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Abstract 
There exist many ways to measure financial asset volatility. In this paper, we introduce a new joint 
model for the high-low range of assets prices and realized measure of volatility: Realized CARR. In 
fact, the high-low range and realized volatility, both are efficient estimators of volatility. Hence, 
this new joint model can be viewed as a model of volatility. The model is similar to the Realized 
GARCH model of Hansen et al. (2012), and it can be estimated by the quasi-maximum likelihood 
method. Out-of-sample volatility forecasting using Standard and Poors 500 stock index (S&P), Dow 
Jones Industrial Average index (DJI) and National Association of Securities Dealers Automated 
Quotation (NASDAQ) 100 equity index shows that the Realized CARR model does outperform the 
Realized GARCH model. 

 
Keywords 
High-Low Range, Realized Volatility, Joint Model, High Frequency Data 

 
 

1. Introduction 
Modeling the volatility of financial asset returns is of fundamental importance to option pricing, assets portfolio 
and risk management. Many ways exist to model financial asset volatility, such as ARCH/GARCH family of 
models and stochastic volatility (SV) model. The strength of these models lies in their flexible adaptation of the 
dynamics of volatility. With the increasing availability of high frequency financial data, considerable literature 
on the use of intra-day as set price data to measure daily volatility has been expanded. The research has intro-
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duced many realized measures of volatility, such as realized variance [1], bipower variation [2], realized kernel 
[3], and many other quantities. Any of these realized measures of volatility contains much information about the 
current level of asset price volatility than the squared daily return. This makes them widely used in the recent 
research of financial economics. However, in the real world, the realized measure of volatility is vulnerable 
contaminated by the presence of non-trading hours and the market microstructure noise. 

In practice, the daily return is less subject to the market microstructure noise but contains less information of 
volatility, while the realized volatility is heavily contaminated by the noise but still includes much information. 
In this context, recently, numerous researchers have devoted to study the joint model for daily returns and rea-
lized measure of volatility. The joint model can be classified into two categories according to different points of 
view. We will describe the two kinds of joint model in details in the following paragraph. 

The first kind of the joint model is MEM (Multiplicative Error Model) and HEAVY (High-Frequency-Based 
Volatility Model) models, which deal with multiple latent volatility processes. The first joint model is intro-
duced by Engle and Gallo (2006) [4], known as the MEM model [5]. Three measures of volatility, including 
absolute return, range and realized volatility, are combined in the MEM model. An alternative model is the 
HEAVY model proposed by Shephard and Sheppard (2010) [6]. The other kind model is based on the structure 
of the GARCH and SV model with an observation equation and a measurement error. In this sense, Hansen et al. 
(2012) propose a Realized GARCH model within the context of GARCH model [7]. The key feature of the Rea-
lized GARCH model is a measurement equation which can relate the realized volatility to the conditional va-
riance of returns [7]. Based on the SV (stochastic volatility) model, Takahashi et al. (2009) introduce a joint 
model named as RV-SV model or Realized SV model [8]. The advantage of the Realized GARCH model is that 
it can be estimated by quasi-maximum likelihood method, while the Realized SV model requires more compli-
cated algorithms. Some other extended joint models are discussed in Hansen and Huang (2012) [9], Hansen et al. 
(2012) [10], etc. 

The high-low range of daily return is an alternative way of measuring volatility; Parkinson (1980) showed 
that the high-low range is a more efficient estimator of volatility than the daily return, because the formation of 
the range is from the entire price process [11]. Many other researchers extend the high-low range estimator to 
include more information, such as the opening and closing prices. Due to the efficiency of the high-low range 
estimator, the high-low range can also be used to reduce the microstructure noise in high-frequency data field. 
Martens and Van Dijk (2007) [12] and Christensen and Podolskij (2007) [13] provided a more efficient estima-
tor realized range-based variance, which is formed from replacing each squared return by the high-low range. It 
is a puzzle that the theory and the simulation results of the high-low range estimator perform well, while the 
empirical application performs poorly, due to its failure to capture the dynamic of volatilities. For this reason, 
Chou (2005) proposed a range-based volatility model named CARR (Conditional Autoregressive Range model), 
which can appropriately model the dynamic of the high-low range [14]. Brandt and Jones (2006) [15], among 
others, extended the CARR model to the time series EGARCH model, and draws a conclusion that the range- 
based time series model outperforms than the daily return in empirical analysis. The CARR model has been ex-
tended much more; other references include Chiang and Wang (2011) [16], Lin et al. (2012) [17], etc. 

