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Abstract 
Cellular beams are appropriate for large spans with relatively small loads or 
for conditions in which strain dictates dimensioning. Another important ad-
vantage of cellular beams is the possibility of passing utility ducts through the 
openings, which avoids cutting through the web of the beam or increasing the 
construction height, which occurs when the ducts pass under the beams. Geo- 
metrical imperfections result from a lack of straightness during fabrication of 
rolled profiles. Geometric imperfections are represented numerically by an in-
itial curvature. Additionally, the physical imperfections of rolled profiles re-
sult from the appearance of residual stresses. The condition that creates resi-
dual stresses in steel is the result of thermal and mechanical industrial pro- 
cesses. In this study, numerical analyses are performed with cellular beams 
using Finite Element Method software. During the simulations, through non- 
linear geometric and physical analyses, geometric imperfections were varied, 
where lateral torsional buckling in cellular beams was considered as a function 
of the unrestrained length. In the boundary, conditions were restrained dis-
placements in the axis X, Y, Z and rotation about X-axis, thus simulating the 
fork support. The beams are submitted to uniform bending and concentrated 
load. The results from the numerical analyses were compared with the calcu-
lation procedures, which verified that the results were significant. 
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1. Introduction 

According to Abreu et al. [1], when the openings are circular, these beams are 
called cellular beams. Cellular beams are normally made from hot-rolled pro-
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files with cuts that follow patterns (Sonck and Belis [2]). Each cut consists of 
continuous modules made up of a semicircle followed by a small, straight sec-
tion. The two halves are then shifted and welded to each other, as shown in Fig-
ure 1. 

The result is a beam that has essentially the same amount of steel but has a 
much higher resistance to bending than that of the original profile due to the 
greater height of the cross-section (this height increase can be greater than 50%) 
(Abreu et al. [1]). Due to their economical use of materials, cellular beams are 
used for applications in which they are loaded via bending along their axis of 
greatest inertia (Sonck and Belis [2]). Further-more, cellular beams are used to 
cross large spans for small loads (Ward [3]), such as in roofing. 

1.1. Lateral Torsional Buckling (LTB) 

When cellular beams reach the ultimate limit state, they are subject to lateral 
torsional buckling (LTB), which is caused by a bending moment that acts on the 
axis of the greatest moment of inertia of the cross-section. The primary factors 
that cause the beams to undergo lateral torsional buckling according to Kochar 
and Kulkarni [4] are the following: distance between the lateral supports to the 
compression of the flanges; boundary conditions; loading type and position, sec-
tion type; material properties; magnitude and distribution of the residual stresses 
and geometric imperfections. According to Bezerra [5], the phenomena can be 
explain due to compressed part of the cross section becomes instable, but being 
connected continuously through the web to the pulled part, the stabilizing effect 
of this causes it to cause a lateral translation μ(z) added torsion ø(z), as shown 
Figure 2. 
 

 
Figure 1. Manufacturing process. 

 

 
Figure 2. Lateral Torsional Buckling (LTB) (Bezerra [5]). 
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The phenomenon of buckling can be separated into three intervals, plastic, in-
elastic and elastic, according to Figure 3, where MRk is the resistant critical 
bending moment; Mpl is the full plastic bending moment and λp is the slender-
ness related to cross-sectional plastification; Mr is the bending moment related 
to the start of the yielding and λr is the slenderness related to the start of the 
yielding; Mcr is the critical bending moment related to the Lateral Torsional Buck-
ling (LBT). 

The plastic phase occurs for beams with short spans, i.e., in the other words, 
occurs for slenderness (λ) shorter than slenderness related to cross-sectional 
plastification (λp), thus occurring the phenomenon of total yielding of the cross- 
section occurs. The inelastic phase occurs for intermediate spans, that means, 
occurs for slenderness (λ) shorter than slenderness related to the start of the 
yielding (λr) in which a portion of the cross-section has already undergone yield-
ing. The elastic phase occurs for large, unrestrained spans. 

1.2. Physical and Geometrical Imperfections 

Physical imperfections, in this case, the residual stresses, appear in steel struc-
tural profiles and plates during the manufacturing process. If no technique is 
used to alleviate these residual stresses, they unavoidably remain on the profiles 
or plates. Due to non-uniform cooling, after rolling or welding of the piece, plas-
tic deformations emerge, and residual stresses can, in certain cases, reach the 
order of magnitude of the yield stress of the material, also cause the premature 
yielding of material (σp). Residual stresses play an important role in the dimen-
sioning of steel columns because they are the primary cause of non-linearity in 
the stress x strain diagram in the inelastic region as shown Figure 4, according 
to Alpsten and Tall [6], because they are stresses that significantly affect the 
compressive strength. 

