25]. The Global Gamma index equals the sum of 
local Gamma indices within the study area. Anselin [25] outlined a general class 
of local indicators of spatial autocorrelation termed the Local Indicator of Spatial 
Autocorrelation (LISA) statistic that satisfies two conditions, first; the LISA for 
each point or section in the space gives an indication of significant spatial clus-
tering (grouping) of similar or dissimilar values around that point or section, 
and second; the sum of LISAs for all points or sections in a given study area is 
proportional to a corresponding global indicator of spatial autocorrelation for 
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that area, which implies that the LISA statistic decomposes global results into 
their local parts. For example, a significant global index of a study area may hide 
large spatial patches of no autocorrelation, and LISA can detect this and show 
the locations of these insignificant patches in space. Conversely, an insignificant 
global index may hide patches of strong autocorrelation, and LISA can detect 
this again. 

4. Moran’s I 

Moran’s I statistic is one of the oldest indices of spatial autocorrelation and can 
be used to test for global and local spatial autocorrelation among continuous 
data. For any continuous variable, xi, a mean x , can be calculated and the devi-
ation of any observation from that mean can be calculated based on the cross 
products of the deviations from the mean. The statistic then compares the value 
of the variable at any one location with the values at all other locations [26] [27] 
[28]. For n observations on a variable x at locations i, j, Global Moran’s I can be 
calculated as follows [25]: 
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where, 
x : the mean of the variable x; 
xi: the value of variable x at location i; 
xj: the value of variable x at location j; 
wij: the elements of the weight matrix; 
n: number of observations; 
S0: is the sum of the elements of the weight matrix: 0 .n n

iji jS w= ∑ ∑  
The local Moran’s I for location i can be calculated as follows: 
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Values for this index typically, range from −1.0 to +1.0, where a value of −1.0 
indicates negative spatial autocorrelation, and a value of +1.0 indicates positive 
spatial autocorrelation. When nearby points have similar Moran’s values, their 
cross product is high. Conversely, when nearby points have dissimilar Moran’s 
values, their cross-product is low. The expectation of Moran’s I statistic is: 

( ) 1
1

E I
n
−

=
−

                         (5) 

When a Moran’s I value is larger than E(I), this would indicate positive spatial 
autocorrelation, and if a Moran’s I is less than E(I), this would indicate negative 
spatial autocorrelation. In Moran’s initial formulation, the weight variable, wij, 
was a contiguity matrix. Therefore, if zone j is adjacent to zone i, the product 
receives a weight of 1.0, otherwise, the product receives a weight of 0.0. A study 
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[29] generalized these definitions to include any type of weight, and in a wider 
term, wij, is a distance-based weight which is the inverse distance between loca-
tions i and j (1/dij). The z-score of Moran’s I can be computed as follows: 

( )
( )i

I
V I

Z
E I−

=                           (6) 

where E(I) is the expected value of I, and V(I) is the variance of I, as shown in 
Equation (7): 

( ) ( ) ( )2 2–V I E I E I=                       (7) 

5. Getis-Ord G Statistic 

The Getis-Ord G statistic is calculated with respect to a specified threshold dis-
tance (defined by the user) rather than to an inverse distance, as with the Mo-
ran’s I [30] [31]. The Global G statistic computes a single statistic for the entire 
study area, while the Gi statistic is an indicator for local spatial autocorrelation 
for each data point. The Global G statistic can be calculated as follows [32]: 
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where, 
xi: the value of variable x at location i; 
xj: the value of variable x at location j; 
wij: the elements of the weight matrix. 
There are two types of local Gi statistics, although almost the two types pro-

duce identical results [31] [33]. The first one, Gi, does not include the autocorre-
lation of a zone with itself, whereas the iG∗  includes the interaction of a zone 
with itself (i.e. the Gi statistic does not include the value of Xi itself, but only the 
neighborhood values, but iG∗  includes Xi as well as the neighborhood values), 
and both can be computed by the formulae [32]: 
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where d is the neighborhood (threshold) distance, and wij is the weight matrix 
that has only 1.0 or 0.0 values, 1.0 if j is within d distance of i, and 0.0 if its 
beyond that distance. These formulae indicate that the cross-product of the val-
ue of X at location i and at another location j is weighted by a distance weight, wij 
which is defined by either a 1.0 if the two locations are equal to or closer than a 
threshold distance, d, or a 0.0 otherwise. The G statistic can vary between 0.0 
and 1.0. The statistical significance of the local autocorrelation between each 
point and its neighbors is assessed by the z-score test and the p-value. ArcGIS 
uses the following formulae to calculate the local Getis-Ord iG∗  [34]: 
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where, 
xi: the value of variable x at location i; 
xj: the value of variable x at location j; 
wij: the elements of the weight matrix; 
n: number of observations. 
The expected G value for a threshold distance, d, is defined as: 