In this paper, we will introduce a new joint model which combines a CARR model for range with realized 
volatility, named realized CARR model. Comparing with the first joint MEM model, this new joint realized 
CARR model gives up the shortcoming of it that deals with three latent volatility processes. Meanwhile, the new 
model retains the superiority of the realized GARCH model which contains only two latent volatility processes, 
while more informative than the latter. The model proposed by this paper can be used to calculate Value-at-Risk 
and Expected Shortfall which are helpful for financial risk managers and portfolio managers. 

The structure of this article is as follows. In Section 2, we first give a review of the CARR model and Rea-
lized GARCH model, and then we propose the Realized CARR model. The estimation of the Realized CARR 
model is described in Section 3. The results of the simulation for Realized CARR model are show in Section 4. 
In Section 5, we apply our model to Standard and Poors 500 stock index, Dow Jones Industria Average index 
(DJI) and National Association of Securities Dealers Automated Quotation (NASDAQ) 100 equity index, and 
provide out-of-sample forecasting comparison between the Realized CARR and Realized GARCH model. The 
Section 6 concludes the paper. 

2. Realized CARR 
In this section, we introduce the Realized CARR model. We start with a brief of the CARR and the Realized 
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GARCH model which provide the motivation for our introduced joint model. 

2.1. The CARR Model 
Let tsp  be the logarithmic price of an asset at time ( )0 1s s≤ ≤  on day. In the paper of Chou (2005) [14], 

tsp  is supposed to be driven by a geometric Wiener process. Then the high-low range of the return is defined 
as: 

{ } { }max mint ts tsR p p= −                                  (1) 

where ( )1,s s−  is the interval of range measurement which is normalized to be unity. 
The CARR (p, q) model is first introduced by Chou (2005), which is specified as: 

t t tR λ ε=                                         (2) 

1 1

q p

t i t i j t j
i j

Rλ ω α β λ− −
= =

= + +∑ ∑                                  (3) 

tλ  is the conditional mean of the high-low range determined by the information set 1tF −  which contains all 
the past information of asset price up to time 1t − . tε  is the innovation term assumed to have a non-negative 
support distribution with a unit mean: ( )2

1| 1,t tF Dε σ− ∼ . From the result of Chou (2005) [14], if the innova-
tion is i.i.d., the variance of the innovation 2σ  is proportional to the square of the ranges’ conditional expecta-
tion. While, if not, the variance 2σ  is unknown and time-varying but can be specified. The parameters 

, ,i jω α β  in the CARR model are all positive to ensure positivity of tλ . In order to ensure stationarity of the 
process, the parameters are assumed to satisfy the following requirement: 1 1 1q p

i ji jα β
= =

+ <∑ ∑ . The CARR 
model is extended from GARCH model, the parameters , ,i jω α β  in both model have the same meaning. A 
discussion of the parameters can be seen in Bollerslev (1986) [18].  

2.2. Realized GARCH Model 
The template is used to format your paper and style the text. All margins, column widths, line spaces, and text 
fonts are prescribed; please do not alter them. You may note peculiarities. For example, the head margin in this 
template measures proportionately more than is customary. This measurement and others are deliberate, using 
specifications that anticipate your paper as one part of the entire journals, and not as an independent document. 
Please do not revise any of the current designations. 

