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Abstract 
Active vibration control of functionally graded material (FGM) plate with integrated piezoelectric 
layers is studied. In this regard, a finite element model based on the classical plate theory is 
adopted and extended to the case of FGM plate to obtain a space state equation. Rectangular four 
node and eight node elements are used for the analysis purpose. The material proprieties of FG 
plate are assumed to be graded along the thickness direction. In order to control the vibration of 
the plate, an LQR controller has been designed and developed. The weighing factors are obtained 
by using genetic algorithm. The proposed results of finite element modeling are verified with the 
results obtained using ANSYS. Also the validation of methodology is done with comparing the re-
sults with that of available in literature and found in well agreement. Further analysis is per-
formed for three sets of power law exponent n = 0, 1 and 100 which gives benchmark results for 
vibration control of FGM piezoelectric plate. 
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1. Introduction 
Functionally graded materials (FGM) take big attention recently; they provide better mechanical behavior in 
comparison to composite materials, in which they have been emerged in the aerospace, automobile, and nuclear 
industries. With the increased use of these materials, it’s necessary to get a full understanding of the FGM 
structures behavior like vibration. The appearance of unwanted vibrations of FGM structures can lead to cata-
strophic failure. In order to control vibrations, the piezoelectric patches are an effective tool. Huu-Tai Thai and 
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Dong-Ho Choi [1] used a simple first order shears deformation theory for the bending and free vibration analysis 
of functionally graded plates. Vedat Dogan [2] performed nonlinear vibration of FGM plates under random ex-
citation. Hasani et al. [3] carried out an exact solution for free vibration of thin functionally graded rectangular 
plates. Preumont [4] studied vibration control of active structures. Fakhari and Ohadi [5] performed nonlinear 
vibration control of functionally graded plate with piezoelectric layers in which thermal loading is considered. 
Hossain et al. [6] carried out active vibration control of an FGM rectangular plate using fuzzy logic controllers. 
Liew et al. [7] studied optimal shape control of functionally graded smart plates using genetic algorithms. Kar-
garnovin proposed [8] vibration control of a functionally graded material plate patched with piezoelectric actua-
tors and sensors under a constant electric charge. Mao and Fu [9] performed nonlinear dynamic response and ac-
tive vibration control for piezoelectric functionally graded plate. Ramesh Kumar and Narayanan [10] carried out 
work on optimal location of piezoelectric actuators and sensors for vibration control of plates. Wankhade and 
Bajoria [11] [12] studied vibration and buckling analysis of piezolaminated plates using higher order shear de-
formation theory. Roy and Chakraborty [13] performed optimal vibration control of smart fiber reinforced 
composite shell structures using improved genetic algorithm. In the present paper a finite element model based 
on classical plate theory is presented for the vibration control of FGM plate by means piezoelectric layers. The 
linear quadratic (LQR) control algorithm is used. To improve the LQR controller, the weighting matrices Q and 
R are chosen based on maximizing the closed loop damping ratio and by using genetic algorithm. 

2. Functionally Graded Materials 
In literature several computational models have discussed the issue of finding suitable functions for FG material 
properties, and there are various criteria for selecting them. In the present work the simple power law, which has 
all the desired properties, is used. 

The material proprieties can be expressed as follows: 
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fgm c m c mE z E E V E= − +  
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where ( )fgmE z , ( )fgm zρ , and n are Young’s modulus, mass density and the power law exponent. The sub-
scripts m and c represent the metallic and ceramic constituents, respectively; cV  is the volume fraction of the 
ceramic.  

Finite Element Modeling 
The FGM plate with piezoelectric with integrated piezoelectric sensors and actuators is modeled using the clas-
sical plate theory. Two type of rectangular element four-noded and eight noded with three degrees of freedom 
per node are used. The full derivation and parameters has been presented by K Ramesh Kumar and S Narayanan 
[10]. The global matrix equations governing a smart structure system can be written as: 

[ ]{ } { } { } [ ] { }1
damp u u u m uM C K K K K F K uϕ ϕϕ ϕ ϕψ ψ ψ−    + + − = −                       (2) 

here [ ]M , 1
u u uK K K Kϕ ϕϕ ϕ

− −  , dampC   , uKϕ    and [ ]mF  are the global mass, stiffness, damping, elastic- 
electric coupling stiffness matrices and the applied mechanical force. 

{ }ψ  denotes structural displacement, and { }u  denotes electric potential. 
The output electrical potential of the sensor is given by 

{ } { }1
s u su K Kϕϕ ϕ ψ−=                                    (3) 

Assuming that the system response is governed by the eigen modes, the displacement can be expressed as  

{ } [ ]{ }u δ= Ω                                      (4) 
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where { }δ  are the modal coordinates and [ ]Ω  is the modal matrix 
Introducing the variable { }X δδ=   the state space equation for the dynamic system Equation (2) can be 

written as  

[ ]{ } [ ]{ }
.