Residual stresses represent a state of self-equilibrating internal stresses in the 
steel profiles as a consequence of the industrial production processes. These 
stresses occur in bodies that undergo non-uniform plastic deformations. If no 
external forces oppose them, the residual stresses will always be elastic. The  
 

 
Figure 3. Buckling intervals in metal beams. 
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Figure 4. Influence of residual stress in the diagram stress-strain (adapted from Castro e 
Silva [7]). 
 
non-homogeneous condition of deformation, which creates the residual stresses 
in the steel sections, is due to thermal (rolling, welding and torch cutting) and 
mechanical industrial processes (cold rolling, straightening). 

In hot-rolled profiles, the formation of residual stresses requires that the ends 
of the flanges and the central region of the web are long while the junctions be-
tween the web and flange remain tensioned due to slow cooling. For welded pro-
files with rolled edge plates, the weld between the flanges and the web introduces 
residual compressive stresses at the ends of the flanges, which increases the re-
gion of the residual compressive stresses and adversely affects the strength of 
metallic structures. In the welded profiles with torch-cut plates, the cut intro-
duces tensile stresses on the edges of the plates due to the heat, which acts fa-
vorably on the compressive strength (Bjorhovde et al. [8] and European Con-
vention for Constructional Steelwork (ECCS) [9]). However, the modified effect 
of the residual stress on cellular members has still not been investigated and was 
not considered in the various studies that have investigated the rules for existing 
projects for lateral torsional buckling strength (Alpsten and Tall [6]). 

Conversely, the presence of geometrical imperfections, such as the initial cur-
vature, in beams transforms the buckling problem into a load-displacement 
problem, which opposes the problem of bifurcation of the equilibrium. Accord-
ing to Galambos [10], the real configuration of the initial curvature may be 
highly variable, which can potentially exhibit simple curvature, double curva-
ture, reverse curvature or even curvatures in both primary directions of the 
cross-section of the profile (European Convention for Constructional Steelwork 
(ECCS) [9]). 

1.3. Objective 

This paper has as objective to evaluate the ultimate limit state behavior of cellu-
lar beam when submitted to different boundary conditions also physical and 
geometrical imperfections. For this it was used the software ABAQUS 6.12 [11]. 
Finally, it compares the results of numerical analyses with calculation methods 
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by ABNT NBR 8800:2008 standard [12] and Abreu et al. [1]. 

2. Calculation Methods 

The ABNT NBR 8800:2008 standard [12] contains a procedure to calculate the 
nominal bending moment strength to lateral torsional buckling for I-beams with 
a full web that meets the following conditions: loads applied at the half height of 
the cross-section, boundary conditions that simulate the fork-like support (free 
warping and impeded torsional rotation) and constant cross-section through the 
unrestrained length. The nominal bending moment strength for the ultimate 
limit state of lateral torsional buckling for I-beams with two axes of symmetry 
that are bent relative to the axis of the greatest moment of inertia (x-axis) in the 
elastic regime is described by Equation (1): 
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where 
E = Young’s modulus of elasticity. 
Cb = Equivalent moment factor for beams which accounts for the effects of 

moment gradient and end conditions of the beam. 
CW = Warping section constant. 
IY = Minor axis section moment of area. 
J = Torsional constant. 
Lb = Unbraced length of the beam. 
MCr = Critical bending moment. 
For a better understanding, the other calculation expressions can be found in 

ABNT NBR 8800:2008 [12]. 
Abreu et al. [1] proposed a procedure to determine the nominal bending mo-

ment strength for steel cellular beams to determine the ultimate limit state of 
lateral torsional buckling for cases in which the beams have a fork-like support 
(free warping and impeded torsion) at the ends of the unrestrained length and 
are subjected to cases of uniform moment. 

Increasing Lr by 20% yields Lr,cor according to Equation (2). The proposed 
procedure can be summarized as follows: 
• if Lb > Lr,cor, with: 
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where 
Lr,cor = Umbraced length related to the start of the corrected yielding, 

with Equation (3): 
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where 
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fY = Yield stress, 
WX = Modulus elastic resistant, 
β1 = Ratio of correction for critical slenderness, 

yields Equation (4): 
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• if Lp < Lb < Lr,cor, with Equation (5): 
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where 
Lp = Unbraced length related to cross-sectional plastification, 
ry = Minor axis section radius of gyration, 

yields Equation (6): 
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where 
Mpl = Full plastic moment; 

and Equation (7): 
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where 
Mr,cor = Bending moment corresponding to start of the yielding. 

• if Lb ≤ Lp, yields Equation (8): 

0.90Rk plM M=                       (8) 

where 
MRk = Resistant critical bending moment. 