The Realized GARCH model proposed by Hansen et al. (2012) [7] is a joint model for daily return and rea-
lized volatility. The structure of the Realized GARCH (p, q) model is specified as: 

t t tr h z= ,                                       (4) 

( )t t t tx h z uξ φ τ= + + + ,                                  (5) 

1 1
,

p q

t i t i j t j
i j

h h xω β γ− −
= =

= + +∑ ∑                                 (6) 

In this model, tr  is the return, tx  denotes a realized measure of volatility. th  is the conditional variance of 
the return, ( )1Vart t th r F −= | , where 1tF −  is the past information of asset price up to time t-1. The disturbance 
terms tz  and tu  are assumed to be mutually independent, ( )0 1tz i i d N∼ . . . ,  and ( )20t uu i i d N σ∼ . . . , . ( )tzτ
represents the leverage effect and is given by: ( ) ( )2

1 2 1tz z zτ τ τ= + − .  
The first two equations (4) and (5) are referred as the return equation and the GARCH equation, see Hansen et 

al. (2012) [7] for details. The last equation (6) named as measurement equation reveals that the realized volatili-
ty can be decomposed into conditional variance and a noise term which denotes the influence of market micro-
structure noises. It is reasonable that tx  is an accurate measurement of asset price volatility. 

2.3. Realized CARR Model 
Motivated by the CARR model of Chou (2005) [14] and the Realized GARCH model by Hansen et al. (2012) 
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[7], we introduce the following Realized CARR model: 

t t tR λ ε= ,                                      (7) 

1 1

p q

t i t i j t j
i j

xλ ω β λ γ− −
= =

= + + ,∑ ∑                               (8) 

t t tx uξ φλ= + + ,                                   (9) 

tλ  and tε  have the same meaning with the CARR model, while tx , tu  have the same meaning as the 
Realized GARCH model. tε  is assumed to have a non-negative support distribution with a unit mean, a natural 
choice is the unit exponential. In this model, tε  is given by ( )1t i i d Expε ∼ . . . , and ( )20t uu i i d N σ∼ . . . , . In this 
model, we don’t consider the leverage effect, which can be characterized by introducing daily returns, realized 
semi variance or indicator functions [4] [14] [19]. And we will leave this leverage effect for further study.  

The CARR model is similar to the ACD model by Engle and Russell (1998) [20], and is a generalization of 
the MEM model in Engle (2002) [5], Engle and Gallo (2006) [4]. While, there are critical differences between 
the CARR and the ACD model, see Chou (2005) [14]. In the Realized CARR model, tR  is the daily range, 
while it can be replaced by other non-negative variables, such as volumes, absolute returns, trades, etc. The 
CARR model is a particular case of the MEM model. In this sense, the Realized CARR model also can be ex-
tended as Realized MEM model. 

3. Model Estimation 
In this section, we will introduce the estimation of the Realized CARR model. By the results of Chou (2005) 
[14], the CARR model can be ease estimated by the Quasi-Maximum Likelihood Estimation. The model estima-
tion can be obtained by setting a GARCH model for the square root of range and taking the mean to zero. In this 
sense, the estimation of the Realized CARR model can be obtained by estimating the Realized GARCH model 
with a specification like the CARR model. So the analysis of the Quasi-Maximum Likelihood Estimation 
(QMLE) will be similar to the Realized GARCH model, the standard GARCH model and the CARR model. 
According to Engle and Gallo (2006) [4], Shephard and Sheppard (2010) [6] and Hansen et al. (2012) [7], the 
joint likelihood can be decomposed and be maximized separately. The key points about the likelihood factoriza-
tion are that the innovations ( tε , tu ) in the model are supposed to be independent and the variables (high-low 
range, realized volatility) are assumed to relaying on their own latent volatility process. 

Although the estimation of the Realized CARR model is similar to the Realized GARCH model, it is still 
somewhat different. In the following paragraph, we will describe the structure of QMLE analysis for the Rea-
lized CARR model. The first and second derivatives of the log likelihood function are provided in this section. 

