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Abstract 

This paper is concerned with a special steel-concrete composite beam in which the resisting sys-
tem is a truss structure whose bottom chord is made of a steel plate supporting the precast floor 
system. This system works in two distinct phases with two different resisting mechanisms: during 
the construction phase, the truss structure bears the precast floor system and the resisting system 
is that of a simply supported steel truss; once the concrete has hardened, the truss structure be-
comes the reinforcing element of a steel-concrete composite beam, where it is also in a pre-stressed 
condition due to the loads carried before the hardening of concrete. Within this framework, the 
effects of the diagonal bars on the bending stiffness of this composite beam are investigated. First, 
a closed-form solution for the evaluation of the equivalent bending stiffness is derived. Subse-
quently, the influence of geometrical and mechanical characteristics of shear reinforcement is 
studied. Finally, results obtained from parametric and numerical analyses are discussed. 
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1. Introduction 
Steel-concrete composite structural members—such as beams, columns and slabs—are widely used in modern 
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civil engineering structures, as illustrated in Kasuga et al. [1], Stráský et al. [2] and Durfee [3]. Within this 
framework, the paper deals with a particular class of steel-concrete composite beams that is widely diffused in 
Italy to build large structures (Figure 1). This special composite beam is made up of ribbed or smooth diagonal 
bars primarily designed to withstand tangential stresses. At the top, these bars are welded to the upper chord, 
which is usually made up of symmetrically placed longitudinal bars having circular or square cross-section. At 
the bottom, the diagonal bars are usually welded to a thin steel plate, even though other technological solutions 
are available (i.e., a reinforced/prestressed concrete thick plate can be used instead). The steel plate has a con-
stant thickness along the beam span, and additional bars can be longitudinally welded on it in order to increase 
the positive resisting moment. Standard welded connections are adopted to assemble the elements of this special 
steel truss structure in the factory. It is common practice to adopt constant cross-sections for all steel members of 
the truss structure (upper bars, lower plate, diagonal bars), so to ease its construction. The lower chord is usually 
designed in such a way that the bottom plate can provide support to the transversally-placed slabs (Figure 2) if 
they have the same depth of the beam. In case of deep beams, the lower chord can be a U-shaped steel section, 
and the slabs rest on the two vertical webs. In both cases, the lower plate accomplishes all the tasks of the clas-
sical formworks. An arch-shaped configuration of the truss-reinforced steel-concrete composite beam is some-
times adopted for special buildings (Figure 3). One of the most attractive features of these particular structural 
members is the partially precast nature, which makes easier and speeds up the realization of large civil construc-
tions. In fact, all the steel components are made in the assembly shops and moved toward the building site where 
they are placed between pairs of columns by means of cranes (Figure 4 and Figure 5). In these conditions, the 
beams behave like classical steel structures and the corresponding mechanical model to be adopted is that of a 
simply supported beam. Once the truss element is mounted, the slabs are positioned and the concrete is cast in 
place. After the hardening of concrete, the structural element does not behave anymore as a steel truss structure, 
rather, as a steel-concrete composite beam, Quaranta et al. [4].  

 

 
Figure 1. The special truss structure which provides the final 
reinforcement of the composite steel-concrete beam.            

 

 
Figure 2. Reinforcing steel truss structure: main element and slabs.                       
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Figure 3. Reinforcing element in steel-concrete composite arches.  

 

 
Figure 4. Moving and positioning of the steel truss structure 
by means of crane. Thin vertical flanges are welded at both 
sides to contain the concrete filling.                        

 

