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Abstract 
Risk modeling for recurrent cervical cancer requires the development of new concepts and metho- 
dologies. Unlike most daily decisions, many medical decision making have substantial conse- 
quences, and involve important uncertainties and trade-offs. The uncertainties may be about the 
accuracy of available diagnostic tests, the natural history of the cervical cancer, the effects of 
treatment in a patient or the effects of an intervention in a group or population as a whole. With 
such complex decisions, it can be difficult to comprehend all options “in our heads”. This study 
applied Bayesian decision analysis to an inferential problem of recurrent cervical cancer in 
survival analysis. A formulation is considered where individual was expected to experience re- 
peated events, along with concomitant variables. In addition, the sampling distribution of the 
observations is modelled through a proportional intensity Nonhomogeneous Poisson process. The 
proposed decision models can provide decision support techniques not only for taking action in 
the light of all available relevant information, but also for minimizing expected loss. The decision 
process is useful in selecting the best alternative when a patient with recurrent cervical cancer, in 
particular, the proposed decision process can provide more realistic solutions. 
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1. Introduction 
Cervical cancer remains one of the leading causes of cancer-related death among women globally [1] [2]. Even 
though the morbidity and the mortality have been decreasing in recent years, the morbidity rates of cervical 
cancer are the second leading type in women and the mortality rates are the sixth of the top ten cancers in 
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wan. Because cervical cancer is a cancer which can be controlled and avoided, the studies related to the causes 
of and the treatment to the cervical cancer has been described sufficiently in lots of advanced researches. The 
cure rate of cervical carcinoma is quite high if detected early, but approximately 30% of International Federation 
of Gynecology and Obstetrics (FIGO) stage IB2 to stage IV disease will ultimately recur with modern multimo-
dality treatment [3] [4]. There are few researches on its relationship between recurrent events and the mortality 
and incidence rate. Indeed, recurrent cervical cancer is a devastating disease for those women unfortunate 
enough to suffer such an event. Patients with recurrent disease or pelvic metastases have a poor prognosis with a 
1-year survival rate between 15% and 20% [5]. Once the primary treatment has failed, the opportunity of sec-
ondary cure is slim. Probably several factors exist which indeed affect the ultimate prognosis of early stage cer-
vical carcinoma other than clinical staging. Since, the treatment of recurrent cervical cancer is still a clinical 
challenge. When the recurrence is not surgically resectable, and/or suitable for curative radiation, therapeutic 
options are limited. In other words, early detection of recurrence may impact survival. Moreover, detection of 
asymptomatic recurrences is associated with prolonged overall survival and survival from the time of initial de-
tection of recurrence [6]-[8]. Therefore, this paper attempts to improve surveillance after treatment might lead to 
earlier detection of relapse, and precise assessment of recurrent status could improve outcome. 

2. Nonhomogeneous Possion Process (NHPP) 
In order to model the recurrent cervical cancer, the Nonhomogeneous Poisson process (NHPP) was introduced 
to make the time-dependent behavior of more cervical cancer tractable [9]. The assumption that the survival af-
ter a medication is essentially the same as it was immediately before the recurrent event is plausible. Based on 
the assumption, the recurrent cervical cancer is time-dependent [9]. The intensity function of the failure process 
is usually assumed to be of the form ( ) ( )0 ;x h xλ λ β= , where λ0 is the scale factor, β is the aging rate, x is the 
elapsed time, and h(.) can be any function that reflects the recurrent cervical cancer. 

Suppose we have a patient with cervical cancer who recurrent process is given by a NHPP. We observe cer-
vical cancer for x* units of time, during which we observe N recurrent events. In this (time-truncated) case, x* is 
a constant and N is a random variable. It is known for such an NHPP that the joint density function of the first N 
recurrent times is 

( ) ( ) ( )(1 2, , , , 1 2 =1, , , , exp *
N

n
X X X N n iif x x x n x xλ = −Λ  ∏



                    (1) 

where ( ) ( )0
dxx u uλΛ = ∫  is the mean number of recurrent events by time x in the nonhomogeneous Poisson 

process. If we instead observe the cervical cancer until the n*th recurrent event (rather than until time x*), and 
the n*th recurrent time occurs at time Xn* (i.e., the recurrent event-truncated case, where n* is a constant and Xn* 
is a random variable), then the joint density function of the first n* recurrent times is 