( ) ( )1
W

n n
E G d =   −

                     (14) 

where W is the sum of weights for all pairs of locations ( n n
iji jW w= ∑ ∑ ), and n 

is the number of observations. Assuming normal distribution, the variance of 
G(d) is defined as: 

( ) ( ) ( )2 2Var G d E G E G= −                   (15) 

The standard error of G(d) is the square root of the variance of G. Therefore, a 
z-test can be computed by: 
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6. Classification of Crash Clustering Patterns 

The crash clustering patterns (i.e. type of concentration of crashes) and its statis-
tical significance is evaluated based on the output z-scores, the correspondent 
p-values and the confidence level. These will determine whether a crash is classi-
fied as having a significant high spatial autocorrelation (denoted by High-High, 
HH), a significant low spatial autocorrelation (denoted by Low-Low, LL), a sig-
nificant dispersed outlier (either a high value surrounded by low value denoted 
by HL, or vice versa, a low value surrounded by high value denoted by LH), or 
insignificant random crash. A high positive z-score for a crash point indicates a 
significant spatial autocorrelation (either with high values HH or with low values 
LL). A low negative z-score for a crash point indicates a statistically significant 
spatial outlier (either with high-low HL or low-high LH). A z-score of a crash 
point close to zero indicates that the crash is randomly and independently dis-
tributed in space. To determine if the z-score is statistically significant, it should 
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be compared to a range of values for a particular confidence level. For example, 
at a significance level of 95%, a z-score would have to be less than −1.96 or 
greater than +1.96 to be statistically significant. Typical confidence levels are 
90%, 95%, or 99%. Table 1 shows the critical p-values and z-scores for different 
confidence levels. 

7. Data 

To illustrate the analysis framework presented in this paper, Boone County, 
Missouri, USA crash data for the years (2013-2015) are used. Missouri crash data 
is reported by the Missouri State Highway Patrol (MSHP) and recorded in the 
Missouri Statewide Traffic Accident Records System (STARS). The total ob-
served crashes within the three years 2013-2015 is 6886.0 along roads in Boone 
County. Figure 1 shows Boone County road network in Missouri and the dis-
tribution of crashes (2013-2015). 

8. Methodology 

In this paper ArcGIS 10.3.1 is used to compute the Moran’s I, and iG∗  statistics 
for crash data in Boone County, Missouri for the aggregated years of 2013-2015 
using the following steps: 
• Spatially join the attributes of crash incidents to road segments based on 

their location relationship (i.e. latitude/longitude) using functionalities of a 
GIS that try to parse roads up into consistent analysis units and matching the 
two features according to their relative spatial locations; 

• Build a network of roads from the crash attributed road segments; 
• Generate spatial weights matrix for the network arcs; 
• Compute the Global Moran’s I available in the ArcMap 10.3.1 Spatial Statis-

tics toolkit; 
• Compute the Global (General) Gi statistic available in the ArcMap 10.3.1 

Spatial Statistics toolkit; 
• Compute Anselin local Moran’s I available in the ArcMap 10.3.1 Spatial Sta-

tistics toolkit; 
• Compute the local Getis-Ord local iG∗  statistic available in the ArcMap 

10.3.1 Spatial Statistics toolkit. 
Statistically significant high spatial autocorrelation locations will have a high 

z-value and be surrounded by other crashes with high z-values as well (HH). 
Statistically significant low spatial autocorrelation locations (LL) will be found in 
cases where a crash point will have a low z-value and be surrounded by other  
 
Table 1. Critical z-scores, p-values, and significance levels. 

z-score p-value Confidence level 

z-score < −1.65 or z-score > +1.65 <0.10 90% 

z-score < −1.96 or z-score > +1.96 <0.05 95% 

z-score < −2.58 or z-score > +2.58 <0.01 99% 
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Figure 1. Boone county, MO road network and distribu-
tion of crashes (2013-2015). 