The log-likelihood function is specified as: 

( ) ( )1
1

log
n

t t t
t

R x f R x Fθ −
=

, ; = , |∑                              (10) 

According to Hansen et al. (2012), the joint conditional density can be factorized as: 

( ) ( ) ( )1 1 1t t t t t t t tf R x F f R F f x R F− − −, | = | | ,                          (11) 

In the model, ( )1t i i d Expε ∼ . . . , and ( )20t uu i i d N σ∼ . . . , , the joint likelihood can be spited into the sum: 

( ) ( )
( ) ( )

( ) ( )

11

1 11

2

2
1 1

, ; log , |

log | | ,

log log 2π log
2

| .

n
t t tt

n
t t t t tt

n n
t t

t u
t tt u

R x f R x F

f R F f x R F

R

x

u

R R

θ

λ σ
λ σ

−=

− −=

= =

=

 =  

  
= − + − + +  

 
+

 
=

∑
∑

∑ ∑

 



 

In the estimation of the joint model, we can ignore the constant term which does not affect the parameter es-
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timation. Therefore, the likelihood function can be abbreviated to: 

( )
2

2
1

, ; log log
2

n
t t

t u
t t u

R uR x θ λ σ
λ σ=

 
= − + + + 

 
∑                        (12) 

Before taking derivatives, we simplify the joint model by: 

t tz gλ ′=                                      (13) 

t t tx m uψ ′= +                                    (14) 

where ( )2
uzθ ψ σ′ ′= , , , ( )1 1, , , , , ,p qz ω β β γ γ ′= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ , and ( )ψ ξ φ τ ′= , , , ( )1,t tm λ ′= .  

( )1 11, , , , , ,t t t p t t pg x xλ λ− − − −= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ .  

Then, we will provide the first and second derivatives of the log-likelihood function. 

Lemma 1. Define t
t z

λλ ∂
=
∂

 , 
2

t
t z z

λλ ∂
=
∂ ∂

 , where 0t > , otherwise, 0tλ =  and 0tλ = .  

( )1 1 1 10 0t
p q q t t p p q q t

g
z

λ λ+ + × − − + + × −
∂

= , , ⋅ ⋅ ⋅, , = Λ
∂

   , which is a ( ) ( )1 1p q p q+ + × + +  matrix. Then  

1
1

p

t t t i t i t
i

z g gλ β λ− −
=

= Λ + = +∑                              (15) 

1

p

t i t i t t
i

λ β λ −
=

′= + Λ + Λ∑                                   (16) 

Proposition 2. 1) The first derivative of the log-likelihood function, 
1

n t
tθ θ=

∂∂
=

∂ ∂∑   is given by 

2 2

2 2 4
1 , ,t t t t t t u t

t
t u u u

u u u m uε σλ
θ λ σ σ σ

  ∂ − − = − + −  ∂    




                       (17) 

where tu φ= − . 

2) The second derivative, 
22

1
n t
tθ θ θ θ=

∂∂
=

′ ′∂ ∂ ∂ ∂∑  , is specified as:  

2

2 2 2

2

2 2

2 2

4 4 6

2 1 1

2
2

t t t t t t t
t t t

tt u u

t t t t t

u u

t t t t t u t

u u u

u u u u u

u m m m

u u u m u

ε ελ λ λ
λλ σ σ

λ
θ θ σ σ

λ σ
σ σ σ

    − + −′− + − + • •    
    

 ′ ′∂  = − •
′∂ ∂  

 
′ − − − 

 

  

  










 

where ( )0 1tb = ,  and 0tu = .  
The details of Lemma 3.1 and Theorem 3.2’s proof can be seen in Hansen et al. (2012) [7], which are omitted 

in this dissertation. 
According to the corollary of Lee and Hansen (1994) [21] and the Proposition 3 of Hansen et al. (2012) [7], 

the maximize of log-likelihood function will be consistent and asymptotically normal and the model can be es-
timated with the realized GARCH model procedure by making tR  as the dependent variable and setting the 
mean is zero (see Engle (2002) [5]). More discussions about this topic can be seen in Hansen et al. (2012) [7]. 