 
Figure 5. Reinforcing steel truss structures after positioning on the columns. 
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Since the steel truss structure is self-supporting, only few props are usually recommended close to the col-
umns whereas no supports are required along the span of the beam, as shown in Figure 5. The reduction of the 
props number diminishes significantly the obstacles, which are the most important sources of risk and injury in 
building sites. Moreover, all activities within the construction site are considerably faster, and larger free space 
is made available for further construction activities. Current applications show that truss-reinforced steel-con- 
crete composite beams can sustain larger loads and allow longer spans than ordinary reinforced concrete beams. 
In order to comply with serviceability limit states for displacement/deformation control, the steel truss structure 
is frequently assembled by imposing a suitable camber, so as to reduce long-term deformations of the composite 
steel-concrete beam. Overall, all these features have made this composite beam structures rather popular in Italy. 
Although this technology is gaining interest in Italy, well-codified structural design formulas and rules are not 
available yet. This entails that the mechanical behavior of truss-reinforced steel-concrete composite beams can 
be analyzed by comparison with structural models of classical reinforced concrete beams and steel and concrete 
composite beams (Mark [5], Sanches Júnior and Venturini [6]). Therefore, a systematic experimental and theo-
retical investigation about this class of steel-concrete structural elements has recently started with the aim of de-
fining a comprehensive set of design tools for practitioners. For instance, numerical finite element based analys-
es and a closed-form solution to evaluate the elastic critical moment for lateral-torsional buckling of the steel 
truss structure have been presented in Trentadue et al. [7] and [8], respectively. An experimental study about the 
shear capacity of the final truss-reinforced composite steel-concrete beams is reported in Petrone et al. [9] [10]. 
The effectiveness of important construction details for earthquake-resistant structural design has not been ad-
dressed so far, with the possible exception of some preliminary experimental studies about beam-column joints 
subjected to cyclic loading, Scotta and Tesser [11]. 

In order to provide further design tools, this work is primarily concerned with the role of the diagonal bars on 
bending stiffness. To this end, referring to the studies of Nie et al. [12] about steel and concrete composite 
beams and Castel et al. [13] about cracked reinforced concrete beams, a closed-form solution for the evaluation 
of the equivalent final bending stiffness is derived as an effective design tool for practitioners. Subsequently, the 
influence of geometrical and mechanical characteristics of the shear reinforcement is investigated. Finally, re-
sults obtained from parametric and numerical analyses are discussed. 

2. Truss-Reinforced Composite Steel-Concrete Beams 
Because of the construction method, two different working stages can be clearly identified (Figure 6). During 
the first transitory stage (named S1), the structure is a simply-supported steel truss beam, which is loaded by its 
self-weight, the precast floor system weight and the weight of fresh concrete filling. In this transitory stage, the 
structural design of the beam is based on limit states typical of steel structures, such as bending and axial force 
resistance of cross-sections, local and global instability. After concrete hardening, a stage (S2) is achieved in 
which the structural member behaves as a special steel-concrete composite beam. This is a permanent condition  

 

 
Figure 6. Two working stages of the composite steel-concrete beam.                                   
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in which all further actions and environmental factors are to be considered. Therefore, S2 needs a global analysis 
of the structure that the beam belongs to. Moreover, the structural design in S2 depends on limit states typical of 
steel-concrete composite structures, such as ultimate limit states (i.e., combined bending moment-axial force, 
shear, torsion) and serviceability limit states (i.e., stress limitation, crack control, deflection control). It must be 
remarked that, in S2, the steel truss member is not stress-free, since it is preloaded by the weights acting in S1. 
As a consequence, the structural design in S2 depends on the pre-stress condition due to the loads in S1. In this 
paper, the analysis is limited to the special reinforcing steel truss beams having the geometry depicted in Figure 
7, one of the most typical in ordinary constructions. The considered beam section has two smooth diagonal bars 
and three smooth upper bars. The spacing 2δ between the diagonal bars is constant over the beam span.  

3. Bending Stiffness Calculation 
Since truss-reinforced composite steel-concrete beams are frequently adopted to cover large spans, the assess-
ment of the bending stiffness becomes a critical design point for practitioners. Therefore, a closed-form analyti-
cal solution would be an effective tool for rapid hand calculations as well as for checking finite element results. 
In this perspective, the contribution due to welded diagonal steel bars should be properly considered in order to 
avoid unpractical underestimation of the total bending stiffness. It must be pointed out that viscous effects occur 
in S2 only, thus causing a significant reduction of total bending deformation. 

A beam slice with length equal to 2δ subjected to bending deformation is now considered (Figure 8). It is as-
sumed that orthogonal sections remain plane under bending deformation. This assumption implies that the di-
agonal bars are stressed, thus contributing to the final bending stiffness. The relative bending rotation θ  be-
tween the two ends of the beam element can be determined as follows: 

2 2
eq

M
EJ

θ δχ δ
 

= =   
 

                                         (1) 

where χ  is the bending curvature, E  is the elastic modulus, eqEJ  is the bending stiffness ( eqJ  is the moment 
of inertia), M  is the bending moment. The total elastic energy totE  of this beam element is: 

( )( )1 1 2
2 2tot eqE M EJθ χ χδ= =                                      (2) 

The total elastic energy totE  is due to the deformation of, both, steel bars and concrete. It can be written as 
the sum of two terms: the first one is obtained by neglecting the diagonal bars contribution through the classical 
reinforced concrete beams theory, while the second term is due to the deformation of the diagonal bars: 

2
tot diagE EJ Eχ δ= +                                          (3) 

where EJ  is the bending stiffness of a section in which the longitudinal steel reinforcement only is considered 
and diagE  is the elastic energy due to the deformation of the diagonal bars.  