X A X B u= +                                   (5) 

where [A] is the system matrix, [B] is the control matrix, which are given by 
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where 
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The output equation can be written as 

{ } { }ˆY C X =                                        (7) 

Ĉ 
   present the output matrix which depends on the modal matrix and sensor piezoelectric stiffness matrix. 

LQR optimal control 
The idea beyond the LQR is to minimize a cost function given as 

( )T T

0

d minJ X QX U RU t
α

= + =∫                              (8) 

where, the matrices Q and R are weighting matrices. It assumed that the desired state is x = 0, but the initial con-
dition is non-zero, so the matrix Q penalizes the state error in a mean-square sense. Similarly, the matrix R pena-
lizes the control effort, i.e., limits the control signals magnitude. Design the optimal feedback control force U by 
the application of classical LQR control method: 

( )*U K x t=                                      (9) 

The gain matrix 1 TK R B P−=  which minimizes J can be found by solving a matrix Riccati equation that 
given by: 

T 1 T 0PA A P Q PBR B P−+ + − =                              (10) 

In present work the Q and R matrices are presented as follow: 
2
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Therefore, a search algorithm is required for finding Q and R by taking X1, X2, and X3 as variables to achieve 
the highest damping effect as follows [11]:  
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3. Results and Discussion 
3.1. Model Validation  
In order to ensure the accuracy of the proposed finite element model a cantilever FGM plate made of combined 
aluminum oxide and Ti-6A1-4v materials and bounded by piezoelectric layer on the top and the bottom is con-
sidered. Using four and eight node elements of finite element MATLAB code is written to perform a modal 
analysis to illustrate the eigen frequencies and eigen modes for the FGM plate with integrated piezoelectric layer. 
The geometry of the considered plate is showed in Figure 1. The thickness of each piezoelectric layer is taken 
as 0.1 mm. Material properties of plate are presented in Table 1. The initial five frequencies of the plate with 
piezoelectric layer as a function of the power law exponent “n” for the set boundary conditions are listed in 
Table 2.  

From Table 2 it is observed that proposed finite element methodology can be effectively used for vibration 
analysis of a cantilever FGM plate composed of aluminum oxide and Ti-6A1-4v materials which is bounded by 
piezoelectric layer on the top and the bottom of the plate. Both four node and eight node elements of finite ele-
ment perform well for modal analysis to obtain the eigen frequencies and eigen modes for the FGM plate with 
integrated piezoelectric layer. The results found are in good agreement with those of and Ansys and He et al. 
(2001) [14] which demonstrates the efficiency of proposed methodology.  
 

    
Figure 1. The model of the FGM piezoelectric plate with Ansys. 

 
Table 1. Material proprieties. 

Proprieties Aluminum oxide Ti-6A1-4V PZT G-1195 PZT-5A 

Elastic modulus 
E (N/m2) 3.2024 × 1011 1.0570 × 1011 6.1 × 1010 63 × 109 

Poison’s ratio 0.26 0.29 0.3 0.3 

Density 
ρ (Kg/m3) 
Elastic stiffness matrix (GPa) 
Piezoelectric strain matrix 

3750 
 
 
 

4429 
 
 
 

7600 
 

63.0 
 

7750 
 

61.0 
 

e31 
e33 
e15 
Dielectric matrix (F/m) 
g11 
g22 
g33 

- - 

22.86 
22.86 

- 
 

1.5 × 10−8 
1.5 × 10−8 
1.5 × 10−8 

6.5 
23.3 
17 

 
1.53 × 10−8 
1.53 × 10−8 
1.5 × 10−8 

FGM plate

5 mm

400 mm

400 mm

x

y
z
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Table 2. The first five natural frequencies (Hz) for a cantilever FGM plate with two piezoelectric layers. 

Power law exponent (n) 
Mode no 

1 2 3 4 5 

0 
Q4 (present) 
Q8 (present) 

Ansys 
He et al. (2001) 

 
24.69 
24.61 
25.68 
25.58 

 
68.10 
67.60 
63.00 
62.75 

 
160.48 
154.46 
158.51 
157.20 

 
202.10 
198.30 
202.02 
200.19 

 
243.54 
235.61 
230.48 
228.22 

0.2 
Q4 (present) 
Q8 (present) 

Ansys 
He et al. (2001) 

 
28.94 
28.85 
28.89 
29.87 

 
79.81 
79.23 
71.02 
73.67 

 
188.07 
181.02 
178.42 
183.97 

 
236.85 
232.39 
227.23 
233.88 

 
285.41 
276.12 
259.66 
267.51 

1 
Q4 (present) 
Q8 (present) 

Ansys 
He et al. (2001) 