4. Simulation 
We will show the simulation results of Realized CARR (1,1) model in this section. In order to understand the 
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performance of the model, we use two parameter settings in this simulation and set the sample size as T = 1000, 
1500 and 2000. Two parameter settings: Case 1, ( ) ( )2, , , , , 0.18,0.4,0.37, 0.2 0.9,0.2ω β γ ξ ψ σ = − ， ; Case 2, 
( ) ( )2, , , , , 0.15,0.5,0.3, 0.3,1,0.1ω β γ ξ ψ σ = − . The simulation results for two parameter cases are shown in Ta-
ble 1 and Table 2. 

The results of the simulation for Realized CARR (1,1) model indicate that the model performs well and isn’t 
affected by the initial values. Therefore, the estimation method of this model is very robust. 

5. Empirical Application 
In this section, we introduce the empirical analysis of our proposed model using daily range data, returns and 
realized measures for Standard and Poors 500 stock index (S&P), Dow Jones Industria Average index (DJI) and 
National Association of Securities Dealers Automated Quotation (NASDAQ) 100 equity index. The in sample 
period is from January 3, 2005 to August 30, 2013 and out of sample period is from September 2, 2013 to De-
cember 31, 2013. These data are downloaded from Oxford-Man Institute of Quantitative Finance Realized Li-
brary (Library Version: 0.2 [22]). From the Realized Library, we can download several types of realized volatil-
ities, such as RV, RK, BRV (Bipower Variation), MTRV (Median Truncated Realized Variance), RSRV (Rea-
lized Semi-variance) et al. In order to reduce the microstructure noise, in this paper, we adopt the realized kernel 
(RK) proposed by Barndor-Nielsen et al. (2008) [3] as the realized measure tx . 
 

Table 1. Case 1 simulation results.                                                   

T  ω  β  γ  ξ  φ  2σ  LL 

Init Case 1 0.18 0.4 0.37 −0.2 0.9 0.2  

3*1000 par 0.1817 0.4028 0.02916 −0.3053 1.1904 0.0388 3*−1144.012 

 std error 0.0175 0.0499 0.0373 0.0538 0.1552 0.0017  

 p value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  

3*1500 par 0.1848 0.3906 0.3940 −0.1822 0.8448 0.0383 3*−1598.929 

 std error 0.0159 0.0448 0.0244 0.0211 0.0554 0.0014  

 p value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  

3*2000 par 0.1790 0.4152 0.3507 −0.2025 0.8901 0.0407 3*−2133.815 

 std error 0.0145 0.0400 0.0249 0.0250 0.0679 0.0013  

 p value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  

 
Table 2. Case 2 simulation results.                                                   

T  ω  β  γ  ξ  φ  2σ  LL 

Init Case 1 0.15 0.5 0.3 −0.3 1 0.1  

3*1000 par 0.1487 0.4913 0.2848 −0.2859 0.9932 0.0094 3*−2055.816 

 std error 0.0153 0.0494 0.0599 0.0538 0.0643 0.0018  

 p value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  

3*1500 par 0.1445 0.5190 0.2817 −0.3058 1.0249 0.0099 3*−3026.141 

 std error 0.0159 0.0448 0.0244 0.0211 0.0554 0.0014  

 p value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  

3*2000 par 0.1299 0.5709 0.2328 −0.3355 1.1186 0.0097 3*−4108.952 

 std error 0.0112 0.0355 0.0414 0.0612 0.2040 0.0003  

 p value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  
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5.1. Data Description 
Before estimation, we give the description of the sample data. Figures 1-3 show the time plot of the daily range, 
returns, realized kernel, log realized kernel and Tables 3-5 present the descriptive statistics for these data. The 
skewness and kurtosis show that the realized kernel is not normal but its logarithm is nearly normal, so we use 
logarithmic realized kernel data rather than realized kernel in this paper. The Jarque-Bera (JB) statistic is to test 
the normality of the sample data and its critical value is 5.99 (5%), which indicates the non-normal distribution 
of the sample data. It might be better to assume the distribution of tu  non-normal, which we will leave for fu-
ture study. The Ljung-Box (LB) test is a statistical test for autocorrelations of a time series. LB (10) is the 
Ljung-Box statistic with 10 lags and its critical value is 18.31 (5%). According to the LB (10) statistic, the daily 
return and high-low range of the sample data are non-auto correlated and non-white volatilities. 