 

crashes with low z-values as well. If the z-value of a particular crash location is 
higher than the mean z-value of all crashes, then it would be considered high. If 
the z-value of a particular crash point is lower than the mean z-value of all 
crashes, then it would be considered low. The resultant z-scores and p-values in-
dicate whether crashes with either high or low z-values are clustered. A high 
z-score and small p-value for a crash point indicates a spatial clustering of high 
values (i.e. HH). A low z-score and small p-value indicates a spatial clustering of 
low values (i.e. LL). The higher (or lower) the z-score, the more intense the clus-
tering. A negative z-score for a crash point indicates an outlier (i.e. a dispersed 
crash). A z-score near zero indicates no apparent spatial clustering (i.e. a ran-
dom crash). Both the Anselin local Moran’s I and the local iG∗  statistic can be 
computed by the ArcMap 10.3.1 Spatial Statistics toolkit [35]. 

9. The New Hybrid Method 

Since the Anselin Moran’s I and the iG∗  can identify relatively different clus-
tering patterns of crashes, therefore this paper introduces a new hybrid method 
to assess the spatial autocorrelation of crashes and identifies their clustering pat-
terns. The new method combines both Moran’s I, and the iG∗  statistic into one 
new hybrid index that can improve the results. Any combination maybe used by 
the user depending on his/her own interpretation of the results that produces the 
optimal outcome. For instance, a combination of 30% Moran’s I, and 70% iG∗  
is used in this paper to examine the new spatial clustering patterns of crashes. 
The hybrid method is applied using the Getis-Ord iG∗  index available in Arc-
Map 10.3.1 toolkits for all crashes. The results produced new statistically signifi-
cant spatial clusters of high spatial autocorrelation values and low spatial auto-
correlation values. Using different combination of Moran’s, and iG∗ , such as 
50% Moran’s +50% iG∗  could result in different cluster mapping. The user can 
try different combination, and choose the optimal one that produces the best in-
terpreted results. In addition, the new hybrid method could produce new clusters 
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if Moran’s I is used in determining the hybrid results instead of the iG∗  statistic. 

10. Results 

Crashes occurred along the roads in Boone County, Missouri (2013-2015) are 
analyzed to assess whether they are spatially clustered, dispersed, or random. 
The Global Moran’s I and the Global (General) iG∗  for the entire Boone Coun-
ty roads, were first calculated using the ArcMap 10.3.1 Spatial Statistics toolkit. 
The Global Moran’s I, and the Global iG∗  statistic, z scores, and p-values are 
reported in Table 2. 

The results of the analysis are interpreted within the context of the null hypo-
thesis, which states that the crashes occurred in Boone County roads 
(2013-2015) are randomly distributed in the study area (i.e. there is no global 
spatial autocorrelation exists for the entire area). Since the p-values in Table 2 
for both Moran’s I and the iG∗  are smaller than 0.05 (using a confidence level 
of 95%), then this indicates that the values of Global Moran’s I and the Global 

iG∗  are significant for the entire area, and hence, we will reject the null hypo-
thesis, and conclude that it is quite possible that the spatial distribution of the 
overall Boone County road crashes is the result of clustered spatial processes. 

Table 3 shows the results of the significant high spatial autocorrelation crash-
es, the significant low spatial autocorrelation crashes, outliers, and the non-sig- 
nificant random crashes of the Boone County roads by Anselin Moran’s I and 
local iG∗  statistic respectively. The Moran’s I identified (2411) significant HHs 
crashes for the Boone County roads, whereas the iG∗  statistic identified (2916) 
significant HHs crashes. The Moran’s I identified (3544) significant LLs crashes, 
whereas the iG∗  statistic identified (3265) significant LLs crashes. The Moran’s I 
identified (73) significant HLs and (38) significant LHs, compared to the iG∗  that 
identified (0) significant HLs and (0) significant LHs as the iG∗  does not identify 
outliers. The Moran’s I identified (820) non-significant random crashes, compared 
to (705) non-significant random crashes by the iG∗ . So, it is clear that both Mo-
ran’s I and the iG∗  statistic identify different numbers of clustering patterns. 

Figure 2 shows the clustering patterns identified by Anselin local Moran’s I for 
the Boone County roads. Figure 3 shows the clustering patterns identified by the 
local iG∗  statistic for the Boone County roads. The number and extent of HHs, 
LLs, and random crashes differ from one method to the other. For example, cluster 
#1 is identified by Moran’s I as mixed HHs, LLs, HLs, LHs and random crashes 
while it has been identified as mostly HHs, LLs and random crashes by iG∗ . Clus-
ters #2 is identified by Moran’s I as mostly random crashes, while it has been iden-
tified by iG∗  as mostly LLs. Cluster #3 is identified by Moran’s I as mixed LLs, 
HLs, and random crashes while it has been identified as mostly LLs by iG∗ . 
 