 

 
Figure 7. Layout of the steel truss structure: a) transversal section; b) longitudinal section.      
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For the sake of simplicity, bond between diagonal bars and concrete is here neglected and thus the longitudin-
al strain in the diagonal bar is kept constant. By doing so, a conservative estimation of the bending stiffness is 
obtained. The elastic energy due to the deformation of the diagonal bars is then evaluated as follows: 

( )1 2
2

diag diag
diag diag diag diag diag diag

diag

EA l
E m N l m l

l
∆

= ∆ = ∆                            (4) 

where diagN  is the axial force in the diagonal bars, diagl∆  is the bar elongation due to bending deformation, 
2 diagm  is the number of diagonal bars in the beam element of length 2δ , diagl  is the bar length, and diagA  is 
the cross area of a single diagonal bar. On considering proper kinematic relationships (Figure 8): 

sindiag
diag

l z z
l
δα∆ = ∆ = ∆                                     (5) 

( )nz d y χδ∆ = −                                        (6) 

( )
2

diag n
diag

l d y
l
δχ∆ = −                                      (7) 

the elastic energy due to the deformation of the diagonal bars is rewritten as follows: 

( )

( )

( )

2
2

3
2 2

23 2

diag
diag diag n

diag diag

diag diag n
diag

diag diag z n

E A
E m d y

l l

m EA d y
l

m EA n d y

δχ

δ χ δ

χ δ

 ⋅
= − 

  

 
= −  

 

= −

                            (8) 

where zn  is the cosine director of the diagonal bars along the z-axis. The total energy is then given by: 

( )22 3 2
tot eq diag diag z nE EJ EJ m EA n d yχ δ χ δ = = + −                         (9) 

and finally 
 

 
Figure 8. Beam element with length equal to 2δ  subjected to bending deformation.         
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( )23
eq diag diag z nJ J m A n d y= + −                                 (10) 

The problem now reduces to the explicit calculation of the moment of inertia eqJ  for an assigned neutral 
axis position ny . This calculation can be performed for, both, uncracked and cracked sections. In doing so, it is 
observed that the effect of the diagonal bar on the position of the center of mass is not the same for all transver-
sal sections. Nonetheless, the contribution of the diagonal bars on the position of the center of mass is small, and 
thus neglected.  

For an uncracked section such as that shown in Figure 9, the symbol G denotes the center of the concrete sec-
tion whereas G’ indicates the center of a concrete-equivalent section. The concrete-equivalent section is ob-
tained by means of the coefficient E s cn E E=  (the ratio between the Young modulus of steel and concrete).   

The distance ny  of the center G’ from the upper chord of the transversal section is: 

( )

2

2 E lp E uc

n
E lp uc

BH n dA n cA
y

BH n A A

 
+ + 

 =
+ +

                               (11) 

where lpA  is the cross-section area of lower plate and ucA  is the total cross area of the upper chord. The mo-
ment of inertia of the uncracked section is: 

( )( ) ( )
23

2 23

12 2eq n E lp z diag diag n E uc n
BH HJ BH y n A n m A d y n A y c = + − + + − + − 

 
           (12) 

For cracked section (Figure 10), the neutral axis position is: 
 

 
Figure 9. Uncracked transversal section.       

 

 
Figure 10. Cracked transversal section.        
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( ) ( )
( )2

2
1 1E lp uc lp uc

n

E lp uc

n A A B A d A c
y

B n A A

 + + = − + +
 + 

                          (13) 

whereas the moment of inertia is: 

( )( ) ( )
3

2 23

3
n

eq E lp z diag diag n E uc n
ByJ n A n m A d y n A y c= + + − + −                    (14) 

4. Parametric Analysis 
Dimensionless formulas and charts are useful for rapid calculations and can support parametric analyses aimed 
at highlighting the role of geometrical and mechanical characteristics of the shear reinforcement on the final 
bending stiffness. The parametric analysis developed in the following is limited to cracked sections only, as they 
represent the most significant situation for practical design applications. Moreover, the comparison between 
Equation (12) and Equation (14) demonstrates that the effect of shear reinforcement on the final bending stiff-
ness is more pronounced in cracked sections rather than in uncracked ones, as expected.  