It might be better to assume the distribution of ut non-normal, which we will leave for future study. The 
Ljung-Box (LB) test (see Diebold (1988) [23]) is a statistical in this paper test for autocorrelations of a time se-
ries. LB (10) is the Ljung-Box statistic with 10 lags and its critical value is 18.31 (5%). According to the LB (10) 
statistic, the daily return and high-low range of the sample data are non-auto correlated and non-white volatilities.  
 

 
(a) return                                             (b) high-low range 

 
(c) realized kernel                                        (d) log-realized kernel 

Figure 1. Daily returns, high-low range, realized kernel and log realized kernel of S&P index.                              
 
Table 3. Descriptive statistics for the S&P index.                                                                 

 mean stdev skewness kurtosis max min JB LB (10) 

Return 0.0002 0.0127 −0.2632 12.7100 0.1022 −0.9351 8546.00 54.048 

High-low range 0.0138 0.0083 1.9215 9.8749 0.0847 0.0024 5551.983 4715.5 

Realized kernel 0.0001 0.0003 12.671 280.140 0.0093 0.0000 6,999,454 5860.0 

Log-realized kernel −9.7301 1.08118 0.8118 3.7880 −4.6763 −12.238 294.415 11055 
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Table 4. Descriptive statistics for the Dow Jones Industria Average index.                                           

 mean stdev skewness kurtosis max min JB LB (10) 

Return 0.0002 0.0122 0.0617 13.362 0.1075 −0.0840 9700.15 56.089 

High-low range 0.0137 0.0112 3.6175 23.1100 0.1201 0.0019 41,260.40 8260.6 

Realized kernel 0.0001 0.0003 12.438 263.740 0.0091 0.0000 61972 6090.4 

Log-realized kernel −9.7421 1.0684 0.8754 3.9475 −4.6966 −12.168 357.979 10862 

 

 
(a) return                                             (b) high-low range 

 
(c) realized kernel                                        (d) log-realized kenel 

Figure 2. Daily returns, high-low range, realized kernel and log realized kernel of DJI index.                              
 

 
(a) return                                             (b) high-low range 
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(c) realized kernel                                        (d) log-realized kenel 

Figure 3. Daily returns, high-low range, realized kernel and log realized kernel of NASDAQ index.                              
 
Table 5. Descriptive statistics for the Nasdaq index.                                                             

 mean stdev skewness kurtosis max min JB LB (10) 

Return 0.0001 0.0117 −0.3192 8.2382 0.0611 −0.0724 2517.87 11.818 

High-low range 0.0146 0.0105 3.1056 18.028 0.1085 0.0025 23909.42 7741.5 

Realized kernel 0.0001 0.0002 9.3750 143.108 0.0050 0.0000 18067 6667.8 

Log-realized kernel −9.7659 0.9630 0.8344 4.0213 −5.2965 −12.42 342.166 10909 

 
As is shown in the time plots of all the sample data, the financial assets have high volatilities during the financial 
crisis. The sample should be divided into pre and post financial crisis periods which indicate a regime switching 
model is needed. This is out of scope for the purposes of this article and we will leave this for further research. 