Table 2. Global Moran’s I and global iG∗ . 

Index type Index value z-score p-value 

Global Moran’s I 0.472 4.856 0.0000 

Global iG∗  statistic 0.255 2.817 0.0000 
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Table 3. Number of crash clustering patterns by Moran’s I and iG∗ . 

Index High-High HH Low-Low LL Outliers HL Outliers LH Random Total crashes 

Anselin Moran’s I 2411 3544 73 38 820 6886 

iG∗  statistic 2916 3265 0 0 705 6886 

 

 
Figure 2. Crash clustering patterns by Anselin local 
Moran’s I. 

 

 
Figure 3. Crash clustering patterns by the local iG∗  
statistic. 



A. Abdulhafedh 
 

218 

Using the new hybrid method by combining 30% Moran’s I, and 70% iG∗  
renders another measure of spatial autocorrelation as shown in Figure 4 for the 
Boone County roads. The results of the new method produced new statistically 
significant spatial clusters of high spatial autocorrelation values and low spatial 
autocorrelation values. From Figure 4, it can be seen that cluster #1 near the city 
of Columbia area is mixed of HHs, LLs, and random crashes compared to mostly 
HHs and LLs in iG∗  and mostly outliers, HHs, and LLs in Moran’s I. 

Cluster #2 now presents insignificant random crashes compared to mostly LLs 
in iG∗  and mostly outliers in Moran’s I. Clusters #3 becomes mostly insignifi-
cant random crashes with some LLs compared to mixed LLs, and outliers in 
Moran’s I and LLs in iG∗ . This change makes sense because clusters of LLs and 
random crashes are more likely happen in big cities (i.e. the City of Columbia), 
and clusters of HHs are more likely happen in the suburban areas of big cities 
[36]. These results obtained by the new hybrid method show an effective im-
provement in the clustering patterns of crashes along Boone County roads. 

Table 4 summarizes the HHs, LLs, HLs, LHs, and random crashes identified 
by Anselin local Moran’s I, the local iG∗ , and the new hybrid method for Boone 
County roads. 

From Table 4, it can be seen that the number of the significant (HHs) and 
(LLs) identified by the hybrid method have decreased compared to Moran’s I 
and iG∗ . However, the number of insignificant random crashes identified by 
this method has increased compared to the other two methods, which indicates 
an improvement of the crash clustering patterns. 

11. Conclusion 

In many vehicle crash data, locational relationships among crashes can exist  
 

 
Figure 4. Crash clustering patterns by the new hybrid 
method. 
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Table 4. Number of crash clustering patterns by Moran’s I, iG∗ , and the new hybrid me-
thod. 

Index High-High HH Low-Low LL Outliers HL Outliers LH Random Total crashes 

Anselin Moran’s I 2411 3544 73 38 820 6886 

iG∗  statistic 2916 3265 0 0 705 6886 

Hybrid 1841 2417 0 0 2628 6886 

 
given that movement is confined to roadways which are traversed by many 
users. This phenomenon is termed spatial autocorrelation and if not appro-
priately accounted for, can lead to incorrect parameter estimates in the modeling 
process. This paper examined two spatial autocorrelation indices: Moran’s I; and 
Getis-Ord iG∗  statistic to differentiate between spatially clustered, dispersed, or 
random crash events that occurred in Boone County roads, Missouri in years 
(2013-2015). Since the two indices can identify relatively different numbers of 
clustering patterns of crashes, therefore this paper introduced a new hybrid me-
thod to assess the spatial autocorrelation of crashes and identify their clustering 
patterns. The new method combined both Moran’s I, and the iG∗  statistic into 
one new hybrid index that can improve the results. Any combination maybe 
used by the user depending on his/her own interpretation of the results that 
produces the optimal outcome. A combination of 30% Moran’s I, and 70% iG∗  
was used in this paper to examine the new spatial clustering patterns of crashes. 
The hybrid method was applied using the Getis-Ord iG∗  index available in 
ArcMap 10.3.1 toolkits for all crashes. The results produced new statistically sig-
nificant spatial clusters of high spatial autocorrelation values and low spatial au-
tocorrelation values that effectively improved the clustering patterns of crashes. 
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