In order to perform the parametric analysis, the following quantities have been taken into account: 
• δ  is the half spacing of steel bars (referring to the condition α θ= , typical in practical cases); 
• B  is t the cross-section width of the composite beam; 
• dζ δ=  is the aspect ratio1, where d  is the effective depth of the beam and δ  has the meaning ex-

plained above; 
• 0.1c d= ⋅  is the concrete cover. 

The relevant geometrical characteristics of the reinforcement are expressed as follows: 
• 2π 4sb diag sb sb diagA m n Aφ= =  is the area of the shear reinforcement, where diagm  is the number of bars and 

sbφ  is the diameter of the bars; 
• 2π 4uc uc ucA n φ=  is the area of the upper chord reinforcement, where ucn  is the number of bars and ucφ  is 

the diameter of the bars; 
• lpA B t= ⋅  is the area of the lower steel plate, where t  is its thickness and B  has the meaning explained 

above. 
Finally, the dimensionless quantity ω  is introduced in order to correlate the amount of lower longitudinal 

reinforcement with the shear one. Thus, ω  represents the mechanical ratio between the shear reinforcement 
and the lower plate, as shown in the following: 

,

,

y sb sb

y lp lp

f A
f A

ω
⋅

=
⋅

                                                 (15) 

So doing, the equivalent area of the lower longitudinal reinforcement eqA  can be expressed as function of 
both ζ  and ω , thus obtaining: 

( ) ( )( )( )3
, 1 cos ataneq lpA Aζ ω ω ζ= + ⋅                                    (16) 

and 

( ) ( )( ) ( )( ) ( )( )221, , , 2 ,n E uc eq E uc eq E uc s eqy n A A n A A Bn A c d A
B

ζ ω ζ ω ζ ω ζ ω = − + + + + +  
       (17) 

Then, the moment of inertia ( ),J ζ ω  and the equivalent one ( ),eqJ ζ ω , which takes into account the shear  
reinforcement contribution, can be rewritten as follows, respectively: 

( ) ( )( ) ( )( ) ( )( )
3

2 2,
, , ,

3
n

E lp n uc n

B y
J n A d y A y c

ζ ω
ζ ω ζ ω ζ ω = + − + −  

                (18) 

 

 

1Note that in case of evaluating eqJ  of an existing structure, see (19), the value of ζ  can be calculated referring to the known values d  

and δ . Otherwise, in case of design that aims at a certain value of the equivalent bending stiffness, the sizing of the cross-section depth can 
be conducted referring to a certain value of ζ , so that d  can be defined as a function of ζ : ( )d ζ ζ δ= ⋅  
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( ) ( )( ) ( )( ) ( )( )
3

2 2,
, , ,

3
n

eq E eq n uc n

B y
J n A d y A y c

ζ ω
ζ ω ζ ω ζ ω = + − + −  

              (19) 

The parameter: 

( ) ( )
( )

,
,

,
eqJ
J

ζ ω
ϑ ζ ω

ζ ω
=                                             (20) 

is considered, in order to investigate the role of the spatial shear reinforcement on the final bending stiffness of 
the beam. Figure 11 shows the variation of ( ),ϑ ζ ω  as function of ζ  only, for different values of ω . The 
results shown in this chart demonstrate that the shear reinforcement can lead to significant increments in the 
bending stiffness of the beam. Therefore, ignoring diagonal bars in the evaluation of the bending stiffness might 
give rise to a too conservative design, with severe consequence on the final project cost. Figure 11 also demon-
strates that the shear reinforcement influence on ( ),eqJ ζ ω  decreases as ζ  increases. Figure 12 shows the 
variation of ( ),ϑ ζ ω  as a function of ω  only, for different values of ζ . These curves prove that ( ),eqJ ζ ω  
increases as ω  grows up.  

It is observed that the mechanical ratio ω  influence on ( ),eqJ ζ ω  is very relevant for small and medium 
values of ζ , which implies that both geometrical and mechanical characteristics of the shear reinforcement play 
a crucial role in determining the beam bending stiffness. To better understand the influence of geometrical and 
mechanical characteristics of the cross-section on the bending stiffness, the variation of ( ),ϑ ζ ω  has been ana-
lyzed referring to theoretical values of ω , see Figure 13. The curves show that the function ( ),ϑ ζ ω  has an 
increasing trend until a certain maximum value, different for each ζ : in fact as the shear reinforcement in-
creases, also the value of ny  grows up, see (17) and Figure 14, until the maximum value, which equals the  

 

 
Figure 11. Variation of ( ),ϑ ζ ω  as function of ζ .                       