( ) ( ) ( )(1 2 *

*
, , , 1 2 * *=1, , , exp

n

n
X X X n i nif x x x x xλ  = −Λ  ∏



                      (2) 

The recurrent cervical cancer is modeled by a power law failure model if it is given by an NHPP with an in-
tensity function of the form 

( ) -1
0x xβλ λ β=  0 0, 0λ β> >                              (3) 

where β is effectively unit. When β is equal to one, the NHPP degenerates to an HPP with a constant β0. For β < 
1 the failure intensity is decreasing (corresponding to survival growth), and for β > 1 the failure intensity is in-
creasing. Note that for 1 < β the failure intensity is concave downward, and for β > 2 the failure intensity is con-
cave upward. 

Other failure models have also been proposed to model recurrent process, but in more complicated ways. 
Unlike the power law failure model given above, these models often have more than two parameters. This 
makes the analysis more difficult. But since some of these models are generated by combining two of the three 
commonly used models. For example, the exponential polynomial rate model proposed by Cox [10] is of the 
form 

( ) ( )0exp r m
mmx xλ α

=
= ∑ , 
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the Weibull and log-linear rate model proposed by Lee [11] is of the form 

( ) ( )1 expx x xγλ αγ β−= , 

the nonlinear failure rate model proposed by Salem [12] is of the form 

( ) ( )1
1 2x xβλ α α β −= + , 

the bounded intensity model proposed by Hartler [13] is of the form  

( ) ( ) 11 1x xλ η η − = − +  , 

the gamma type intensity model proposed by Yamada et al. [14] is of the form  

( ) ( )2x xexp xλ αη η= − , 

and the bathtub type failure rate models ( ) ( )1x x xλ δ θ β= + +  and ( ) 1 21 1
1 2 3x x xβ βλ α α α− −= + +  are pro- 

posed by Calvin [15] and Hjorth [16], respectively. 
In this paper, we develop a Bayesian decision process for the power law failure model, since the power law 

intensity function allows for a wide variety of shapes (including both concave upward and concave downward, 
as well as decreasing) and tends not to increase very steeply, which may make it more realistic for clinical prac-
tices. 

3. Bayesian Inference 
Suppose a patient with recurrent cervical cancer that behaves according to the nonhomogeneous Poisson process 
with intensity function ( ) ( )0 ;x h xλ λ β= . The crucial two-action decision is whether after some period of time t, 
the failure rate of the recurrent cervical cancer will be too high (in which case some undertaking the intervention 
treatment needs to be taken), or will still be within an acceptable range (in which case we can according to the 
status quo). Another option is to gather additional information. The decision should be made on the basis of ex-
pected cost-effectiveness with respect to some loss function [17] [18]. We also assume that the decision maker is 
risk neutral, and can therefore make the decision on the basis of expected monetary value. The basic elements of 
the Bayesian decision process are as follows: 

Parameter space Θ: ( ){ }0 0, 0λ β λ > , where λ0 is the scale factor and β is the aging rate. Both parameters are 
uncertain and can be estimated through physicians’ opinions. 

Action space A:{a1,a2}, where a1 is the status quo, and a2 is the risk reduction action. (We eventually expand 
this to consider a third possible action, the collection of additional information). 

Loss function L: a real function defined on Θ × A. If we decide to keep continuing the status quo, then the 
loss we face is L(θ,a1); if we decide to take the risk reduction action, then the loss we face is L(θ,a2). 

Sample space S: The additional information available to be collected. With recurrent event-time endpoints, it 
is common to schedule analyses at the times of occurrence of specified landmark events, such as the 5th event, 
the 10th event, and so on. The collecting this additional data or information should also be reflected in the deci-
sion process. 

The cost of collecting this additional information should also be reflected in the decision process. The detailed 
analysis descriptions of each phase are as follows: 

3.1. Prior Analysis 
The available prior clinical knowledge (e.g., physician’s opinion, past experience, or the similar clinical status) 
about the parameter space, ( ){ }0 0: , 0λ β λΘ > , can be represented by a joint distribution indicating the relative 
likelihood of each state of nature. Loss functions appropriate for the status quo a1 and risk reduction action a2 
can be derived by taking all cost-related data into account. Once the prior distribution and loss function have 
been specified, it is easy to perform a prior analysis by simply comparing the expected losses for the options a1 
and a2. Therefore, if ( ){ } ( ){ }1 2, ,E L a E L aθ θ> , then option a2 is optimal, and if ( ){ } ( ){ }1 2, ,E L a E L aθ θ≤ , 
then option a1 is optimal. 