5.2. Data Description 
The details of model estimation results are presented in this section. According to the plot of partial autocorrela-
tion (PACF) and autocorrelation function (ACF), we determine the order of the two models as GARCH (1,1) 
and CARR (1,1). And in a practical application, the model GARCH (1,1) and CARR (1,1) are sufficient for 
most of the asset returns (see Bollerslev et al. (1992) [24], Chou (2005) [14]). As Hansen et al. (2012) [7] have 
shown that the realized GARCH model is superior to GARCH model, there is no need to compare our model 
with GARCH model. Hence, in this section, we just estimate the Realized CARR (1,1) and Realized GARCH 
(1,1) models. The estimation results of the two models are reported in Table 6.  

In order to compare the estimated models, we calculate the Akaike information criterion (AIC) and Schwarz 
information criterion (SC) according to the following formulas: 

( )AIC 2 2 , SC 2 logk k n= − + = − +   

where   denotes the log-likelihood and k is the number of parameters in the statistical model. The criteria is 
that the minimum AIC and SC values, the better a model is.  

As is shown in Table 6, AIC and SC values of the S&P data are the smallest in all of the sample data in both 
models, while they are the highest values in Nasdaq data. AIC and SC values of the realized CARR model are 
both smaller than that of realized GARCH model, that is to say, the former model has a better fitting effect than 
the latter. The sum of parameters β  and λ  of realized CARR is 0.961, 0.910 and 0.938, while the sums of 
realized GARCH model are 0.982, 0.920, 0.959. As we can see, the sum of realized CARR are all smaller than 
the latter’s which means the realized CARR model can reduce the persistence of volatility. This is consistent 
with the rule of information criteria. 

Figure 4 is the residual density of realized CARR (1,1) model of sample s&p. The other two samples’ plots of 
residual density of the realized model are similar with sample s&p’s and we omit them here. As we can see, the  
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Figure 4. Residual density: Realized CARR (1,1).                    

 
Table 6. Estimation results of Realized CARR (1,1) and Realized GARCH (1,1).                                                

 Realized CARR Realized GARCH 

 S&P Dji Nasdaq S&P Dji Nasdaq 

ω  0.110(0.001) 0.109(0.001) 0.090(0.003) 0.111(0.001) 0.109(0.005) 0.090(0.005) 

β  0.801(0.000) 0.760(0.000) 0.817(0.000) 0.782(0.000) 0.760(0.000) 0.800(0.000) 

γ  0.160(0.015) 0.150(0.049) 0.131(0.048) 0.200(0.046) 0.160(0.047) 0.159(0.047) 

ξ  −0.160(0.040) −0.15(0.048) −0.090(0.047) −0.102(0.047) −0.101(0.044) −0.104(0.044) 

ϕ  1.210(0.021) 1.030(0.016) 1.020(0.049) 1.100(0.007) 0.980(0.025) 0.990(0.025) 

uσ  0.340(0.000) 0.391(0.00) 0.331(0.000) 0.450(0.000) 0.449(0.000) 0.450(0.000) 

1τ     −0.05(0.027) −0.047(0.018) −0.187(0.028) 

2τ     0.030(0.047) 0.028(0.047) 0.030(0.047) 

  −1090.218 −1253.339 −1862.539 −1804.343 −2136.193 −2140.188 

AIC 2192.436 2518.678 3737.078 3624.686 4288.386 4296.376 

SC 2225.939 2552.181 3770.581 3669.356 4333.056 4341.046 

 
shape of the empirical distribution diverges from the exponential density whose function is monotonically de-
creasing. It is consistent with the descriptive statistics as showed in Table 3. The phenomenon of this distribu-
tion is named heavy tail which we will leave for further study. 

5.3. Out-of-Sample Volatility Forecast Comparison 
To assess the forecasting power of realized CARR model, we perform out-of-sample forecasts and make com-
parisons with realized GARCH model. We choose the forecast horizons to be from 1 day to 80 days which is 
from September 2, 2013 to December 31, 2013. Two ex post volatilities: daily return squared (DRSQ) and daily 
high-low range (DHLR) are used as measures in this paper. Then the root-squared (RMSE) and the mean-abso- 
lute-errors (MAE) are computed to compare the forecasting power of realized CARR model with realized 
GARCH model. RMSE and MAE are defined as: 

( ) ( )
0 5

21

1
RMSE

T

t h t h
t

h T MV FV
.