 

 
Figure 12. Variation of ( ),ϑ ζ ω as function of ω .                        
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Figure 13. Variation of ( ),ϑ ζ ω  as function of theoretical values of ω .   

 

 
Figure 14. Variation of ( ),ny ζ ω .                                 

 
effective depth of the cross section. So, the contribution of the concrete compressive chord to the inertia moment 
increases when ω  grows up because of the increasing of ny . Then the influence of further increment of ω  
the shear reinforcement on the moment of inertia becomes insignificant and the ratio ( ),ϑ ζ ω  tends to a con-
stant value. 

Therefore, this parametric study has highlighted the effects of, both, geometrical and mechanical properties of 
the shear reinforcement on the final bending stiffness of the beam. The analysis confirms that the spatial shear 
reinforcement gives a significant contribution to the bending stiffness in such class of composite beams.  

The closed-form solutions here presented for eqJ  can be used for simplified hand calculations. For instance, 
they can be adopted to assess serviceability limit states. Moreover, the parameter ( ),ϑ ζ ω  can be conveniently 
adopted in computer-aided structural analyses. In fact, commercial finite element codes implement built-in rein-
forced concrete sections for structural analysis. These reinforced concrete sections can be still used for the anal-
ysis of frame structures with truss-reinforced steel-concrete composite beams, provided the moment of inertia is 
properly increased by using the parameter ( ),ϑ ζ ω . 

5. Validation 
The formulation here proposed for evaluating the equivalent inertia moment eqJ  has been verified by compar-
ison with numerical analyses, whose results are summarized in load-controlled pushover curves. 

The analyses have been performed referring to the simplified structural models depicted in Figure 15, which 
shows the representative half-length of the beam element, with and without shear reinforcement, at cracked 
stage and subjected to the horizontal forces 1l  and 2l , and to the vertical force V  that ensures the equili-
brium condition. 

The moments of inertia of both structural elements have been computed before either the yielding of steel or 
the crushing of concrete, referring to the elastic branch of the moment-rotation graphs ( ),M ϕ  obtained from 
pushover analyses. 
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(a)                                            (b) 

Figure 15. Structural models: (a) with shear reinforcement; (b) without shear reinforcement.   
 

The study has been conducted on the following five cases, representing the dimensions of common real 
structures, when 0.785ω = : 
• Case 1: 1 1300 mm; 200 mm 0.67zδ ζ= = → = ; 
• Case 2: 2 2300 mm;  250 mm 0.83zδ ζ= = → = ; 
• Case 3: 3 3300 mm;  300 mm 1.00zδ ζ= = → = ; 
• Case 4: 4 4300 mm;  350 mm 1.17zδ ζ= = → = ; 
• Case 5: 5 5300 mm;  400 mm 1.34zδ ζ= = → = . 

The analysis of Case 1, Case 3 and Case 5 will be presented in detail thereafter.  
Figures 16-18, representing moment-rotation graphs of the cross-section with and without shear reinforce-

ment for Case 1, Case 3 and Case 5, respectively, clearly show that the rotation of the cross-section with shear 
reinforcement is lower than the rotation of the cross-section without shear reinforcement at the yielding point 
and for those cases where the rotation is comparable, the moment of the beam with shear reinforcement is sig-
nificantly greater than the moment of the same beam without shear reinforcement. 

For each case, see Figures 16-18, we have: 
• Case 1: / / / /0.004, 0.005 144,000 kN mm, 137,500 kN mmw w o w w oM Mϕ ϕ= = − ∼ ⋅ ∼ ⋅ ; 
• Case 3: / / / /0.0032 272.000 kN mm, 230.000 kN mmw w o w w oM Mϕ ϕ = − ∼ ⋅ ∼ ⋅ ; 
• Case 5: / / / /0.0028, 0.0023 389.000 kN mm, 304.000 kN mmw w o w w oM Mϕ ϕ= = − ∼ ⋅ ∼ ⋅ . 