 
36.48 
36.39 
37.02 
35.33 

 
100.60 
99.89 
91.52 
87.52 

 
237.06 
228.18 
229.01 
218.04 

 
298.55 
292.93 
291.26 
276.89 

 
359.76 
348.06 
333.98 
317.43 

15 
Q4 (present) 
Q8 (present) 

Ansys 
He et al. (2001) 

 
45.48 
45.37 
46.78 
43.97 

 
125.40 
124.51 
116.44 
109.48 

 
295.48 
284.42 
289.96 
271.63 

 
372.13 
365.12 
368.35 
344.76 

 
448.42 
433.83 
423.90 
396.11 

100 
Q4 (present) 
Q8 (present) 

Ansys 
He et al. (2001) 

 
46.52 
46.42 
46.78 
46.55 

 
128.29 
127.38 
116.44 
116.00 

 
302.29 
290.97 
289.96 
287.60 

 
380.71 
373.54 
368.36 
365.00 

 
458.76 
443.83 
423.90 
419.55 

3.2. Vibration Control Analysis 
For the vibration control, the top piezoelectric layer is used as an integrated actuator and the bottom layer as an 
integrated sensor. The LQR control algorithm described earlier is used to control or suppress the vibration of the 
FGM plate. The genetic algorithm is used to define the weighting parameters based on the Equation (12). Three 
set of power law exponent n = 0, 1 and 100 are presented. To make a good decision of choosing the best solu-
tions of Q and R parameters the genetic algorithm MATLAB code is set ten times for hundred generations. The 
weighting parameters using for the optimal [Q] and [R] for each case in this study are present in Table 3. Re-
sults for vibration control of FGM plates with a mixture of metal and ceramic are presented in further with ge-
netic algorithm LQR control. Closed loop damping rations are found out for the corresponding set of power law 
exponent.  

Figure 2 shows the GA-LQR controlled non-dimensional deflection histories for n = 0 (full metal). In this 
case the closed-loop damping ratio is found to be 5.2% moreover the settle time of the vibration is about 0.35 s. 
The required voltage is also presented in the same figure. For the case of n = 1 the closed-loop damping ratios 
achieved 6.3% while the time require to return the plate to equilibrium 0.3 s.  

From Figure 3 depicted the GA-LQR controlled non-dimensional deflection histories for n = 1 (50% metal 
and 50% ceramic). In this case the closed-loop damping ratios achieved are 6.3% and the settling time is 0.3 s. 
The required voltage to damp the plate is also presented.   

Figure 4 demonstrate the non-dimensional deflection of the cantilever FGM plate in controlled and uncon-
trolled response is considered with respect to time. The deflection is shown for n = 100 and the corresponding 
actuator voltages are also presented. 

It is observed from Figure 4 that the GA-LQR significantly controlled non-dimensional deflection histories 
for the case of n = 100 (full ceramic). In this case the closed-loop damping ratios achieved as 8.9% while the 
settle time is 0.2 s. The required actuator voltages are given in the same figure.  
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Table 3. List of weighting parameters. 

Weighting parameters for optimal Q and R matrices 
Power law exponent (n) 

0 1 100 

X1 (102) 9.79 1.13 0.80 

X2 (102) 5.45 8.29 9.40 

X3 0.0011 0.0016 1.08 

Closed loop Damping ratio 0.052 0.063 0.089 

 

      
Figure 2. The non-dimensional deflection of the cantilever FGM plate with and without control for n = 0 and the corres-
ponding actuator voltages. 
 

   
Figure 3. The non-dimensional deflection of the cantilever FGM plate with and without control for n = 1 and the corres-
ponding actuator voltages. 
 

     
Figure 4. The non-dimensional deflection of the cantilever FGM plate with and without control for n = 100 and the corres-
ponding actuator voltages. 
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4. Conclusion 
The present work investigates the active vibration control of FGM plate with integrated piezoelectric layers. A 
FGM plate with piezoelectric actuator and sensor at top and bottom face is considered for the study. Simple 
power-law distribution in terms of the volume fraction of the constituents is adopted for considering the material 
properties to be graded along the thickness of the plate. A finite element method based on classical plate theory 
is used for two cases considering four and eight nodes finite element. The LQR weighting parameters are chosen 
based on maximizing the closed loop damping ratio via genetic algorithm technique. Various results are pre-
sented to show the accuracy and validation of the present method. The control low is presented for different sets 
of power law exponent n = 0, 1 and 100. The closed loop damping ratios are found to be 5.2%, 6.3% and 8.9% 
respectively for each case. 
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