−
+ +

=

 = −  
∑  
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( ) ( )1

1
MAE

T

t h t h
t

h T MV FV−
+ +

=

= −∑  

where h means the forecast horizon, MV and FV denote the measure volatility and forecasted volatility, respec-
tively. 

Rolling samples of 2173 observations are used to modeling the two models and 100 data are made for out-of- 
sample forecast. The Table 7 is the result of Out-of-Sample Forecast Comparison for Realized CARR (1,1) and 
Realized GARCH (1,1), where RC denotes the realized CARR model and RG represents the realized GARCH 
model. Table 7 shows that the two forecast evaluation criteria give almost unanimous support for realized 
CARR model over realized GARCH model. For all case, RMSE and MAE of realized CARR model are smaller 
than that of realized GARCH model. It is not surprising that the realized CARR model contains more informa-
tion and yield more precise in forecast comparisons. 

Table 8 is the test of Mincer-Zarowitz regression and the null hypothesis is 0α =  and 1β = . F is the test 
statistic with critical value 3.01 (5%) From the test results can be seen that all the realized GARCH models of 
sample data reject the null hypothesis while all the realized CARR accepts the null hypothesis. The results of 
Mincer-Zarowitz regression tests are consistent with the two forecast evaluation criteria. 

6. Conclusion 
In this paper, we introduce a new joint model for the high-low range of assets prices and realized measure of 
volatility: Realized CARR. The model is easy to be estimated by the quasi maximum likelihood method. The 
empirical results show the superiority of fitting volatility than the realized GARCH model and it yields more 
precise in forecast comparisons. The new joint model gives up the shortcoming of MEM, which deals with mul-
tiple latent volatility processes, but retains the superiority of the realized GARCH model which contains only 
two latent volatility processes, while more informative than the latter. The model proposed by this paper can be  
 
Table 7. Out-of-sample forecast comparison for Realized CARR (1,1) and Realized GARCH (1,1).                          

 S&P Dji Nasdaq 

 DRSQ DHLR DRSQ DHLR DRSQ DHLR 

Horizon RC RG RC RG RC RG RC RG RC RG RC RG 

 RMSE 

1 3.281 3.312 2.013 2.243 4.181 4.312 3.117 3.219 3.194 3.292 2.16 2.242 

5 3.332 3.391 2.371 2.604 4.352 4.382 3.334 3.59 3.402 3.493 2.351 2.53 

10 3.436 4.048 2.712 2.979 4.476 4.527 3.569 3.891 3.51 3.848 2.674 2.881 

 MAE 

1 1.673 1.695 0.987 1.104 2.101 2.183 1.894 1.912 1.591 1.635 1.125 1.143 

5 1.707 1.803 1.105 1.167 2.23 2.302 1.906 1.935 1.611 1.663 1.196 1.209 

10 1.841 1.97 1.194 1.23 2.411 2.517 1.951 2.09 1.73 1.809 1.214 1.271 

 
Table 8. Mincerand-Zarnowitz regression.                                                                     

  α  β  F 2R  

2*S&P RC −0.023 (0.028) 0.078 (0.126) 1.867 0.213 

 RG 0.314 (0.043) −0.316 (0.19) 10.671 0.189 

2*Dji RC 0.003 (0.031) 0.019 (0.005) 0.986 0.143 

 RG 0.03 (0.047) −0.086 (0.008) 13.569 0.037 

2*Nasdaq RC 0.005 (0.013) −0.22 (0.178) 2.373 0.429 

 RG 0.245 (0.031) 0.844 (0.427) 17.370 0.127 
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used to calculate Value-at-Risk and Expected Shortfall which are helpful for financial risk managers and portfo-
lio managers. In fact, we only give the most general form of the model which can be extended much more, such 
as includes leverage effect, exogenous variables, heavy tail, regime switching, etc., which we leave for further 
study. 
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