The contribution of shear reinforcement to the bending stiffness is evaluated through the ratio between inertia 
moment with and without shear reinforcement, giving the following results: 

1 0.67 1.23srJ
J

ζ = → =  

2 0.83 1.19srJ
J

ζ = → =  

3 1.00 1.18srJ
J

ζ = → =  

4 1.17 1.14srJ
J

ζ = → =  

5 1.34 1.12srJ
J

ζ = → =  

The values of the ratio srJ J  so obrained confirm that the inertia moment of the beam increases signifi-
cantly, up to 20%∼ , thanks to the shear reinforcement contribution. 

Moreover, to verify the accuracy of the proposed closed-form equation in evaluating the equivalent moment 
of inertia eqJ , see (19), the values of shJ  obtained from pushover analyses have been used as comparison. The 
results are summarized in Table 1. 

The results show that the proposed formulation allows an accurate evaluation of the equivalent inertia mo-
ment, with an approximation of 1 2%÷ . 
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Figure 16. Comparison: M ϕ−  graph w/ and w/o shear reinforcement for 

0.67ζ = .                                                         
 

 
Figure 17. Comparison: M ϕ−  graph w/ and w/o shear reinforcement for 

1.00ζ = .                                                         
 

 
Figure 18. Comparison: M ϕ−  graph w/ and w/o shear reinforcement for 

1.34ζ = .                                                          
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Therefore these structures can be conveniently modeled by making use of eqA , see (16) and Figure 19, as an 
alternative to varying the values if the inerta moment. In confirmation of this, Figures 20-22, showing M ϕ−  
function for Case 1, Case 2 and case, respectively, prove that both the model with shear reinforcement and the 
model with the equivalent area eqA  give the same results in terms of rotation of the cross-section in the elastic 
range. 

Table 2 summarizes the comparison between shJ  and eqJ , obtained from the numerical analyses on the  
 

 
Figure 19. Structural model— eqA .                  

 
Table 1. Comparison between numerical analysis shJ  and analytical equation eqJ .                         

 
4

  

mm
shJ

  
 

4

   

mm
eqJ

  
 eq shJ J  

Numerical analysis Analytical equation-Aeq Error-% 

Case 1 3.673E+08 3.712E+08 1.01 

Case 2 5.256E+08 5.343E+08 1.02 

Case 3 7.159E+08 7.238E+08 1.01 

Case 4 9.799E+08 9.980E+08 1.02 

Case 5 1.255E+09 1.281 E+09 1.02 

 
Table 2. Numerical analyses: Shear reinforcement—Equivalent area.                                     

 
4

  

mm
shJ

  
 

4

   

mm
eqJ

  
 eq shJ J  

Shear Reinforcement Equivalent Area-Aeq Error-% 

Case1 3.673E+08 3.670E+08 0.99 

Case 2 5.256E+08 5.254E+08 0.99 

Case 3 7.159E+08 7.159E+08 ∼0.99 

Case 4 9.799E+08 9.792E+08 0.99 

Case 5 1.255E+09 1.254 E+09 0.99 
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Figure 20. Comparison: M ϕ−  graph w/shear reinforcement and with Aeq 
for 0.67ζ = .                                                     

 

 
Figure 21. Comparison: M ϕ−  graph w/ shear reinforcement and with Aeq 

for 1.00ζ = .                                                     
 

 
Figure 22. Comparison: M ϕ−  graph w/shear reinforcement and with Aeq 
for 1.34ζ = .                                                      
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model with shear reinforcement and with the equivalent area, confirming a substantial equality of results. 
Finally, note that the values derived from the numerical analyses can be also obtained referring to the graph of 

Figure 12. In fact, given the values of ζ  and selected the curve of the assigned ω , both known quantities 
since coming from the structural design, the value of ( ),ϑ ζ ω  can be easily found. 

This allows practitioners to evaluate the increase of the inertia moment by checking the graph at the corres-
ponding values of ζ  and ω . 

6. Conclusion 
This paper deals with a special steel-concrete composite beam, whose resisting element is a steel truss structure 
with a steel plate at the bottom, also meant to support a precast floor system. Within this framework, a useful 
and accurate closed-form equation for calculating the equivalent bending stiffness has been proposed along with 
a corresponding parametric formula (even in the form of graphic charts) that should represent rapid and easy de-
sign tool for practitioners. Sensitivity analyses and numerical applications demonstrated that the shear rein-
forcement provides a significant contribution to the final bending stiffness. As a consequence, ignoring such 
contribution can lead to over-conservative and anti-economical design solutions. 
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