C.-C. Chang 
 

 
74 

3.2. Preposterior Analysis 
When the expected losses associated with options a1 and a2 are fairly close, we might not feel very confident 
about a decision based solely on a prior analysis, and gathering additional information might be desirable. 
However, before collecting additional information, we have to investigate the possible outcomes and costs of 
each candidate sampling plan, and to determine the first stage decision of whether collecting additional informa-
tion is worthwhile and also which sampling plan is the best in terms of cost-effectiveness. The Expected Value 
of Sample Information (EVSI) can be calculated according to 

( ) ( ){ } ( ){ }{ }1,2 1,2
min , min ,i j S j ij j

EVSI S L a E L a Sθ θ
= =

= −E E , 

where iS  is the ith sampling plan under consideration. The Expected Net Gain of Sample information (ENGS)  
is defined as ( ) { } { }* * *i i iI

ENGS S EVSI S C S= − , where { }*iI
C S  is the cost of the ith sampling plan. There-  

fore, if ENGS ≤ 0, then it is not worthwhile collecting additional information; conversely, if ENGS > 0, then we 
can start collecting data and prepare for a posterior analysis, and the i*th sampling plan should be adopted in or-  
der to satisfy the condition ( ) ( ){ }max* *i ii

ENGS S ENGS S= . 

3.3. Posterior Analysis 
Once the optimal sampling plan, say S(k), has been selected based on the preposterior analysis. After the data 
collection is complete, the observed data S(k) = s(k) can then be used to perform a posterior analysis. The decision 
should then be made in accordance with the strategy that if 

( ) ( ) ( ){ } ( ) ( ) ( ){ }1 2, ,k k k kL a S s L a S sθ θ= ≥ =E E , 

then option a2 is optimal, and if  

( ) ( ) ( ){ } ( ) ( ) ( ){ }1 2, ,k k k kL a S s L a S sθ θ= ≥ =E E , 

then option a1 is optimal. 
By exploring the relationships among the optimal decision and the extent of uncertainty about recurrent trends, 

the conditions under which gathering additional information is worthwhile can be determined, and more gener-
ally in developing guidelines for the use of isolating trends in data in risk management. The following terminol-
ogy will be used throughout this paper: 

CA: the cost of a recurrent event if it occurs. 
CR: the cost of the proposed risk reduction action. 
CI: the cost of collecting additional information. 
ρ: the reduction in failure rate that would result from the proposed risk reduction action (0 < ρ < 1). 
M: the expected number of failures during the time period [t,T] under the status quo. 
Suppose that patient has a planned lifetime T, and the decision of whether to keep the status quo or perform 

some intervention treatment must be made at time t. The decision variable we are dealing with is then the ex-
pected number of recurrent event during the time period [t,T]. Since recurrent times are assumed to be drawn 
from a nonhomogeneous Poisson process with intensity function ( ) 0 ( ; )t h tλ λ β= , the expected number of re-
current events in [t,T] under the status quo is given by 

( ) ( ) ( ) ( )0 0 0 0( , , , ) d ; d b; b; H,T T
t tM M T t s s h s s H T H tλ β λ λ β λ λ≡ = = = − = ∫ ∫               (4) 

where ( ) ( )0; ; dyH y h s sβ β= ∫ , and H ≡ H ( ) ( ) ( ); ;H T H tβ β β= − . Suppose that undertaking the intervention 
treatment will reduce the failure intensity by a fraction ρ, where 0 1ρ< < . Then the expected number of recur-
rent events in [t,T] if undertaking the intervention treatment is performed is given by 

( )( ) ( ) ( )01 d 1 1T
t s s h Mλ ρ ρ λ ρ− = − = −∫                            (5) 

On the basis of the assumptions given above, we therefore have a two-action problem with a linear loss func-
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tion, where the loss for taking action a1 (i.e., continuing with the status quo) is CAM and the loss for taking ac-
tion a2 (i.e., undertaking the intervention treatment) is ( )1 +A RC M Cρ− . The expected loss for the status quo is 
simply { }AC ME , and the expected loss for undertaking the intervention treatment is ( ) { }1 +A RC M Cρ− E , 
and ( )C R AM C C ρ=  is the cutoff value of E{M} for undertaking the intervention treatment. 