3. Numerical Analyses 
3.1. Material 

As well as Abreu et al. [1], in this work it was adopted the stress-strain diagram 
as shown Figure 5, formed by an elastic zone, which until the yielding resistant 
(fy) is reached, by an inelastic zone, consisting for three straight lines, consider-
ing a hardening zone, continuing until rupture resistant (fu), as proposed by 
Earls [13]. 

The steel structure considered was ASTM A572, which Young’s modulus is 
200.000 MPa, yielding resistant is equal 345 MPa and rupture resistant is equal 
450 MPa. The strains corresponding to the end of each zone were withdrawn 
according to Salmon and Johnson [14], in order to εy, εst, εb and εu are equal 0, 
0,01726, 0,05394 and 0,15719, respectively. 
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3.2. Boundary Conditions 

As per Bezerra [5], to simulate the fork-like support in cellular beams, the dis-
placements in the y-direction were restricted along the entire web, the displace-
ment in the z-direction was restricted only in the node situated at the half height 
of the web at one end of the beam, and the displacement in the x-direction was 
restricted in all of the nodes at the ends of the beam. Rotation around the z-axis 
was also impeded in all of the nodes at both ends, and thus, torsion is not al-
lowed, leaving the beam free to warp. According thus, a fork support is defined, 
as shown Figure 6. 

3.3. Loads 

The beams were submitted to two different loads cases: uniform bending and 
concentrated load. To validate the numerical model was applied uniform bend-
ing and in the simulation nonlinear physical and geometric analysis was applied 
a concentrated loading, as shown in Figure 7. 
 

 
Figure 5. Diagram stress-strain (Earls [13]). 

 

 
Figure 6. Boundary conditions (Ahnlén and Westlund [15]). 
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3.4. Analyses 

First, analyses of elastic buckling were performed using the Buckle calculation 
model available in ABAQUS 6.12 [11], which is a procedure of linear perturba-
tion of eigenvalues and eigenvectors, where the first eigenvalue represents the 
loading factor of elastic buckling and its respective eigenvector represents the 
deformation. In the post-buckling analysis, to apply physical and geometrical 
imperfections, the Static Riks calculation method was used, which is generally 
used to predict the collapse of a structure and is often used in non-linear physi-
cal and geometrical analyses. The eigenvalue from the Buckle analysis provides 
complete information regarding the collapse of the structure and is used to in-
crease the convergence velocity of the method for cases of instability. 

Specifically in relation to residual stresses, the physical imperfections were ap-
plied only to the flanges of the profiles, as shown in Figure 8, which considered 
the yield stress of the steel (fy) to be 345 MPa. To applied residual stress, was 
used the command **INITIAL CONDITIONS, TYPE = STRESS, in the input 
file. For applying the geometrical imperfections, the curvature was varied from 
L/1000, L/2000, L/2500, L/5000, L/10000, L/15000 and L/20000 for each analysis 
according to the slenderness of the beam, using the command **IMPERFECTION 
in the input file. 

4. Results 
4.1. Validation of Numerical Model 

To validate the numerical model, the W320 × 32.7 profile was used, as shown in  
 

 
Figure 7. Loads (Ahnlén and Westlund [15]). 
 

 
Figure 8. Application of the residual stresses. 
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Figure 9. With this profile, simulation analyses were performed for different 
spans and subjected to a constant moment, and the obtained results were com-
pared with the calculation procedure of ABNT NBR 8800:2008 [12] to validate 
the numerical model. 

The results are shown in Figure 10. 
An analysis of the relative errors was performed, i.e., an analysis of the differ-

ences between the results obtained in the numerical simulation and the ABNT 
NBR 8800:2008 standard [12]. As observed in the analyses, the results were good 
because the maximum difference between the numerical analyses and the ana-
lytical procedure of ABNT NBR 8800:2008 [12] was 12% in the plastic phase. 
Thus, the numerical model was validated. 
 

 
Figure 9. Geometric parameters of W310 × 32.7 (in millimeters). 
 

 
Figure 10. Graph: MRk versus Lb curves for the constant moment and original profile 
W310 × 32.7. 
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4.2. Non-Linear Geometrical and Physical Analyses 

Similar to Abreu et al. [1], in this study, the model of cellular beams was gener-
ated by adopting the W310 × 32.7 rolled profile as the original profile made in 
Brazil by GERDAU AÇOMINAS. The total height of the cellular beams was set 
equal to approximately 1.5 times the height of the original profile, the spacing 
between the centers of the openings was equal to 1.5 times the diameter of the 
openings, and the diameter of the openings was equal to 0.7 times the total 
height of the corresponding cellular beams, as shown Figure 11. 