As a simplistic assumption, one can assume that λ0 and β are independent of each other. For example, if the 
prior distributions for λ0 and β are Gamma (α ; γ ) and Uniform (a,b), respectively, and the power-law failure 
model is assumed to be suitable under consideration, then the joint distribution of λ0 and β is just the product of 
the individual distributions of λ0 and β. The joint posterior distribution for λ0 and β obtained by Bayesian updat-
ing is simply proportional to the product of the joint prior distribution for λ0 and β and the likelihood function, 
which is given by 

( ) ( )
*

* *

* *

1

1
0 1 2 0 0 0

1
, , , , 1 0,

n
a n n

in n
i

f x x x K x exp x a b
β

βλ β λ β λ γ λ β
−

+ −

=

   = − + − > < <     
∏      (6) 

where K is the normalizing constant. 
Since the prior and posterior density functions for M are functions of λ0 and β, some prior and posterior mean 

values of M can be derived by the bivariate transformation technique. However, closed forms for the prior and 
posterior means of M are not always available, which is typically the case for the Bayesian analysis. Neverthe-
less, Bayesian prior and posterior analyses can still be performed by computing the prior and posterior mean values 
of M using the numerical integration technique and comparing them with the cutoff value ( )C R AM C C ρ=  
(i.e., the cutoff value of E{M} for taking the risk reduction action). If the relevant mean is smaller than MC, then 
we should keep the status quo; if not, then we should perform the risk reduction action. 

4. Simulation Study 
We have used the recurrent cervical cancer case study to illustrate the use of the models developed in the pre-
vious sections. The medical records and pathology were accessible by the Chung Shan Medical University Hos-
pital Tumor Registry. The birth date of the studied subject was 1-May-1943, and the observation period was 
from 24-Sep-2010, to 23-August-2011. The recurrent dates for the subject during the observation period were: 
{24-Jan-2011, 24-Apr-2011, 24-May-2011, 23-Jul-2011, 22-Aug-2011}. An application is performed with the 
assumption that E{λ0} = 0.2 and SD{λ0} = 0.03, and that β is Uniform[1,2.8]. In addition, we have CA = 238,000, 
CR = 196,000, CI = 102,000, ρ = 0.08, T = 75, and t = 62. We use the entire failure data for the posterior analysis. 
Prior and posterior analyses are performed by comparing the prior and posterior mean values of M with the cu-
toff value MC. 

Since the recurrent data are already available, we assume that the cost of analyzing the recurrent data is asso-
ciated with tasks such as reviewing records and interviewing physicians. As can be seen in the Table 1, prior  
 

Table 1. Summary the result of Bayesian inference. 

Prior E{M} 4.9500 

Optimal Sampling Number of Failure 7 

Actual Sampling Number of Failure 4 

Prior E{λ0} 0.2 

Posterior E′{λ0} 0.1532 

Prior E{β} 1.49 

Posterior E′{β} 1.7314 

Cutoff Value of E{M} for Risk Reduction 6.9400 

Prior Decision Status Quo 

Posterior E′{M} 9.6983 

Posterior Decision Risk Reduction 
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and posterior analyses can be performed by comparing the prior and posterior mean values of λ0 with the cutoff 
value MC. The observed data support the adoption of the risk reduction action, whereas the priors support the 
status quo. This can be explained by the fact that the observed data indicate greater deterioration than was as-
sumed by the prior distributions. 

5. Conclusion 
In this study, Bayesian inference of a nonhomogeneous Poisson process with power law failure intensity func-
tion was used to describe the behavior of recurrent cervical cancer. In particular, the proposed priors allow us to 
explicitly account for independence between λ0 and β, and are a significant improvement over previous 
approaches, which have generally been based on the assumption either that β is known or that λ0 and β are 
independent. Furthermore, the prior distribution for the power law failure model has more advantages than the 
corresponding distribution for any other failure models, since it has a wide range of intensity function shapes. 
The proposed decision models can provide decision support techniques not only for taking action in the light of 
all available relevant information, but also for minimizing expected loss. One area in which further work might 
be desirable is to study other failure models (e.g., the proportional hazard model, the exponential polynomial 
rate model, the Weibull and log linear rate model, the nonlinear failure rate model, or the bathtub type failure 
rate model) using the same procedure developed in this study. However, since these models usually have more 
than two parameters, the analysis will be more complicated. 
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