Firstly, through a linear perturbation analysis (Buckle), the elastic buckling 
load is obtained by multiplying the first positive eigenvalue by the applied load 
value. In all the jobs were applied 1000 N. So as result the first eigenvalue mul-
tiplied by 1000, as shown Figure 12. 

The second step was non-linear geometrical and physical analyses, which in-
itialize with application of elastic buckling load in Static Riks method. In this 
step, the buckling load is estimated by multiplying the load applied by the load 
proportional factor (LPF), as shown Figure 13. 

With the values obtained in the numerical analysis of the cellular beams from 
ABAQUS 6.12 [11], as shown in Table 1, curves of the nominal bending mo-
ment strength were traced for the elastic state of lateral torsional buckling, MRk, 
as a function of the unrestrained length Lb. 

These curves were compared with those obtained using the prescriptions of 
the ABNT NBR 8800:2008 [12] and the procedure proposed by Abreu et al. [1]. 
In Figure 14, the results from the analyses with a concentrated applied load at 
the half height of the beam are shown. 
 

 
Figure 11. Geometric parameters of W310 × 32.7 and cellular beam (in millimeters). 

 

 
Figure 12. Example of elastic buckling loading, 221.83 kN. 
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Figure 13. Example of loading proportional factor, 0.852. 
 

 
Figure 14. Graph: MRk versus Lb curves for load concentrated on the cellular beam from 
the W310 × 32.7 profile. 
 
Table 1. Results as a function of the variation of geometric imperfections. 

Lb 
(m) 

L/1000 
(kN∙m) 

L/2000 
(kN∙m) 

L/2500 
(kN∙m) 

L/5000 
(kN∙m) 

L/10000 
(kN∙m) 

L/15000 
(kN∙m) 

L/20000 
(kN∙m) 

2 160.36 172.14 175.18 181.45 185.01 185.01 185.01 

2.5 98.04 105.66 107.96 113.71 117.44 119.46 120.61 

3 87.24 93.00 95.40 99.48 102.72 104.16 104.88 

4 68.13 72.18 73.35 76.23 78.03 78.57 78.84 

5 53.70 56.55 57.30 58.65 59.48 59.85 59.97 

7 37.54 38.75 38.96 39.41 39.41 39.41 39.41 

9 29.17 29.17 29.17 29.17 29.17 29.17 29.17 

 

In fact, as can be observed in Figure 14, the effects of the physical and geome-
trical imperfections exert a large influence on the ultimate strength of the cellu-
lar beams when LTB is considered, as shown in Figure 15. 

It can also be observed in Figure 14 that the smaller the initial curvature 
(geometric imperfection) is, the greater the resisting moment. For the analyses 
performed, the geometric imperfection that showed the smallest error was L/ 
20000 relative to the calculation proposed by Abreu et al. [1], as shown in Figure 
16. 
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Figure 15. Lateral Torsional Buckling with applications of residual stresses and initial 
imperfection. 
 

 
Figure 16. Graph: relative error versus Lb curves. 
 

In addition to the comparisons with the calculation models, analyses of the 
lateral displacement in the upper flange at a point in the middle of the cellular 
beam were also performed. Load × displacement curves were traced, as shown in 
Figure 17. 

It was observed that the smaller the applied geometric imperfection was, the 
greater the critical buckling load for a smaller lateral displacement. 

5. Conclusions 

According to the analyses performed with the variation of geometrical imperfec-
tions, a large variation was observed in the resisting bending moment for spans  
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Figure 17. Graph: Pcr versus Ux curves for load concentrated on the cellular beam from 
the W310 × 32.7 profile. 
 
between 2 and 4 meters. Furthermore, the comparison of the results with the 
calculation from ABNT NBR 8800:2008 [12] also showed a large difference, ap-
proximately 30% to 40%. This variation demonstrates that the calculation for the 
resisting moment from ABNT NBR 8800:2008 [12] is extremely important for 
full web rolled profiles (original web rolled profiles), which makes the procedure 
more conservative. 

However, the procedure proposed by Abreu et al. [1] showed only a slight 
variation for values compared with the analyses on the elastic buckling interval. 
In the inelastic phase, the procedure proposed by Abreu et al. [1] showed large 
differences compared with the numerical analysis, which thus indicates that the 
procedure is unsatisfactory for short spans. It was also observed that the smaller 
the initial curvature, the more the resisting moment approaches the proposed 
procedure. 

Thus the procedure proposed by Abreu et al. [1] is easy to formulate and 
suitable for calculations of resisting moments for cellular beams with spans in 
the elastic phase using the properties of the cross-section in the center of the 
openings, increasing the value of the unrestrained length by 20%, which corres-
ponds to the beginning of yielding, and assuming the maximum resisting mo-
ment to be 90% of the moment of yielding. 
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